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Inflammation following traumatic injury to the central nervous system (CNS) persists long

after the primary insult and is known to exacerbate cell death and worsen functional

outcomes. Therapeutic interventions targeting this inflammation have been unsuccessful,

which has been attributed to poor bioavailability owing to the presence of blood-CNS

barrier. Recent studies have shown that themagnitude of the CNS inflammatory response

is dependent on systemic inflammatory events. The acute phase response (APR) to

CNS injury presents an alternative strategy to modulating the secondary phase of injury.

However, the communication pathways between the CNS and the periphery remain

poorly understood. Extracellular vesicles (EVs) are membrane bound nanoparticles that

are regulators of intercellular communication. They are shed from cells of the CNS

including microglia, astrocytes, neurons and endothelial cells, and are able to cross the

blood-CNS barrier, thus providing an attractive candidate for initiating the APR after acute

CNS injury. The purpose of this review is to summarize the current evidence that EVs play

a critical role in the APR following CNS injuries.

Keywords: extracellular vesicles, traumatic brain injury, spinal cord injury, inflammation, acute phase response

INTRODUCTION

Acute CNS injuries, including traumatic brain and spinal cord injury (TBI; SCI), as well as stroke,
are a major global burden (1, 2). These neurological disorders have a collective global incidence
rate of 500–700 per 100,000 people (3), and have extremely high morbidity, requiring lifelong
subsequent care at a substantial financial and emotional cost (4, 5). Whilst the primary causes of
TBI and SCI, and even to some extent stroke, are largely unavoidable, the ensuing secondary injury
and ongoing inflammatory response can significantly worsen outcome and could be amenable to
therapeutic intervention (6–9). Themechanisms that promote the inflammatory response to injury,
and the communication pathways that convey messages about CNS health status to the systemic
immune system, are the subject of intense investigation, but it is becoming clear that extracellular
vesicles (EVs) play a pivotal role.

Acute CNS Injury—Primary vs. Secondary Injury
Damage to the CNS following a neurotraumatic event occurs in two distinct phases (7, 10, 11). The
primary phase is largely mechanical, whereby the physical insult causes direct structural damage to
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neuronal tissue and the vasculature, resulting in immediate cell
death, and hemorrhage, ischemia and/or oedema.

The primary phase occurs within a short window of time,
whereas the secondary phase has been shown to persist for
days, weeks, even months after the injury (12, 13). Although
not damaged directly during the initial insult, CNS tissue
surrounding the injury is highly vulnerable to secondary
damage (10, 14). Hypoxia, excitotoxicity, free radical formation,
breakdown of blood-CNS barriers and release of proteases, all
contribute to further cell death (10, 15). Moreover, activated
microglia and astrocytes, as well as infiltrating leukocytes from
the periphery, release cytokines and chemokines that create
a pro-inflammatory microenvironment (6, 7, 13). Collectively,
this results in the progressive destruction of CNS tissue,
known as “bystander tissue damage”, which considerably impairs
functional recovery (16).

Previous studies utilizing rodent models have shown that
the secondary phase of traumatic CNS injury is dependent
on the acute phase response (APR), a systemic inflammatory
response occurring predominantly in the liver (17). In response
to CNS damage, hepatic expression of pro-inflammatory
mediators significantly increases as early as 2 h post-insult
(17–21). In turn, these mediators trigger the mobilization
and priming of leukocytes from the bone marrow, which
then translocate to the site of injury, as well as seemingly
uninvolved peripheral organs. The spleen releases its reservoir
of pro-inflammatory monocytes and increases expression of
IFN-γ, TNF, and IL-6 amongst others (22–24). Systemic
inflammatory response syndrome (SIRS) which can lead tomulti-
organ dysfunction syndrome (MODS) is also not uncommon
in patients (25–29). Concurrent immunosuppression of the
adaptive immune components is often observed (30, 31),
leaving patients also highly susceptible to infections. Peripheral
immune responses thus significantly increase patient mortality
and morbidity.

Interestingly, suppression of the peripheral inflammatory
response has been shown to ameliorate CNS inflammation (20,
32–35). Modulation of the APR by targeting the production
of acute phase proteins, or Kupffer cell depletion, both reduce
neutrophil recruitment to the CNS in models of TBI and SCI (20,
33). Therefore, suppression of the APR may offer an alternative
strategy of minimizing tissue loss and functional deficits after
traumatic CNS injuries. However, it must be acknowledged that
modulating systemic inflammation is complex; paradoxically,
exacerbating periphery inflammation has similarly been shown
to reduce lesion size and leukocyte infiltration of the CNS
post-injury (36, 37). As such, it has been suggested that the
systemic response can also serve as an immune “distraction”,
redistributing leukocyte populations from the injured CNS to
other sites, although it remains unclear to where the leukocytes
redistribute (17). It is likely that timing of the inflammatory
insult is key, and improving our understanding of it will ease
therapeutic targeting.

The initiation signal for the activation of the peripheral
response is unclear. Both humoral and neuronal methods have
been investigated, yet vagotomized animals still exhibit an
APR (38, 39), and thus far no consistent molecular candidates

have been identified that can fully explain this response (40).
There is growing evidence that extracellular vesicles, novel
mediators of communication between distant organs, provide the
missing link.

Extracellular Vesicles
Extracellular vesicles (EVs) is a general term that defines all
cell-derived particles encapsulated in a lipid bilayer, which are
enriched for proteins, lipids, and nucleic acids (41–44). They
are typically classified according to their biogenesis (Figure 1);
apoptotic bodies (1,000–5,000 nm) are released from the plasma
membrane as part of programmed cell death, microvesicles
(150–1,000 nm) are blebbed from the cell membrane, whilst
exosomes (40–150 nm) are generated via the endolysosomal
pathway and stored in multivesicular bodies (MVB) prior to
release by exocytosis.

Whilst EVs have been investigated as a phenomenon for
more than 30 years, the significant role EVs play in intercellular
communication is only just being recognized. Indeed, a plethora
of studies have identified EVs as important mediators of not only
normal physiology, but also of pathology. They have been shown
to be released from almost all cell types, including neurons (45,
46), microglia (47, 48), astrocytes (35), and CNS endothelial cells
(49). EVs have also been isolated from almost all bodily fluids,
including cerebrospinal fluid (CSF) (50, 51) and plasma (52).
They have shown a unique capacity to disseminate information
around the body, including across the blood-CNS barrier (35), to
exert their effects both locally and systemically to distant organs,
making them attractive candidate mediators of CNS-to-immune
communication following injury.

EV-mediated cell communication has been associated in
a number of neurological diseases, where they have been
shown to be vectors of pathogenic proteins, propagating both
Alzheimer’s and Parkinson’s disease (53–56). In brain cancers,
EVs derived from tumor cells have been shown to act locally
in facilitating proliferation, growth and angiogenesis (57–60),
as well as distally in other organs aiding metastasis (61). In
turn, distal cancers are able to metastasize to the brain via
EVs as well (61–63). In the periphery, circulating EVs isolated
from LPS-treated animals have been shown to induce gliosis
and expression of pro-inflammatory molecules in the brains
of naïve mice (64). Moreover, EVs released from stimulated
brain endothelial cells have been shown to induce hepatic
TNF and CXCL1 expression in naïve rats, in turn inducing a
sickness behavior phenotype (49). Together, these studies suggest
the presence of a CNS-periphery communicatory axis that is
mediated by EVs. As such, investigating EVs in the context of
traumatic CNS injuries is of great interest. Here, we will evaluate
the current evidence that EVs mediate the communicatory
pathways between the CNS and the periphery following
traumatic CNS injury.

TRAUMATIC BRAIN INJURY (TBI)

TBI is a devastating disorder, affecting over 55 million people
globally (2). The current lack of available treatments is commonly
attributed to gaps in our knowledge of the secondary phase
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FIGURE 1 | EV biogenesis. EVs are typically classed according to their biogenesis. Apoptotic bodies and microvesicles are released from the plasma membrane in

blebbing and budding mechanisms, respectively. In contrast, exosomes are generated by the endolysomal pathway; internal budding of an endosome results in a

multivesicular body which fuses with the plasma membrane, releasing exosomes by exocytosis.

of injury (14). Human clinical data has confirmed that TBI
induces a robust inflammatory response in the periphery which
is predictive of poor outcome (65). In conjunction, numerous
studies have consistently demonstrated that circulating EVs are
significantly elevated in TBI patients during the acute phase
of injury (66, 67). For example, Nekludov et al. (66) showed
a transcranial gradient in EV concentration; more EVs were
detected in the cerebrovenous compared to arterial blood,
indicating that the increase in circulating EVs originated from
the brain. Increases in EVs in the circulation of patients with
TBI have been reflected in rodent studies (35, 48, 49, 52, 68, 69).
Hazelton et al. (52) showed an increase in plasma EVs during the
first 24 h after TBI, whilst Couch et al. (49) and Dickens et al.
(35) both showed increases in an IL-1β model of inflammatory
focal brain lesions. Critically, inhibition of EV release from
the CNS has been shown to attenuate the systemic response
to brain inflammation, and subsequently inhibit leukocyte
infiltration (35). Nekludov et al. further demonstrated that whilst
leukocyte- and platelet-derived EVs were increased after injury,
the circulating EVs were predominantly of endothelial origin,
the concentration of which was 7-fold greater than in healthy
controls. Dickens et al. (35) showed however that a proportion
of plasma EVs released after striatal IL-1β injection are derived
from astrocytes, and that these translocate to the liver, spleen,
and lung, further linking EV-mediated signaling with the APR
following CNS injury. Microglia and astrocytes both release
EVs in response to DAMP-mediated activation with ATP (47).

In turn, microglia-derived EVs enriched for IL-1β have been
reported in the plasma of TBI patients (48). From these studies,
it is easy to assume that EV population changes are due to
increased release from cells of the CNS. However, EVs derived
from hematopoietic cells can also signal to the brain, and their
uptake here was exacerbated by peripheral inflammation (70).
Delineating the origin of EVs could identify the critical players
in CNS-periphery communication, and may identify a specific
cellular target for EV-based therapeutics.

Functional analysis of plasma EVs from models of brain
injury determined that plasma EVs were pro-inflammatory and
able to induce a systemic inflammatory response in naïve rats,
in the absence of CNS injury (49). It has been established
that EVs are capable of interacting with granulocytes and
lymphocytes; they have been shown to carry MHC class I and
II, and contribute to antigen presentation (71–75). Therefore,
they may directly activate the peripheral immune system
through receptor-ligand mechanisms. Moreover, microvesicles
and apoptotic bodies are enriched for phosphatidylserine (PS) on
the outer leaflet, which not only assists in promoting budding,
but also encourages uptake by macrophages and dendritic
cells (76, 77). This is highly relevant considering the ongoing
apoptosis of CNS cells post-injury. Kumar et al. (48) showed
that EVs depleted of their content with the surfactant PEG-
TB had lost their ability to activate microglia in vitro, making
it clear that the composition of EVs is vital for them to
exert their effect.
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As well as surface chemistry, EV cargo appears to be key to
the function of the EVs after TBI. Plasma EVs isolated from TBI
patients were found to have distinct and unique protein profiles
in comparison to those isolated from healthy controls (68,
78). When exogenous pro-inflammatory EVs were administered
intravenously to a model of TBI, the EVs were found to
exacerbate both the APR, and the subsequent neuroinflammation
and pathology (52). Importantly, this response was dependent
on the cellular origin of the EVs. Particles derived from
macrophages had the greatest effect on hepatic expression of
pro-inflammatory molecules, as well as infiltrating neutrophils
in the brain, compared to those from endothelial cells and
plasma samples. Cargo analysis revealed differential miRNA
content in the different EVs, suggesting the particles exert
their effect through transfer of specific genetic transcripts.
Indeed, Dickens et al. (35) identified that miRNA in astrocyte-
derived EVs target the PPAR-α pathway, leading to increased
NFκB activity and cytokine production in the liver. However,
EVs have been found to be enriched for pro-inflammatory
molecules themselves, including cytokines, chemokines, and
inflammasome proteins. Inflammatory EVs have been reported
to transport IL-1β (47, 48, 79, 80), IL-6 and CCL2 (81), as
well as chemokine receptors, such as CCR5 (82). Collectively,
these studies suggest a more direct mechanism of initiating and
propagating inflammation.

In addition to the activation of a systemic inflammatory
response, TBI-associated coagulopathy (TBI-AC) has been
associated with EV signaling (83). Following injury, TBI patients
often develop a hypercoagulable state, leading to an increased risk
of thrombosis (84–86). This has been associated with increased
mortality (84), and platelet dysfunction has been reported to play
a causal role (83). It is thought that the circulating EV population
is predominantly shed from platelets (87), and these platelet-
derived particles have greater procoagulant activity than platelets
themselves (88). TBI induces the release of EVs from platelets (66,
67, 69), and circulating microparticles following TBI were shown
to have procoagulant properties ex vivo (89). Moreover, Tian et al.
(69) were able to reproduce systemic coagulopathy in uninjured
mice through adoptive transfer of TBI plasma EVs. Together,
these data indicate that platelet-derived EVs may be responsible
for TBI-AC, which could be attributed to the exposure of PS on
the outer EV leaflet. It is also likely that brain-derived particles
interact with platelets directly to promote systemic coagulation
and thrombosis. Astrocyte- and neuronal-derived EVs have been
isolated from the blood of TBI animals, and were found to be
procoagulant in phenotype (69). Thus, EV-mediated changes in
systemic function are not limited to alterations in inflammatory
status after injury.

SPINAL CORD INJURY (SCI)

In comparison to brain pathologies, the role of EVs following SCI
has been somewhat overlooked. Whilst systemic inflammation
has been well-documented in SCI patients (26, 90–93), studies
have focused on its contribution to functional outcome rather
than the manner in which it is communicated. To our
knowledge, there is currently no data that describes changes
in the circulating EV population and their influence on

pathophysiology of SCI. That being said, EVs have been isolated
from the CSF of deceased SCI patients (94). These EVs were
found to be enriched for the inflammasome-associated proteins
NLRP1, caspase-1, and ASC, suggesting a pro-inflammatory
phenotype. The authors speculated that these EVs may be able
to trigger an innate immune response in vivo, which would
correspond with TBI associated data, however, EV-mediated
effects on systemic inflammation and immune activation were
not investigated. These authors additionally demonstrated that
neuronal exosomes loaded with siRNA could localize to the
lesion epicenter following SCI when injected systemically, further
supporting the hypothesis of an EV-mediated CNS-periphery
communicatory axis.

Preliminary, unpublished data from our group suggest that
SCI induces a significant increase in plasma-derived EVs
during the acute phase of injury, which is consistent with
human and animal models with brain injuries. However, it
is necessary to determine the specific role of these SCI-
induced changes in the circulating EV population in propagating
peripheral inflammation and the subsequent effect on lesion
development. Whilst TBI data may provide some insight, it
must be acknowledged that the overall impact on the APR and
lesion progression is likely to be different (17). Anatomically,
the distribution of gray and white matter, as well as the
distribution and phenotype of microglia are quite different
in the spinal cord compared to the brain. Moreover, they
both respond differently to traumatic injury in that the blood-
spinal cord barrier (BSCB) shows greater breakdown after
trauma compared to the blood-brain barrier (BBB), and also
that there is increased local CXC chemokine expression and
recruitment of neutrophils to the parenchyma of the spinal
cord compared to the brain. Regarding the systemic response,
peripheral administration of the PPARα agonist fenofibrate
blocked the APR and neutrophil recruitment to the brain after
an intrastriatal microinjection of IL-1β injection (35), however
it was found to be an ineffective treatment in experimental
SCI (95). These differences must be taken into consideration
when assessing the impact of EV signaling following injury,
as manipulation of the cascade after SCI may have differential
effects on lesion progression and patient recovery compared
to TBI.

EVS AS THERAPY

It is clear that interrupting EV signaling may be useful to
treat inflammation, but some groups have also used the EVs
themselves as a therapeutic agent, specifically EVs derived from
stem cells. This strategy is certainly attractive, circumventing
the ethical issues with embryonic and fetal stem cells, as well
as being less invasive with low or no tumorigenicity. Moreover,
the ability to use autografted stem cells will eliminate the
risk of rejection. Most studies to date have almost exclusively
utilized EVs released by mesenchymal stem cells (MSCs), and
these have consistently been shown to improve functional
recovery and behavior deficits in models of TBI (96, 97)
and SCI (98–100). EVs derived from progenitor cells, such
as endothelial colony-forming cells (101) and neural stem
cells (102), appear to have similar neuroprotective effects in
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animal models. Kobayashi et al. (103) demonstrated that EVs
derived from induced pluripotent stem cells (iPSCs) were
able to both increase angiogenesis and the rate of wound
closure in a model of skin wound healing. Whether iPSC-EVs
have therapeutic potential in the context of TBI/SCI remains
to be investigated.

The mechanisms underlying the neuroprotective actions of
stem cell-derived EVs are currently under investigation. To date,
they have been shown to be internalized by endothelial cells
(101), neurons (104), astrocytes (104), oligodendrocytes (105),
and microglia (106) in the CNS, suggesting they may exert
their effect directly. However, improvements after injury are not
necessarily due to prevention of cell death, as no change in
lesion volume has often been reported (97, 107). Rather, EVs
may exert their effect by stimulating endogenous restorative
mechanisms that promote recovery. Zhang et al. (97) have shown
MSC-EVs enhanced vascular density and neurogenesis, with a
concurrent reduction in brain inflammation in a TBI model.
Increased angiogenesis has also been shown in a model of
SCI (108), following treatment with MSC-EVs. One potential
mechanism that has been proposed is the transfer of miRNAs

(11). Xin et al. (104) demonstrated that EV-associated miR-
133b transferred to astrocytes and neurons was responsible
for stimulating neurite outgrowth in their stroke model,
and that inhibition of miRNA machinery proteins attenuated
this effect (109). Exosomal miR-17-92 (109, 110), miR-134
(105), and miR-124-3p (111) have additionally been implicated
in neuroprotection. Bioengineering MSCs to produce EVs
overexpressing these transcripts are currently under investigation
(110, 112–114). In the majority of these studies, EVs are
administered intravenously to the periphery which is important
as MSC-EVs have been shown to additionally modulate the
systemic immune response following traumatic CNS injuries.
In a model of SCI, improvements in locomotor function
have been attributed to suppression of the systemic immune
response by stimulated MSC-EVs, as circulating neutrophils
were reduced and monocytes were retained in the spleen (100).
MSC-EVs have been shown to localize to this organ (106), and
splenectomies improve neurological outcomes in models of SCI
(22); it would be of interest to investigate the effect of MSC-
EVs in injury models with splenectomy to determine if their
beneficial effect remains.

FIGURE 2 | Visualized hypothesis of EV-mediated systemic inflammation response to traumatic CNS injury. Acute traumatic injuries to the brain and spinal cord

induce the release of extracellular vesicles into circulation. These EVs localize to peripheral organs whereby they induce the production of pro-inflammatory molecules

(chemokines, cytokines, acute phase proteins), in turn stimulating the mobilization of leukocytes which infiltrate both the CNS and peripheral organs. This systemic

immune response is referred to as the acute phase response.
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CONCLUSIONS

In the last decade, interest in EVs has increased exponentially
for both biomarker and therapeutic purposes, as more studies
identify EV signaling as a key component of normal physiology
and pathology. However, whilst fields such as gynecology
have led the way, the investigation of the role that EVs
play in the context of acquired neurological diseases is
relatively new. Here, we have discussed how it has been
consistently shown that the circulating EV population is
altered by trauma to the CNS (Figure 2). The collected
evidence presented here suggests that EVs mediate the systemic
response following CNS injury, and that manipulation of
this pathway can protect the CNS from secondary damage.
However, our understanding of the underlying mechanisms
and the consequences of manipulation of the EV population,
is limited, and fundamental questions remain. For instance,
it is unclear whether EV biogenesis after injury is different
from the mechanisms that govern basal EV production. It

also remains unclear whether the absolute number of EVs in
the circulation is the most important factor, or whether the
enrichment of circulating EVs from CNS-derived populations,
that is barely detectable in the periphery without specific
markers, is more important. Moving forward, it is clear that
the role of EVs in the pathogenesis of systemic inflammation
following CNS injury warrants further investigation to underpin
development of successful therapeutic strategies and improve
functional outcomes.
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