
genes
G C A T

T A C G

G C A T

Article

Improved SNV Discovery in Barcode-Stratified
scRNA-seq Alignments

Prashant N. M. 1, Hongyu Liu 1,2, Christian Dillard 3 , Helen Ibeawuchi 1,3, Turkey Alsaeedy 1,3, Hang Chan 1,3

and Anelia Dafinova Horvath 1,3,*

����������
�������

Citation: N. M., P.; Liu, H.; Dillard,

C.; Ibeawuchi, H.; Alsaeedy, T.; Chan,

H.; Horvath, A.D. Improved SNV

Discovery in Barcode-Stratified

scRNA-seq Alignments. Genes 2021,

12, 1558. https://doi.org/10.3390/

genes12101558

Academic Editor: Alessandro Barbon

Received: 5 July 2021

Accepted: 28 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George
Washington University, Washington, DC 20037, USA; pnm27@gwmail.gwu.edu (P.N.M.);
hliu5259@gwu.edu (H.L.); hibeawuchi@gwmail.gwu.edu (H.I.); turkey@gwmail.gwu.edu (T.A.);
dcmkv2@gwmail.gwu.edu (H.C.)

2 Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
3 Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George

Washington University, Washington, DC 20037, USA; cdillard49@gwmail.gwu.edu
* Correspondence: horvatha@gwu.edu

Abstract: Currently, the detection of single nucleotide variants (SNVs) from 10 x Genomics single-cell
RNA sequencing data (scRNA-seq) is typically performed on the pooled sequencing reads across
all cells in a sample. Here, we assess the gaining of information regarding SNV assessments from
individual cell scRNA-seq data, wherein the alignments are split by cellular barcode prior to the
variant call. We also reanalyze publicly available data on the MCF7 cell line during anticancer
treatment. We assessed SNV calls by three variant callers—GATK, Strelka2, and Mutect2, in com-
bination with a method for the cell-level tabulation of the sequencing read counts bearing variant
alleles–SCReadCounts (single-cell read counts). Our analysis shows that variant calls on individ-
ual cell alignments identify at least a two-fold higher number of SNVs as compared to the pooled
scRNA-seq; these SNVs are enriched in novel variants and in stop-codon and missense substitutions.
Our study indicates an immense potential of SNV calls from individual cell scRNA-seq data and
emphasizes the need for cell-level variant detection approaches and tools, which can contribute to the
understanding of the cellular heterogeneity and the relationships to phenotypes, and help elucidate
somatic mutation evolution and functionality.

Keywords: scRNA-seq; SNV; mutation; somatic mutation; SNP; expressed SNVs; SNV expression

1. Introduction

In single-cell studies, single nucleotide variant (SNV) analysis is an emerging and
promising strategy to connect cell-level genetic variation to phenotypes and to interrogate
the lineage relationships in heterogeneous cell populations. To detect single-cell SNVs
from DNA, genome and exome sequencing experiments can be performed [1–5]. These
studies have revealed enormous amounts of knowledge on cell-level genetic heterogene-
ity; however, they face challenges related to sample availability, unequal coverage, and
amplification bias, and are relatively costly for large-scale applications. Recently, SNV
assessments from single-cell RNA sequencing (scRNA-seq) experiments have started to
emerge [6–9]. These analyses can complement DNA-based SNV-studies and maximize the
potential of scRNA-seq datasets. Importantly, SNVs from scRNA-seq studies can provide
crucial information on SNV functionality through studying allele-specific dynamics and
their correlation to phenotype features, such as gene expression and splicing [10–12].

Among the scRNA-seq platforms, droplet-based technologies, such as 10x Genomics
Chromium Single Cell 3′ and 5′ Expression workflows, are quickly gaining popularity.
Presently, SNV detection from 10x scRNA-seq data is typically performed on the pooled
sequencing reads (pseudo-bulk), where it utilizes those approaches optimized for bulk
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DNA- and RNA-variant calling [7,9,10,13]. These approaches often estimate quality control
metrics, such as variant allele fraction (VAF) and/or genotype confidence, based on all
sequencing reads in a sample [14,15]. As a result, SNVs with low VAF and/or uncertain
genotypes in the pooled data are frequently filtered out. While it is widely acknowledged
that post-zygotically occurring SNVs (such as somatic and mosaic mutations), being present
in only a proportion of cells, can result in low VAF and uncertain genotypes, distinguishing
those mutations from noise is difficult. Current approaches target somatic mutations by
adjusting the thresholds for VAF- and genotype-based filtering and accounting for popula-
tion SNV frequencies [16]. Nevertheless, without cell-level information, the detection of
low-frequency SNVs is challenging. More recently, methods for barcode-aware SNV assess-
ments have started to emerge [17,18], and pioneering studies have demonstrated strong
advantages to such estimations in human scRNA-seq datasets. For example, barcode-aware
SNV assessments in the setting of acute myeloid leukemia (AML) were used to define cells
expressing specific somatic mutations that served as markers to distinguish clusters of
putative AML cells from different types of normal cells [9].

In this study, we systematically assess the gain of information of SNV detection at the
individual cell level, where the alignments are split by barcode prior to the variant call. We
reasoned that such a setting enables VAF and genotype assessments per cell (as opposed to
per sample), and is likely to result in retaining additional high-quality SNVs by variant
callers. We performed our assessments using publicly available scRNA-seq data from the
MCF7 cell line, coupled with matched whole-genome and targeted exome sequencing; all
the sequencing data was previously generated as a part of a separate study [19].

2. Methods
2.1. Sequencing Datasets

To compare SNV assessments from single cells to those from pooled and bulk datasets,
we utilized matched genome, exome, and scRNA-seq data from four time-points during
bortezomib (Selleckchem, S1013, Texas, TX, USA) treatment of MCF7 cell line. The experi-
mental design and the data generation were part of a separate study with a different scope,
as reported by Ben-David et al [19]. MCF7 cell culturing and treatment are described in
detail in the original study [19]. The sequencing datasets were downloaded from the NCBI
Sequence Read Archive (SRA) (accessed on 1 April 2021) under the accession numbers
SRR5945460 (MCF7, targeted exome), SRR5945478 (MCF7, whole genome), SRR10018149,
SRR10018150, SRR10018151, and SRR10018152 (MCF7 before treatment (t0), after 12 h of ex-
posure (t12), after 48 h of exposure (t48) or after 72 h of exposure, followed by a drug wash
and 24 h of recovery (t96), respectively). The protocol followed 10x Genomics Chromium
Single Cell 3′ Workflow, and the libraries were sequenced on an Illumina NextSeq 500
platform [19].

2.2. Data Processing: Alignment, Processing, Generation of Individual scRNA-seq Alignments

The targeted exome and the whole genome sequencing reads were aligned to the latest
version of the human genome reference (GRCh38, Dec 2013) using BWA v.0.7.17 default
settings [20]. The pooled sequencing reads from the scRNA-seq datasets were aligned
using the STARsolo module of STAR v.2.7.7a in 2-pass mode, with transcript annotations
from the assembly GRCh38.79 [12,21]. To generate individual cell alignments we adopted
a publicly available python script that splits the pooled scRNA-seq alignments, based on
cellular barcode [22].

2.3. Variant Call

For all DNA and RNA datasets, a variant call was performed, applying the Haplotype-
Caller module of GATK v.4.2.0.0, in parallel with Strelka2 v.2.9.10; both tools were used
under their default settings [14,15]. For RNA datasets, the HaplotypeCaller was preceded
by the assignment of read groups using the GATK module AddOrReplaceReadGroups,
followed by splitting reads that contain Ns in their cigar string with the GATK module
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SplitNCigarReads. For the initial comparisons that included the DNA datasets, no filtering
was applied on the SNV calls from the pooled or bulked variant calls. The SNV calls from
the individual alignments were filtered using bcftools v.1.10.2 [23] according to the follow-
ing criteria: QUAL (Phred-scaled probability) > 100, MQ (mapping quality) > 60, and
QD (quality by depth) > 2. The same filtering was applied on the SNV calls from pooled
alignments for the analyses of distribution on novel SNVs and functional annotations.
SNV loci were annotated using SeattleSeq v.16.00 (dbSNP build 154), and those SNV loci
positioned in repetitive regions were removed. Thus, processed SNV calls were subject to
the above-described analyses.

2.4. Gene Expression Estimation from scRNA-seq Data

To estimate gene expression, we used read-count matrices with the row gene counts
per cell generated by STARsolo. We normalized and scaled the expression data using the
SCTransform function, as implemented in Seurat v.3.0 [24,25]. The cell-feature distribu-
tions were then plotted to identify and filter out the outliers and low-quality cells, which
we defined after examination of the cell feature distribution (Supplementary Figure S1).
Specifically, based on the cell and feature distribution, we have filtered out: (1) cells with mi-
tochondrial gene expression of between 7.5% and 15%, (2) cells with fewer than 1000 genes,
and (3) cells with more than between 4500 and 5500 detected genes (to remove potential
doublets). The Seurat-processed gene expression values were also used to remove batch
effects and cell cycle effects (Supplementary Figure S2), as well as for cell type assessments
and correlations with the expression of their harboring gene (cis-single-cell RNA eQTLs
(cis-scReQTLs), see below).

2.5. Cell Type Assessments

To define the similarity of the MCF7 clusters with known cell types, we used SingleR
v.1.0.5 [26], as previously described [11]. Briefly, SingleR defines likely cell types, comparing
the global expression profile of each cell to a large database of reference cells’ whole
transcriptome expression (BluePrint + ENCODE datasets). To select the expression profile
that is most similar to the tested cells, the analysis is rerun iteratively with the top cell
types from the previous step. The tested cells may not represent 100% identity with the
most similar reference pure cell types. Comparing our datasets against 259 bulk RNAseq
profiles representing 24 main cell types and 43 subtypes, SingleR identified the highest
correlations between the MCF7 derived subtypes and the following reference cell types:
CD4+ T-cells, epithelial cells, macrophages, endothelial cells, erythrocytes, keratinocytes,
plasma cells, and mesanglial cells (Supplementary Figure S3).

2.6. VAFRNA Estimation

Single-cell level VAFRNA was assessed from the pooled scRNA-seq alignments using
scReadCounts v.1.1.4, as we have previously described [18]. Briefly, when provided with
barcoded scRNA-seq alignments and genomic loci of interest (with alleles), SCReadCounts
tabulates the reference and variant read counts (nref and nvar, respectively), and generates
a cell-SNV matrix with the VAFRNA estimated at a user-defined threshold of the minimum
number of required sequencing reads (minR) for a confident VAFRNA assessment. For
the analysis presented herein, we used minR ≥ 3, which excludes from the analysis those
positions covered by an insufficient number of reads (in this case 3).

2.7. Correlation between VAFRNA and Gene Expression

For each sceSNV called in more than 5 cells, we performed an analysis for a correlation
between the VAFRNA and the gene expression (cis-scReQTL) of the harboring gene, using
scReQTL as previously described [11]. Briefly, the VAFRNA estimates were correlated to the
normalized gene expression values of the most variable genes, using a linear regression
model as implemented in Matrix eQTL [27]. The top 15 principal components of gene ex-
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pression were used as covariates. Cis-correlations were annotated as previously described
for the bulk ReQTLs [28].

2.8. Statistical Analyses

Throughout the analysis, we used the default statistical tests (with built-in multiple
testing corrections) implemented in the utilized software packages (Seurat, SingleR, Matrix
eQTL, http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/, accessed
on 5 July 2021), where a p-value of 0.05 was considered significant unless otherwise stated.
For the estimation of significant scReQTL, we applied FDR as implemented in the Matrix
eQTL package [27,29].

3. Results
3.1. Analytical Pipeline

To compare SNV assessments from single cells to those from pooled and bulk datasets,
we utilized the matched genome, exome, and scRNA-seq data from multiple time-points
during anticancer treatment (with bortezomib) of the human breast cancer cell line MCF7;
the data was previously generated as a part of a separate study (reported by Ben-David
et al., [19]) and publicly available. Specifically, scRNA-seq MCF7 was generated at four
different time-points during bortezomib treatment: before treatment (t0) and after 12 h
(t12), 48 h (t48), and 72 h of exposure, followed by a drug wash and 24 h of recovery
(t96) [19], and accompanied by matched whole-genome sequencing (WGS) and deep
(approximately 250× coverage) targeted exon sequencing (TES). TES targeted 334 genes
that are commonly mutated in cancer (Profile OncoPanel v.3). We reasoned that the
described data collection maximizes the identifiable SNVs across compatible DNA/RNA
regions in bulk/pooled data.

The analytical pipeline is presented in Figure 1. Our general strategy was to apply
variant calling in parallel on the pooled and individual scRNA-seq alignments, in a setting
that favors variant identification in the pooled data (relaxed or no filtering) over the
individual (stringent quality filtering). We used three popular callers-GATK, Strelka2,
and Mutect2, which have repeatedly demonstrated high-quality performance across both
DNA and RNA sequencing data, including scRNA-seq data [6,7,14–16,30]. To retain the
maximum number of identifiable SNVs in the pooled data, we applied GATK and Strelka2
in parallel, and then generated the union of the SNVs across WES, TES, and each of the
4 corresponding scRNA-seq datasets. To retain SNV calls with low VAFRNA, the variant
calls were not filtered for the depth of allele coverage or confidence of the genotype call.

For the individual cell alignments, we also applied GATK and Strelka2 in parallel.
However, in contrast to the pooled data, where we aimed at maximizing the SNVs detection,
here we aimed to outline the highest-confidence SNVs. Accordingly, the individual cell
variant lists were filtered to retain only high-quality calls (Methods), and then, for each cell,
the intersection between GATK and Strelka2 was generated for downstream analysis. We
then asked if additional SNVs can be identified from the single-cell scRNA-seq alignments;
we refer to these as single-cell exclusive SNVs, or sceSNVs. SceSNVs were defined as those
called confidently by both GATK and Strelka in their individual cell alignments, and not
called in any of the matched pooled/bulk scRNA or DNA datasets. Finally, to assess what
percentage of sceSNVs are identifiable with callers specifically targeting SNVs in a low
proportion of cells, we applied Mutect2 on the pooled alignments [16].

3.2. SNV Calls across TES, WGS, and scRNA-seq

For this analysis, we applied the above-described pipeline on the genomic regions
compatible across TES, WGS, and scRNA-seq, which comprised the exons of the genes
targeted by the POP exome capture. The numbers of common and exclusive SNVs in
TES, WGS, and pooled and individual scRNA-seq alignments are shown in Table 1 and
Supplementary Figure S4. In the individual alignments, Strelka2 called a 2- to 3-fold higher
number of SNVs, which included the vast majority of the GATK calls (Figure 2a). Note that

http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
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SNVs found exclusively in TES contain variants positioned in genes that are not expressed
or are expressed at low levels in the studied sample, and are therefore not captured by
RNA-sequencing.

Figure 1. Analytical workflow for the identification of confident SNVs calls exclusively in the individual scRNA-seq
alignments. The raw sequencing reads were aligned to GRCh38, using BWA for the DNA and STARsolo for the RNA data.
GATK and Strelka were applied in parallel on both the pooled and individual scRNA-seq alignments. For the pooled/bulk
data, all SNVs called by either GATK or Strelka2 SNVs were retained; for the individual alignments, the SNVs that were
called confidently by both GATK and Strelka2 in each cell were retained. Single-cell exclusive SNVs (sceSNVs) were then
outlined via overlapping the union of GATK and Strelka2 calls from the pooled/bulk scRNA and DNA, and the intersection
of the GATK and Strelka2 calls from each individual alignment. To assess what percentage of sceSNVs are identifiable with
callers specifically targeting SNVs in a low proportion of cells, we applied Mutect2 on the pooled alignments.

Table 1. Number of SNVs identified in the MCF7 sequencing datasets, in the exonic regions of the genes included in the
ProfileOncoPanel (POPv.3).

Sample and
Sequencing
Approach

SRA id N Cells N SNVs
GATK

N SNVs
Strelka2

Bulk/Pooled
GATK and Strelka2

(Union)

Sc Alignments
GATK and Strelka2

(Intersection)

N
sceSNVs

N sceSNVs
by Mutect2

TES (POPv.3) SRR5945460 na 395 390 409 na na na

WGS SRR5945478 na 25 322 322 na na na

scRNA-seq
t0 SRR10018149 1749 256 2312 2800 * 149 73 (49%) 6 (8%)

scRNA-seq
t12 SRR10018150 2778 347 3373 3882 * 101 61 (60%) 7 (11%)

scRNA-seq
t48 SRR10018151 1891 218 2639 3132 * 79 38 (48%) 1 (3%)

scRNA-seq
t96 SRR10018152 1250 126 1481 1996 * 86 45 (52%) 2 (4%)

* The numbers include the SNVs called in TES and WGS shown above.
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Figure 2. (a). Concordance between GATK and Strelka2 in variant calling from individual cell alignments. A higher number
of SNVs were called by Strelka2, which also identifies the vast majority of the GATK calls. Note that the UpSet plots show
the first 12 of all possible overlaps. (b). Shared and exclusive sceSNVs called by GATK (top) and Strelka2 (bottom) from
scRNA-seq data generated at four time-points during drug treatment, showing the low overlap indicative of de novo SNVs.

Across the four scRNA-seq datasets, in the exonic regions of the 334 genes from the
POP panel, the above pipeline identified between 38 and 73 sceSNVs (Supplementary Table
S1; all of the sceSNV alignments were visually examined and the confidence of the call ver-
ified through the Integrative Genome Viewer (IGV). These numbers represented 48% and
above of all confident individual alignment SNVs. In the pooled data, Mutect2 identified
up to 11% of the sceSNVs. Thus, our analysis shows that even in settings strongly favoring
variant discovery from bulk/pooled data, assessments of barcode-stratified individual cell
alignments detect a substantially higher number of SNVs.

We next assessed the proportion of SNVs shared across the four time-points post-drug
treatment. This analysis was performed separately for the GATK and Strelka2, which
showed highly concordant results. As seen in Figure 2b, sceSNVs show low overlap across
the samples collected, over the four time-points of the drug treatment. This suggests
enrichment with de novo arising SNVs, which is consistent with the finding of the original
study on rapid MCF7 evolution during anticancer treatment [19].

3.3. Transcriptome-Wide SNVs Called Exclusively in the Individual Alignments

Following the above-described strategy, we next analyzed the transcriptome-wise
shared and exclusive SNVs between the pooled and scRNA-seq alignments of the 4 time-
points; the results are summarized in Table 2. Specifically, in the individual alignments,
after stringent filtering of both GATK and Strelka2 calls, and retaining only the intersection
of the two callers, we identified between 7000 and 14,000 SNVs per dataset that were
not captured in the pooled scRNA-seq data by either GATK or Strelka2 (Supplementary
Table S2). Of those, only up to 10% were identified using Mutect2. This observation
aligns with the findings across the WGS/TES/RNA datasets on the exons of POP capture
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and suggests that transcriptome-wise application of variation call on barcode-stratified
individual scRNA-seq data can identify thousands of SNVs in addition to those identified
in the pooled scRNA-seq data.

Table 2. The number of SNVs transcriptome-wise, and percent cells with scSNVs.

Sample

Pooled scRNA-seq
Alignments

(GATK and Strelka2
Union)

N sceSNVs
(GATK and

Strelka2
Intersection)

N sceSNVs by
Mutect2

Max
Percent Cells with

sceSNVs

N sceSNVs
in 2 and More

Cells

scRNA-seq t0 489,048 13,385 1310 (9.8%) 90/1749 (5.2%) 636 (4.8%)

scRNA-seq t12 524,598 9470 936 (9.9%) 44/2778 (1.6%) 472 (5%)

scRNA-seq t48 446,779 7131 560 (7.8%) 33/1891 (1.8%) 318 (4.5%)

scRNA-seq t96 335,839 10,794 856 (7.9%) 30/1250 (2.4%) 429 (4%)

We next assessed the number of cells bearing each of the sceSNVs. As expected,
the maximum percentage of cells with sceSNVs represented up to 5% of the cells in the
dataset (see Table 2), with the majority of the sceSNVs seen in only one cell (Supplementary
Figure S5). We note that the high number of sceSNVs in only one cell is expected, given
the fast genetic evolution of the studied system [19]. Between 318 and 636 sceSNVs
(between 4 and 5% of all sceSNVs per sample) were called in two or more cells (see
Supplementary Figure S5).

3.4. Novel and Known SNVs in the Individual scRNA-seq Alignments

We next analyzed the proportion of novel (previously undescribed) sceSNVs, and
compared them to the proportion of novel SNVs identified in the pooled scRNA-seq
datasets (pSNVs). For this analysis, we used pSNV calls that had been processed in the
same way as the sceSNVs (i.e., the intersection of filtered GATK and Strelka2 calls). We
defined as novel those SNVs not present in the NCBI Single Nucleotide Polymorphism
database (DbSNP), the Catalog of Somatic Mutations in Cancer (COSMIC), or the ATLAS
of RNA-editing events in humans (REDIportal) [31,32].

Notably, among the sceSNVs, we estimated a several-fold higher proportion of novel
SNVs. Specifically, over 70% of the sceSNVs in each of the datasets were novel, compared
to up to 15% of novel pSNVs called in the corresponding pooled scRNA-seq datasets
(Figure 3a). This difference is likely due to the suggested high rate of de novo acquired
mutations, present in a small proportion of cells and therefore detectable exclusively in the
individual scRNA-seq alignments.
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Next, we compared the distribution of predicted SNV functional annotations. This
analysis revealed significant differences in the proportions of all the functional annotations
between the sceSNVs and those SNVs called in the pooled scRNA-seq (Figure 3b). The
largest annotation category for the sceSNVs was 3’-UTR, whereas, for the SNVs in the
pooled data, it was intronic. SceSNVs also had a significantly higher proportion of coding
variants, including stop-codon and missense substitutions (Table 3). The most striking
difference was estimated for the stop-codon mutations, which showed an approximately
50-fold higher rate among the sceSNVs (around 1%, as opposed to up to 0.02% in the pooled
SNVs). The missense substitutions had a 4- to 6-fold higher rate among the sceSNVs. In
contrast, synonymous SNVs and SNVs in non-coding exons showed only up to a 2-fold
higher rate in the sceSNVs.

Table 3. Distribution of functional annotations between sceSNVs and pSNVs (chi-square comparisons).

Function
t0 t12 t48 t96

sceSNVs pSNVs sceSNVs pSNVs sceSNVs pSNVs sceSNVs pSNVs

3-prime-UTR 8075
(60%)

6062
(15%)

5785
(61%)

6340
(18%)

4109
(57%)

5618
(17%)

6562
(61%)

5272
(19%)

chi-square
p-value

10,883
p < 10−7

6981
p < 10−7

5092
p < 10−7

6403
p < 10−7

missense 2010
(15%)

1129
(3%)

1562
(17%)

1513
(4%)

1323
(18%)

1388
(4%)

1744
(16%)

915
(3%)

chi-square
p-value

2808
p < 10−7

1726
p < 10−7

1854
p < 10−7

2008
p < 10−7

intron 1609
(12%)

24,634
(60%)

870
(9%)

19,247
(55%)

667
(9%)

17,559
(54%)

1045
(10%)

14,351
(52%)

chi-square
p-value

9236
p < 10−7

6261
p < 10−7

4749
p < 10−7

5694
p < 10−7

synonymous 897
(7%)

1365
(3%)

758
(8%)

1844
(5%)

580
(8%)

1756
(5%)

793
(7%)

1213
(4%)

chi-square
p-value

287
p < 10−7

102
p < 10−7

76
p < 10−7

140
p < 10−7
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Table 3. Cont.

Function
t0 t12 t48 t96

sceSNVs pSNVs sceSNVs pSNVs sceSNVs pSNVs sceSNVs pSNVs

intergenic 276
(2%)

6484
(16%)

182
(2%)

4680
(13%)

161
(2%)

4475
(14%)

236
(2%)

4941
(18%)

chi-square
p-value

1751
p < 10−7

997
p < 10−7

755
p < 10−7

1624
p < 10−7

non-coding
exon

250
(1.9%)

414
(1%)

142
(1.5%)

357
(1%)

102
(1.4%)

331
(1%)

200
(1.9%)

421
(1.5%)

chi-square
p-value

60
p < 10−7

15
p = 0.00007

9
p = 0.002

6
p = 0.02

5-prime-UTR 152
(1.1%)

816
(2%)

78
(0.8%)

1027
(2.9%)

118
(1.6%)

1098
(3.4%)

80
(0.7%)

622
(2.2%)

chi-square
p-value

41
p < 10−7

135
p < 10−7

58
p < 10−7

96
p < 10−7

splice 16
(0.12%)

105
(0.26%)

15
(0.16%)

120
(0.34%)

9
(0.13%)

103
(0.32%)

18
(0.17%)

78
(0.28%)

chi-square
p-value

8
p = 0.005

8
p = 0.006

7
p = 0.008

4
p = 0.04

stop 100
(0.75%)

6
(0.01%)

78
(0.82%)

6
(0.02%)

62
(0.86%)

2
(0.01%)

116
(%1.07)

5
(0.02%)

chi-square
p-value

275
p < 10−7

253
p < 10−7

264
p < 10−7

275
p < 10−7

The observed differences in the functional categories in the sceSNVs require further
attention and analyses on a higher number of samples. Like the high proportion of novel
mutations, it is likely to be related to de novo sceSNVs, where different rates of mutation
generation, mismatch repair, and purifying selections across different functional genomic
regions play a role. Nevertheless, our observation highlights the potential of the scRNA-seq
analyses to study mutation dynamics and evolution.

3.5. SceSNVs Expression

To estimate the expression of the sceSNVs, we applied SCReadCounts, as previously
described [18]. For each cell, SCReadCounts tabulates the reference and variant counts
of sequencing reads (nref and nvar, respectively) for genomic positions of interest, and
computes the expressed VAF (VAFRNA = nvar/(nvar + nref)) at the desired depth threshold
(minimum number of reads covering the position, minR). For this particular analysis,
we estimated VAFRNA at minR = 3. The distribution of VAFRNA for sceSNVs called in
3 and more cells per dataset, and for all cells with 3 and more reads at the corresponding
position, is shown in Figure 4a. The majority of the sceSNV positions showed VAFRNA up
to 0.2 across most of the cells. Note that this assessment includes also those cells with the
only reference reads at the SNV position (i.e., VAFRNA = 0). Such a VAFRNA distribution
is expected for those SNVs present in a small proportion of cells (i.e., de novo SNVs).
In contrast, biallelic pSNVs show a VAFRNA distribution centered around 0.5, which is
generally expected for the majority of the heterozygous germline SNVs (Figure 4b).

To explore if cells bearing certain sceSNVs have related gene expression features, we
assessed the sceSNV expression in the individual cells after graph-based cell clustering. For
this analysis, we processed the scRNA-seq datasets as we have previously described [11,18].
Briefly, after alignment with STARsolo [12] and quality filtering, the gene-expression
matrices were processed using Seurat [25] to normalize gene expression, and corrected for
batch- and cell-cycle effects. The normalized gene expression values were then used to
assign likely cell types using SingleR and to provide context for cells carrying particular
SNVs [26] (Methods). We then visualized VAFRNA in the cells bearing sceSNVs over the
UMAP two-dimensional projections of the scRNA-seq datasets; examples are shown in
Figure 5.
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Figure 4. (a). ScVAFRNA estimated at positions covered by a minimum of 3 sequencing reads (minR = 3) for sceSNVs
called in 3 and more cells per dataset (y-axis). The majority of the positions have a VAFRNA up to 0.2. Note that the plot is
inclusive for all the cells with minR = 3 in the corresponding position, including those covered with reference reads only.
The percentage of cells with a corresponding VAFRNA is displayed on the x-axis. (b). ScVAFRNA estimated at those positions
covered by a minimum of 3 sequencing reads for biallelic pSNVs (y-axis). For most of the pSNVs, the VAFRNA distribution
is centered around 0.5, which is expected for germline heterozygous SNVs not subjected to monoallelic expression.

Some sceSNVs showed different expression across the four treatment time-points.
One example is rs1161976348 (5:17276721_G > A in the 3’-UTR of the gene BASP1), which
appeared to be expressed in a higher proportion of cells at later time-points, and especially
at t96 (Figure 5a). Other sceSNVs (such as the novel intergenic SNV 10:96750923_T > C)
showed a relatively even distribution across the different cell types and clusters (Figure 5b).
In contrast, the novel SNV positioned at 11:65440255_C > A in a non-coding exon of the
gene NEAT1 showed preferential expression in macrophage-like cells (Figure 5c).

Finally, we assessed whether the expression of sceSNVs correlated with the expression
of their harboring gene, for which we applied the linear regression model implemented
in cis-scReQTL [11]. For this analysis, we used sceSNVs detected in five and more cells
(between 35 and 70 sceSNVs per dataset). Across the four datasets, we identified a total of
20 cis-scReQTLs at a significance level of p < 0.05 (Figure 6 and Supplementary Figure S6).
We indeed observed weak to moderate relationships, mostly due to the small number of
cells expressing the variant SNV allele. This is expected for novel mutations, and also
reflects the relatively small overall number of studied cells (1250–2887 cells per sample).
We expect that by including a higher number of cells per sample, more recent and future
scRNA-seq studies will enable improved correlation analyses.
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Figure 5. Two-dimensional UMAP projections with quantitative visualization (red) of sceSNVs VAFRNA. The light blue
color indicates that the position is covered by at least 3 unique sequencing reads bearing the reference nucleotide, thereby
signifying non-0 expression at the position. (a). SNV rs1161976348 (5:17276721_G > A) in the 3’-UTR of the gene BASP1.
A higher proportion of cells appear to express the SNV at later time-points post-anti-cancer treatment, especially at t96.
(b). Novel intergenic SNV (10:96750923_T > C) showing a relatively even distribution across the different cell types and
clusters of the 4 post-treatment time-points. (c). Novel SNV positioned at 11:65440255 (C > A) in a non-coding exon of the
gene NEAT1, expressed preferentially in the microphages.

Figure 6. Examples of significant (FDR = 0.05) cis-scReQTL correlations between sceSNVs and the expression of their
harboring gene.
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4. Discussion

In this study, we performed an initial assessment of SNV calls from individual barcode-
stratified scRNA-seq alignments. Our analysis shows that this strategy identifies a signif-
icantly higher number of SNVs as compared to variant calls on pooled scRNA-seq data.
Specifically, even after high stringency filtering, in the individual cell alignments, we could
identify at least a two-fold higher number of SNVs, as compared to the unfiltered union of
SNVs called in the pooled scRNA-seq, exome, and genome sequencing data. Furthermore,
we demonstrated that sceSNVs are substantially enriched in novel genetic variants and
coding functional annotations.

We found that SNVs called exclusively in the individual alignments—sceSNVs—
possess several striking characteristics. First, sceSNVs are substantially enriched in pre-
viously undescribed variants. This finding is not surprising, as sceSNVs are seen in up
to 5% of the cells in a dataset (most often in only one cell) and therefore likely to contain
a high proportion of de novo SNVs. De novo SNVs can arise in most normal and tumor
cells [33] but are only possible to be retained in the germline, in germline tissues. Therefore,
fewer sceSNVs are currently reported in DbSNP, where the vast majority of SNVs are called
from pooled germline DNA datasets. Hence, barcode-stratified SNV calls can facilitate
studies on the occurrence and the evolution of de novo genetic variants. Most importantly,
analyses like the one exemplified here can distinguish a setting to study newly occurring
SNVs, thereby facilitating studies on both SNV occurrence and selection drivers.

We note that, while technical factors resulting in false-positive variant calls cannot be
excluded, in this study we made every effort to minimize them. First, we used data gener-
ated on an UMI-utilizing scRNA-seq-based platform (10x Genomics), which is targeted to
address the technical artifacts of PCR duplication. Second, for the individual alignment
variant calls, we applied very stringent criteria for SNV filtering, based on quality and
call confidence for both GATK and Strelka, followed by the removal of calls in difficult
genomic regions (see Methods). Third, we visually examined (IGV) the alignments of
over 200 sceSNV (Table 1) and, for all of them, we observed concordance with a high
confidence call.

Therefore, in scRNA-seq data, we cannot exclude the possibility of an RNA-editing
origin for some of the SNVs. However, we find the probability of RNA editing to be low
since none of these loci were listed in RNA-editing databases; additionally, we removed
from our analysis those repeated regions (Methods) that are known to harbor the vast
majority of RNA-editing events.

Second, we find that the sceSNVs are significantly enriched in coding variants, espe-
cially in stop-codon and missense substitutions. This is likely to be related to the different
rates of mutation generation, repair, and positive or negative selection. Many of the sceS-
NVs identified in the RNA of only a single cell are unlikely to be transmitted, including
somatic functional sceSNVs that affect cell fitness and contribute to the cell fate, as well
as neutral SNVs that follow passenger behavior. In addition, technical factors, including
the 10x Genomics 3’UTR workflow, might play a role in differences in the observed SNV
functional distributions. At this point, distinguishing biological from technical factors is
challenging and requires a larger number of studies, including those focusing on mutation
dynamics and evolution, and exploiting multiple heterogeneous sample sources.

Third, we find that some sceSNVs might affect the expression of their harboring
gene, thereby possibly exerting downstream effects. In this study, we find 20 significant cis-
scReQTLs. This number is expected given the input size (up to 70 SNVs and up to 3000 cells
per dataset), and, based on our previous studies, is likely to be significantly higher in larger
datasets [11,18]. Furthermore, 10x Genomics 3’ scRNA-seq workflows naturally retain a
high number of 3’-UTR-located variants (see Figure 3), which are acknowledged to exert
regulatory effects on both gene expression and splicing [34–36]. Similarly, the substantial
number of captured intronic SNVs can be utilized in the estimation of precursor and mature
mRNA abundance [10]. Identifying cell-level SNVs and estimating their effects on the gene



Genes 2021, 12, 1558 13 of 15

expression can help to define functionality for expression- and splicing-regulatory variants,
as well as those variants potentially implicated in RNA velocity [37].

Regarding the data used, it is important to note that while we selected the MCF7
datasets due to their technical suitability, namely, matched scRNA-seq and DNA sequenc-
ing, the potential contribution of the bortezomib treatment to the transcriptional hetero-
geneity of an immortalized cell line is possible. Here we note that, as part of an ongoing
related study on normal and tumor human tissues, we have observed a similarly higher
rate of SNV discovery from the individual (vs. pooled) scRNA-seq alignments, as well as a
higher proportion of novel SNVs (unpublished data).

5. Conclusions

Overall, our study indicates an immense potential for SNV assessment from individual
cell scRNA-seq data. Given the growing accumulation of scRNA-seq datasets, cell-level
variant assessments are likely to significantly contribute to our understanding of cellular
heterogeneity and the relationship between genetics and functional phenotypes. It is of
note that the approach used here, including barcode-stratified alignment generation and
variant calls from the individual cell alignments, can be computationally expensive for
scRNA-seq generated from a high number of cells. Therefore, methods for a cell-level
variant call from scRNA-seq data are highly in demand. Such methods can be applied
in studies on normal and diseased (especially cancerous) tissues, where they can help to
elucidate not only the SNV occurrence rate but also variant evolution and functionality.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12101558/s1, Supplementary Figure S1: Cell Features Distribution and Filtering,
Supplementary Figure S2: Cellcycle and batch effects removal, Supplementary Figure S3: Cell types,
Supplementary Figure S4: Shared and exclusive SNVs, Supplementary Figure S5: Cell distribution of
sceSNVs, Supplementary Figure S6: scReQTLs, Supplementary Table S1: ScSNVs four timepoints
oncoPanel, Supplementary Table S2: ScSNVs four timepoints wholeTranscriptome.
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Horvath, A. scReQTL: An approach to correlate SNVs to gene expression from individual scRNA-seq datasets. BMC Genom. 2021,
22, 40. [CrossRef]

12. Kaminow, B.; Yunusov, D.; Dobin, A. STARsolo: Accurate, fast and versatile mapping/quantification of single-cell and single-
nucleus RNA-seq data. bioRxiv 2021. [CrossRef]

13. Ding, J.; Lin, C.; Bar-Joseph, Z. Cell lineage inference from SNP and scRNA-Seq data. Nucleic Acids Res. 2019, 10, e56. [CrossRef]
14. Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.;

Thibault, J.; et al. From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr.
Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33.

15. Kim, S.; Scheffler, K.; Halpern, A.L.; Bekritsky, M.A.; Noh, E.; Källberg, M.; Chen, X.; Kim, Y.; Beyter, D.; Krusche, P.; et al. Strelka2:
Fast and accurate calling of germline and somatic variants. Nat. Methods 2018, 15, 591–594. [CrossRef]

16. MuTect2-GATK. Available online: https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2 (accessed on
5 July 2021).

17. Wilson, G.W.; Derouet, M.; Darling, G.E.; Yeung, J.C. scSNV: Accurate dscRNA-seq SNV co-expression analysis using duplicate
tag collapsing. Genome Biol. 2021, 22, 1–27. [CrossRef]

18. Prashant, N.M.; Alomran, N.; Chen, Y.; Liu, H.; Bousounis, P.; Movassagh, M.; Edwards, N.; Horvath, A. SCReadCounts:
Estimation of cell-level SNVs from scRNA-seq data. bioRxiv 2020. [CrossRef]

19. Ben-David, U.; Siranosian, B.; Ha, G.; Tang, H.; Oren, Y.; Hinohara, K.; Strathdee, C.A.; Dempster, J.; Lyons, N.J.; Burns, R.; et al.
Genetic and transcriptional evolution alters cancer cell line drug response. Nature 2018, 560, 325–330. [CrossRef]

20. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef]

21. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T. STAR: Ultrafast
universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [CrossRef]

22. split_bams_by_barcodes. Available online: https://gist.github.com/winni2k/978b33d62fee5e3484ec757de1a00412 (accessed on
3 May 2021).

23. Li, H.; Handsaker, R.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence
Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef] [PubMed]

24. Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol. 2018, 36, 411–420. [CrossRef] [PubMed]

25. Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative
binomial regression. Genome Biol. 2019, 20, 269. [CrossRef] [PubMed]

26. Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; et al. Reference-based
analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019, 20, 163–172. [CrossRef]
[PubMed]

27. Shabalin, A.A. Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. Bioinformatics. 20Shabalin, A.A. Matrix eQTL:
Ultra fast eQTL analysis via large matrix operations. Bioinformatics 2012, 28, 1353–1358. [CrossRef] [PubMed]

28. Spurr, L.; Alomran, N.; Bousounis, P.; Reece-Stremtan, D.; Prashant, N.M.; Liu, H.; Słowiński, P.; Li, M.; Zhang, Q.; Sein, J.; et al.
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