
ARTICLE OPEN

DNAJB8 in small extracellular vesicles promotes Oxaliplatin
resistance through TP53/MDR1 pathway in colon cancer
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Chemotherapy is one of the most frequently used therapies for the treatment of colon cancer (COAD). However, Oxaliplatin (L-OHP)
resistance is a major obstacle to the effective treatment of COAD. Here, we investigated whether DNAJB8, a heat shock protein 40
(HSP40) family protein, could be used for the prognosis and therapy of L-OHP resistance in COAD. Treatment with small interfering
RNA targeting DNAJB8 could restore the response to L-OHP in vitro and in vivo. On the mechanism, we demonstrated that DNAJB8
could interact with TP53 and inhibit the ubiquitination degradation of TP53, leading to MDR1 upregulation which promotes colon
cancer L-OHP resistance. We found that small extracellular vesicle (sEV)-mediated transfer of DNAJB8 from L-OHP-resistant COAD
cells to sensitive cells contributed to L-OHP resistance. A prognostic signature based on the DNAJB8 levels in both tissue and serum
showed that COAD patients with high-risk scores exhibited significantly worse overall survival and disease-free survival than
patients with low-risk scores. These results indicate that DNAJB8 levels in serum sEVs may serve as a biomarker for COAD. DNAJB8
from sEVs might be a promising therapeutic target for L-OHP resistance and a prognostic predictor of clinical response.
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INTRODUCTION
Colon cancer is one of the most commonly diagnosed cancers and
a leading cause of death worldwide [1]. The overall incidence and
mortality rates of colon cancer have been declining; however, the
prognosis of colon cancer remains poor [2]. Identification of novel
effective chemotherapy drugs or improvement of the efficacy of
anti-colon cancer drugs would be very helpful for colon cancer
treatment, especially for advanced colon cancer.
Oxaliplatin (L-OHP)-based chemotherapy is routinely used to treat

colon cancer patients who are at high risk of recurrence or those
with advanced or metastatic disease [3]. However, a significant
proportion of patients receiving L-OHP therapy become chemore-
sistant. Therefore, understanding the mechanisms underlying L-OHP
resistance can help us to identify a subgroup of patients who may
benefit from L-OHP therapy and avoid overtreatment.
Small extracellular vesicles (sEVs) are nanovesicles with a diameter

of 40–150 nm. They are released into the extracellular environment
via the endosomal vesicle pathway by fusion with the plasma
membrane. A broad range of cells secrete sEVs, including T/B,
epithelial, dendritic, and tumor cells [4]. sEVs are essential for
intercellular communication [5]. Tumor-derived sEVs deliver DNA
fragments, RNA, proteins, and lipids, which have been reported to
play a major role in cancer progression, including chemoresistance [6].

However, whether sEVs derived from resistant colon cancer cells can
confer drug resistance to sensitive cells needs to be elucidated.
DNAJ (heat shock protein 40 [HSP40]) homolog, subfamily B,

member 8 (DNAJB8) belongs to the DNAJ/HSP40 family of
proteins, which regulates chaperone HSP70 activity [7].
DNAJB8 suppresses aggregation of polyglutamine proteins
through its C-terminal tail [8, 9]. Recently, it has been reported
that DNAJB8 is a testicular cancer antigen and a cancer stem-like
cell antigen involved in renal cell carcinoma [10, 11]. Our previous
comparative genomic hybridization data showed that the DNAJB8
gene is more highly expressed in metastatic colon cancer
compared with primary tumors [12].
The clinicopathological significance of DNAJB8 and its associa-

tion with L-OHP resistance in COAD has not been elucidated. The
aim of the present study is to investigate the contributions of
DNAJB8 to L-OHP resistance and explore the therapeutic
implications for L-OHP-resistant COAD patients.

MATERIAL AND METHODS
COAD samples and cell lines
216 tissue samples of fresh colon cancer with matched colon mucosa were
obtained from the Cancer Hospital, Chinese Academy of Medical Sciences
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and Peking Union Medical College (CAMS and PUMC) from 2009 to 2012. The
mean age of the patients was 60.4 years, comprising 109 males and 107
females. None of the patients with COAD had received preoperative
chemotherapy and/or radiotherapy. After the operation, the tumors were
histologically classified and staged according to the tumor node metastasis
(TNM) system, and the histological grade of tumors was defined according to
the tumor differentiation. Blood samples were collected from patients to
isolate extracellular vesicles from serum. Blood specimens were immediately
processed by centrifugation at 2,000 × g for 20min at room temperature and
serum was separated and frozen in aliquots at −80 °C. Informed consent was
obtained from all of the participants. This study was approved by the Ethics
Committee/Institutional Review Board of the Cancer Institute/Hospital, Peking
Union Medical College and Chinese Academy of Medical Sciences (approval
no. NCC2017G-023). And all participants provided written informed consent
prior to their enrollment in the study.
COAD cell lines, SW480 and SW620 were purchased from the Institute of

Cell Biology, Chinese Academy of Sciences (Shanghai, China) and
maintained in RPMI1640 medium supplemented with 10% fetal bovine
serum (FBS) at 37 °C in a 5% CO2 incubator.

Development of L-OHP-resistant colon cancer cell lines
L-OHP (Sanofi-Synthelabo, Hangzhou, China) was purchased from the
pharmacy at the Chinese Academy of Medical Sciences. SW480 and SW620
cells were exposed to an initial L-OHP concentration of 5 μg/L in RPMI1640
plus 10% FBS. After a 24h incubation, the old media was discarded and
fresh media was added. The surviving population of cells was grown to
80% confluence and passaged to ensure viability. The concentration of
L-OHP that the surviving population was exposed to was then sequentially
increased in the same manner to 10 μg/L (15days), 20 μg/L (30 days), and
finally to the clinically relevant serum concentration of 100 μg/L. For all of
the in vitro and in vivo studies, SW480 and SW620 LOHP-resistant cells
were used at no higher than 5 passages from creation and were
maintained and exposed to 100 μg/L L-OHP unless otherwise indicated.

Quantitative real-time PCR (qRT-PCR)
Total RNA was reverse-transcribed into cDNA with random primers using
the Transcriptor First Strand cDNA Synthesis Kit (Roche, Penzberg,
Germany) according to the manufacturer’s instructions. mRNA expression
was quantified via qRT-PCR using FastStart Essential DNA Green Master Mix
(Roche, Penzberg, Germany) on a Roche LightCycler 480 (Roche, Penzberg,
Germany). Relative levels were determined using the 2−ΔΔCt method, and
the mRNA levels were normalized to the GAPDH levels. Divergent primers,
rather than the more commonly used convergent primers, were designed
to broadly target the mRNAs (Table S1). Primer specificity was verified
using BLAST, with a single peak in the melting curve indicating the
generation of a specific product. Three experimental replicates were
performed for each sample. Relative expression was determined using
inter-experiment normalization to GAPDH.

siRNA transfection
siRNA oligonucleotide duplexes and scramble control siRNA were synthe-
sized by GenePharma, Suzhou Co, Ltd (Suzhou, P.R. China). COAD cells at 70%
confluence were transfected with the indicated siRNA with Lipofectamine
RNAiMAX (Thermo Fisher Scientific, Waltham, MA, USA). The siRNA sequence
targeting at DNAJB8 was 5′-TGGAAAATCCCTCAGATTTCTCC-3′, and the siRNA
sequence targeting at TP53 was 5′-CCCAAGCAATGGATGATTTGATG-3′.

Purification and quantification of sEVs
sEVs were purified from serum and cell lines by differential centrifugation
as previously described [13]. Briefly, culture medium (CM) was subjected to
sequential centrifugation steps at 800 × g and 2000 × g. The resulting
supernatant was filtered using a 0.2-μm filter and concentrated 20 times
using a Vivaflow 200 R crossflow unit (Sartorius) with a 100,000 kDa cutoff
filter. Then, the serum and CM were centrifuged at 16,500 × g for 30 min.
Ultracentrifugation was performed at 100,000 ×g for 16 h at 4 °C. The
supernatant was removed and PBS was added to the pellet for an
overnight washing step. The resultant sEV pellet was resuspended in PBS
and harvested for subsequent analyses.
In addition, sEVs were purified using an OptiPrep™ density gradient.

Briefly, a discontinued iodixanol gradient was set by diluting a stock of
OptiPrep™ (60% w/v) with 0.25 M sucrose/10mM Tris, pH 7.5 to generate
40%, 20%, 10%, and 5% w/v iodixanol solutions. The gradient was layered
using 3-mL fractions each of 40%, 20%, 10%, and 5% w/v iodixanol

solution. sEVs obtained after differential centrifugation were overlaid on
the top of 5% w/v iodixanol solution and spun at 100,000 × g at 4 °C for
18 h. Fractions of 1 mL were collected from the top of the tube, diluted
with 1.5 mL of 1× PBS, and further subjected to centrifugation at 100,000 ×
g at 4 °C for 1 h. The pellet obtained was again washed with 1mL 1× PBS
and centrifuged at 100,000 × g at 4 °C for 1 h to collect sEVs. The control
OptiPrep™ gradient was run in parallel to determine the density of each
fraction using 0.25 M sucrose/10mM Tris, pH 7.5. The size distribution and
concentration of sEVs were analyzed by nanoparticle-tracking analysis
using a ZetaView particle tracker from Particle Metrix (Germany).

Enzyme-linked immunosorbent assay (ELISA)
The concentration of DNAJB8 from serum was quantified using a DNAJB8
ELISA kit (MyBioSource, San Diego, CA, US) according to the manufacturer’s
instructions as described previously. For analysis of DNAJB8 from sEVs,
sEVs were first pre-treated with Proteinase K. Equal numbers of sEVs used
for protein extraction were suspended in SDS lysis buffer. Then the
concentration of DNAJB8 was determined using the ELISA kit. All of the
experiments were performed in triplicate.

Proliferation assay
The cell proliferation assay was performed using the CCK-8 assay according
to the manufacturer’s instructions (Sigma-Aldrich, St. Louis, MO, USA). Briefly,
SW480 and SW620 cells growing in the logarithmic phase were collected
and seeded into 96-well plates at a concentration of 1 × 103 cells per well.
After cell attachment, varying concentrations of oxaliplatin were added, and
the cells were cultured for an additional 48 h. Then, CCK‐8 (10 μl) was added
to the wells, followed by incubation for 2 h. The optical density value at
450 nm was recorded under a microplate reader (Bio‐Rad) from day 1
to day 5.

Mammosphere formation assay
Mammosphere formation assay have been performed as previously
described [14]. Briefly, the ability of cells in the non-adherent population
of monolayer cultures to initiate mammosphere formation after L-OHP
exposure was assessed by harvesting, washing and resuspending non-
adherent cells in phenol red–free DMEM–F12 medium (supplemented with
20 ng/mL bFGF, 10 ng/mL EGF, B27 supplement and N2 supplement). Cells
were then passed through a 40-μm sieve, counted, diluted and plated into
96-well plates at clonal densities. Mammospheres were counted on day 5.

Flow cytometry
SW480 and SW620 cells growing in the logarithmic phase were collected
and seeded into 6-well plates. After cell attachment, 1000 µg/L of
oxaliplatin was added into the SW480 cells and 300 µg/L of oxaliplatin
into the SW620 cells for an additional 48-h culture. Apoptosis rate was
analyzed by flow cytometry using an Annexin V‐fluorescein isothiocyanate
(FITC)/propidium iodide (PI) apoptosis detection kit (BD Biosciences). In
short, SW480 and SW620 cells were collected and then re‐suspended in 1×
binding buffer (500 μl) containing Annexin V‐FITC (20 μl) and PI (10 μl) in
the darkness for 15min at room temperature. Subsequently, apoptotic
cells were evaluated by a fluorescence-activated cell sorting analyzer
(Becton Dickinson). The results were analyzed using FlowJo 7.6.1 software.

Cell fractionation
2 × 106 cells were lysed in a hypotonic buffer (10mM HEPES (pH 7.9), 10mM
KCl, 1.5 mM MgCl2, 0.5 mM DTT). After centrifugation, the cytosolic proteins
in the supernatant were collected and the nuclear pellets were extracted
with a high salt buffer (20mM HEPES (pH 7.9), 20% glycerol, 0.2 mM EDTA,
300mM KCl, 1.5 mM MgCl2, 0.5 mM DTT) for 30min on ice, followed by
centrifugation to collect the nuclear extracts. The proteins of the cytoplasmic
fraction and nuclear fraction were subjected to western blot analysis.

Western blot analysis
Total cell lysates were isolated using RIPA Reagent following the
manufacturer’s instructions, clarified (12,000 g, 30 min, 4 °C), denatured,
and subjected to SDS-PAGE and western blot analysis. Antibodies used
were anti-P53 (Cell Signaling Technology, 2524 S), anti-DNAJB8 (Abcam,
ab235546), anti-GAPDH (Abcam, ab8245), and anti-P-gP (1:1000; Abcam,
ab170904). Proteins were detected with the appropriate secondary
antibodies conjugated to alkaline phosphatase by chemiluminescence
(Amersham Pharmacia Corp, Piscataway, NJ, USA).
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Promotor-reporter gene construction
As previously described [15], to generate a luciferase reporter under the
control of the MDR1 promoter, a 241-bp DNA fragment containing the
MDR1 promoter from nucleotide (nt) −198 to +43 was amplified using
forward primer 5′-GCGCTAGCCTAGAGAGGTGCAACG-3′ and reverse primer
5′-GCAGATCTGCGGCCTCTGCTTCTT-3′. The PCR product was cloned into a
pGL3-Basic vector and confirmed by DNA sequencing.

Immunoprecipitation
Cell lysates were centrifuged for 20min at 12,000 rpm and 500 μl of the
supernatant was transferred to another tube. 3 μg of IgG (Santa Cruz, CA,
USA) and primary antibodies, together with 50 μl A/G-Agarose (Santa Cruz,
CA, USA), were added into the cell lysate and incubated at 4 °C for 12 h.
After this incubation, the samples were centrifuged and the beads were
washed with RIPA. The remaining beads were added to 20 μl of RIPA buffer
with 5× sample buffer, denatured at 95 °C for 10min, and used for western
blot assays.

Luciferase reporter gene assays
An MDR1 luciferase report gene vector with an MDR1 consensus oligonucleo-
tide was constructed as previously described [15]. Briefly, to generate a
luciferase reporter under the control of the MDR1 promoter, a 241-bp DNA
fragment containing the MDR1 promoter from nucleotide (nt) −198 to +43
was amplified using forward primer 5′-GCGCTAGCCTAGAGAGGTGCAACG-3′
and reverse primer 5′-GCAGATCTGCGGCCTCTGCTTCTT-3′. The PCR product
was cloned into a pGL3-Basic vector and confirmed by DNA sequencing. And
then, the luciferase report gene vector was transfected into colon cancer cells.
After 48 h incubation, the luciferase activity was detected and calculated to
evaluate MDR1 binding activity.

Immunofluorescence microscopy
Immunofluorescence analysis was performed as described previously [16].
Cells was washed twice with PBS, the cells were fixed with 4%
paraformaldehyde for 20min at room temperature, permeabilized for
10min with 0.2% Tri-ton X-100 (Sigma), and blocked with 5% BSA in PBST
(phos-phate-buffered saline plus Tween 20) for 1 h. Before subjecting to
secondary antibodies (Jackson ImmunoResearch) for 1 h at room tempera-
ture, the cells were incubated with the primary antibodies overnight at 4 °C
and washed with PBST three times. Confocal laser scanning of fixed cells was
detected using a Zeiss laser scanning microscope.

AlphaLISA assay
We designed an AlphaLISA assay (PerkinElmer) to specifically measure
DNAJB8–TP53 interactions in a microplate format. We used a monoclonal
mouse anti-DNAJB8 antibody (Abcam, ab235546) conjugated to AlphaLISA
acceptor beads (PerkinElmer). We used a monoclonal mouse biotinylated
anti-P53 antibody (Cell Signaling Technology, 2524 S) to capture
streptavidin-coated donor beads using AlphaScreen (PerkinElmer). Plasma
samples of 5 μl were diluted with 5 μl of assay buffer (25mM HEPES, pH 7.4,
with 0.1% BSA, 0.05% Tween, and 100mM NaCl) and incubated with 10 μl of
anti-P53 acceptor beads (10 μg/ml) plus 10 μl of biotinylated anti-DNAJB8
antibody (1 nM) for 1 h at 25 °C. Subsequently, 20 μl of the streptavidin-
coated donor beads (40 μg/ml) was added, and samples were incubated for
30min. Plates were read on an EnSpire Multimode Microplate reader.

Immunohistochemical staining and assessment
Immunohistochemical analysis (IHC) was performed as previously described
[17]. In brief, colon cancer sections were subjected to deparaffinization,
antigen retrieval and blockage of non-specific binding. The sections were
then incubated with P53 (Cell Signaling Technology, 2524 S), DNAJB8
(Abcam, ab235546) and P-gP antibodies (Abcam, ab170904) at 4 °C overnight
followed by incubation with a biotinylated secondary antibody and 3,3′-
diaminobenzidine (Sigma). Immunostaining assessment was determined
using composite scores by multiplying the percentage of immunoreactive
cells (10–25% as 1, 26–50% as 2, 51–75% as 3 and 76–100% as 4) and the
staining intensity (no staining as 0, weak staining as 1, moderate staining as
2, and strong staining as 3). The final staining score was divided into a low
expression group (≤ 6) and a high expression group (> 7).

In vivo drug efficacy
Tumors were established by subcutaneous injection of cancer cells into the
dorsal flank of 5-week-old male BALB/c Nu/Nu mice. For SW620 tumor

xenografts, 1 × 106 cells were injected. For SW480 tumor xenografts, 2.5 ×
106 cells were injected. Treatment began when tumors reached 100 to
150mm3. Mice were weighed and randomly sorted into treatment groups
(8 mice per group). L-OHP (20mg/kg) was administered via tail-vein
intravenous (IV) injection into tumors every three days for 21 d. For in vivo
sEVs treatment, sEVs were injected intratumorally twice a week (5 μg sEVs
per injection).
The vehicle alone was used for the negative control group. Measure-

ments were recorded every 3 days using a digital caliper. Tumor volumes
were estimated by measuring two perpendicular diameters, a and b, using
the formula V= 0.5 × a × b2, where a and b indicate the long and short
perpendicular diameters, respectively.
Non-invasive bioluminescence imaging was performed by using the IVIS

Lumina System (PerkinElmer, Waltham, MA, USA). Briefly, mice under
isoflurane anaesthesia were injected with 100mg/kg D-Luciferin in 200 μl
PBS into the peritoneal cavity and, 5min after injection, imaged with the IVIS
Lumina System. The total peak bioluminescent signal intensities were
calculated using Living Image 4.0 software (PerkinElmer, Waltham, MA, USA).
Animal care and experimental procedures were approved by the Ethics

Committee in Animal Experimentation of West China Hospital, Sichuan
University, Chengdu, China (record #: 2018192 A).

Statistical analysis
All of the statistical analyses were performed using the SPSS statistical
program (Chicago, IL, USA). Data were presented as mean ± SD of at least
three independent tests. Correlations between parameters were assessed
using the Pearson correlation analysis. Student’s t-test was used to
compare the two groups. Values of P < 0.05 were considered significant.
The association between protein expression and clinicopathological
parameters was analyzed with the χ2 test. For survival analyses,
Kaplan–Meier survival curves were constructed and differences were
tested by the log-rank test. Univariate and multivariate Cox proportional
hazards regression was carried out to determine the effects of the
clinicopathological variables and DNAJB8 expression on the patient
survival. Nomograms were generated according to the Cox regression
coefficients of selected variables, and the predictive accuracy of every
nomogram was evaluated with calibration plots. Nomogram and calibra-
tion plots were generated using R in R Studio (Version 1.1.447). p values
less than 0.05 were considered statistically significant.

RESULTS
DNAJB8 is overexpressed in L-OHP-resistant COAD cells
The chemoresistant cell model (SW620/L-OHP and SW480/L-OHP)
was established from the human colorectal adenocarcinoma cell
line SW620 and SW480 through L-OHP induction (Fig. 1A). Our
data showed that mRNA and protein expression of the super-
family of the ATP-binding cassette transporter family member
P-glycoprotein (P-gp) was upregulated in chemoresistant cells
compared with parental cells (Fig. 1B), which indicated that the
establishment of the L-OHP-resistant colorectal cancer cell line
was successful.
Our previous data showed that the DNAJB protein family is

overexpressed in COAD cells [18]. To elucidate the mechanisms
underlying the L-OHP resistance in COAD cells, we evaluated the
expression of all DNAJB family proteins in SW620/L-OHP and SW480/
L-OHP cells. DNAJB8 was the most strongly expressed DNAJB in L-
OHP-resistant cells compared with parental cells (Figs. 1C, S1).
To study the prevalence and clinical significance of DNAJB8

overexpression in COAD L-OHP resistance, we quantified the
expression of DNAJB8 by immunohistochemistry (IHC) in a cohort
of 220 COAD patients who were treated with postoperative L-OHP
chemotherapy. Patients were divided into responding and non-
responding groups according to the response evaluation criteria.
We found that the DNAJB8 expression level was much higher in
nonresponding than in responding patients (Fig. 1D and E).

DNAJB8 silencing sensitizes COAD cells to L-OHP
chemotherapy
To examine the biological relevance of DNAJB8 as a molecule that
is potentially involved in chemoresistance in COAD, we assessed
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the effects of DNAJB8 silencing on the sensitivity of cells exposed
to L-OHP. We established DNAJB8 knockdown L-OHP-resistant
COAD cells using specific small interfering RNA (siRNA) (Fig. 2A).
Interestingly, our results showed that downregulation of DNAJB8
re-sensitized SW620/L-OHP and SW480/L-OHP cells to L-OHP
treatment, as shown by the growth curve, mammosphere
formation assays, and increased apoptosis rates (Fig. 2B–E). These
results indicate that DNAJB8 can modulate the L-OHP-resistant
phenotype of COAD cells.
Our data showed that MDR1 expression was upregulated in the

chemoresistant cells. Next, we examined the effects of DNAJB8
knockdown on MDR1 expression. Our results showed that DNAJB8
knockdown significantly decreased MDR1 expression at both the
transcript and protein levels in SW620/L-OHP cells. Similar results
were observed in SW480/L-OHP cells (Fig. S2A, B). These data
indicate that the contribution of P-gP is very important for
DNAJB8-mediated L-OHP resistance in COAD.
To verify the effect of DNAJB8 on L-OHP-exposed colon tumor

in vivo, we assessed tumorigenicity of DNAJB8 knockdown L-OHP-
resistant cells in a nude mouse model. Tumor xenografts of DNAJB8
knockdown SW620/L-OHP and SW480/L-OHP cells were markedly
more sensitive to L-OHP compared with their counterparts after
2 weeks, and a similar trend was maintained until study termination
(Figs. 2F-G and S2C-D). These observations also suggest that DNAJB8
is involved in modulating the sensitivity of COAD cells to L-OHP.

DNAJB8 promotes TP53 stability in L-OHP-resistant COAD
cells
Previous data showed that HSP40 family proteins could affect the
protein expression of P53 in breast cancer and COAD cells [19, 20].
Based on an increasing body of evidence suggesting that MDR1 is
involved in the TP53 signaling pathway as one of the target
genes in several cancers, including COAD [21], we measured the

expression and activity of the TP53 in SW480 and SW620 cell lines
expressing the mutant R273H P53. Interestingly, the mRNA
expression of TP53 was not affected (Fig. S3A), but the protein
expression of TP53 were was substantially downregulated when
DNAJB8 was knocked down in SW480/L-OHP and SW620/L-OHP
cells (Fig. 3A). Similar results were obtained using MDR1, ID2 [22],
and CXCL5 [23] promoter vectors with respect to the DNA-binding
ability of TP53 (Figs. 3B and S3B-C). Moreover, ectopic expression
of DNAJB8 remarkably increased the DNA-binding ability of TP53
in parental cells (Fig. 3C), further supporting that TP53 abundance
is positively controlled by DNAJB8. Results from rescue experi-
ments showed that TP53 (R273H) upregulation significantly
rescued MDR1 expression and restored L-OHP sensitivity after
DNAJB8 knockdown in L-OHP-resistant cells (Fig. 3D). Further-
more, TP53 (R273H) inhibition significantly reduced the down-
regulation of MDR1 expression and L-OHP resistance after DNAJB8
upregulation in parental cells (Fig. 3E). These data suggested that
DNAJB8 promotes L-OHP resistance in a TP53-dependent manner.
To determine whether DNAJB8 regulates TP53 protein stability,

we treated L-OHP-resistant cells with cycloheximide (CHX) to block
de novo protein synthesis and then evaluated the rate of TP53
degradation. Our data showed that the rate of TP53 degradation
in DNAJB8 knockdown cells was significantly higher than that in
control cells (Fig. 3F, G), suggesting that DNAJB8 may control TP53
protein levels. Together, these results suggest that DNAJB8
positively regulates TP53 stability at the post-translational level.
Considering TP53 is a labile protein degraded by the proteasome,
we speculated that DNAJB8 may affect TP53 stability via the
ubiquitination degradation pathway. Indeed, TP53 protein expres-
sion did not decrease further when DNAJB8 knockdown SW480/L-
OHP and SW620/L-OHP cells were treated with the proteasome
inhibitor MG132 (Fig. 3H), suggesting that DNAJB8 silencing
promotes TP53 degradation by the ubiquitination pathway. We
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also performed immunoprecipitation assays and showed that
TP53 polyubiquitination was increased when DNAJB8 was
inhibited (Fig. 3I), indicating that DNAJB8 inhibits TP53 degrada-
tion through the ubiquitination pathway.

DNAJB8 interacts with TP53 in L-OHP-resistant COAD cells
Recent studies have indicated that the HSP40 protein DNAJA1
directly interacts with mutant P53 and stabilizes mutant P53 [19]. To
elucidate how DNAJB8 controls TP53 stability, we first investigated
whether DNAJB8 interacts with TP53 in cells. As expected,
we confirmed the co-localization of DNAJB8 and TP53 in L-OHP
resistant cancer cells using confocal microscopy (Fig. S4). Moreover,

exogenously expressed DNAJB8 co-immunoprecipitated with TP53
and vice versa (Fig. 4A). To further confirm this interaction, we
performed an endogenous co-immunoprecipitation experiment and
detected a complex containing DNAJB8 and TP53 (Fig. 4B).
Importantly, we found that recombinant GST-tag-expressed TP53
(R273H) immunoprecipitated with ectopically expressed DNAJB8
(Fig. 4C), indicating that DNAJB8 directly associates with TP53
in vitro. In order to confirm the direct interaction between DNAJB8
and TP53, an AlphaLISA assay was carried out for the specific
detection of DNAJB8–TP53 interactions in SW480/L-OHP and
SW620/L-OHP cells (Fig. 4D). Our data showed that the endogenous
DNAJB8–TP53 interactions in DNAJB8 knockdown SW480/L-OHP
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and SW620/L-OHP cells were significantly decreased (P < 0.01) (Fig.
4E, F). Together, these data strongly suggest that DNAJB8 directly
binds to TP53 in vivo and in vitro.

DNAJB8 positively correlates with TP53/MDR1 pathway
expression in COAD
Based on the experimental results above, we hypothesized that
DNAJB8 and the TP53/MDR1 pathway might be co-expressed in
COAD tissues. IHC results showed that DNAJB8 and TP53 co-
localized to the nuclei of colon tumor cells. Statistical analysis
showed a significant positive correlation between DNAJB8 and
TP53 expression in the COAD tissues tested (Fig. 5A and Table S2,
P < 0.001). Next, we determined the significant predictive variables
through univariate Cox regression analysis. Variables with P-value <
0.05 in the univariate analysis were included in the multivariate
model (Fig. 5B), which included the following predictive factors:
age, pT, grade, and DNAJB8 levels. A nomogram model was built
using the coefficients of the multivariate Cox regression model
(Fig. 5E and Table S3). Surprisingly, the C-index of the nomogram
for predicting survival was 0.841 (95% confidence interval,
0.802–0.880). According to the calibration curve, predictive values
were consistent with observed values considering the probabilities
of 3-, 5-, and 7-year overall survival (OS) (Fig. 5C). The area under
the ROC curve (AUC) values for 2-, 3-, and 4-year survival using the
predictive nomogram were 0.848, 0.713, and 0.776, respectively
(Fig. 5D). Finally, we calculated the total risk score based on each
predictor in the nomogram model. Kaplan–Meier analysis showed

that patients with a high risk score had an obviously worse OS than
patients with a low risk score (P < 0.001, log-rank test; Fig. 5F).

DNAJB8 levels in serum correlate with L-OHP response in
COAD patients
To examine whether DNAJB8 could be present in the extracellular
milieu, we analyzed DNAJB8 levels in the serum of COAD patients
and the CM of COAD cells using ELISA. As shown in Fig. S5A, the
serum DNAJB8 levels were higher in COAD patients compared with
healthy donors. Moreover, serum DNAJB8 levels decreased after
tumor resection (Fig. S5B), indicating that serum DNAJB8 was mainly
produced by COAD cells. Consistent with the upregulation of DNAJB8
in L-OHP-resistant cells, DNAJB8 levels were significantly higher in the
CM of resistant cells than in that of parental cells (Fig. S5C).
We next explored whether circulating DNAJB8 could predict the

response to L-OHP in COAD patients. As shown in Fig. S5D, the
average level of DNAJB8 in pre-therapy serum was higher in
nonresponders than in responders. Moreover, a prognostic
signature based on DNAJB8 expression in serum has been built.
Patients with high risk scores exhibited significantly worse OS than
patients with low risk scores (Fig. S5E–I).

DNAJB8 transfer by small extracellular vesicles was confirmed
in COAD
Previous data showed that chemoresistant cells could regulate
chemotherapy sensitivity of parental cells through autocrine or
paracrine secretion. In our system, interestingly, we found that
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L-OHP resistance in parental cells increased upon culturing with
CM from SW480/L-OHP and SW620/L-OHP cells, but not upon
culturing with CM from DNAJB8 knockdown L-OHP-resistant cells
(Fig. 6A). Similar results were obtained when culturing parental
cells with CM from SW480/L-OHP and SW620/L-OHP cells (Fig. 6B).
These results indicated that extracellular DNAJB8 was transferred
to parental cells, promoting L-OHP resistance of COAD cells.
Next, the expression pattern of extracellular DNAJB8 was

investigated in L-OHP-resistant cells. The levels of DNAJB8 in CM
were unchanged upon Proteinase K treatment but significantly
decreased when treated using Proteinase K and Triton X-100
simultaneously (Fig. 6C). Moreover, the EV inhibitor neutral sphingo-
myelinase 2 (nSMase2, GW4869) was used to treat L-OHP-resistant
cells before culturing parental cells with CM. There was no difference
in L-OHP resistance between L-OHP-resistant cells and parental cells
(Fig. 6D). All these data indicated that extracellular DNAJB8 was
mainly wrapped by EVs instead of being directly released.
We next extracted sEVs from COAD cells. Using a Western blot

assay, we showed that the sEV protein markers CD63, CD81, and
TSG101 were highly expressed in sEVs from COAD cells (Fig. 6E).
Next, we measured the sizes of sEVs by the NTA method and
found that the sEVs were sized between 40 and 150 nm (Fig. 6F),
in agreement with previously reported sEVs sizes. Calnexin, which
is not present in sEVs, was not observed after Western blot assay
(Fig. S6). In addition, sEVs were purified using an OptiPrep™
density gradient. Fractions of increasing density were collected,
and Western blot analysis was performed to identify sEVs in

enriched samples. As shown in Fig. 6G, sEVs were enriched in
fractions 6–8, corresponding to a density of 1.08–1.12 g/mL. This
density is consistent with previously reported studies conducted
on different cell types. Next, transmission electron microscopy
analysis of sEVs obtained from fraction 7, corresponding to a
density of 1.10 g/mL, revealed vesicles that were consistent with
sEVs in size and morphology (Fig. 6H). Thus, we successfully
extracted sEVs secreted by COAD cells. As expected, DNAJB8
levels were significantly higher in sEVs from L-OHP-resistant COAD
cells than in those from parental cells (Fig. 6I).

Intercellular transfer of DNAJB8 by sEVs increases L-OHP
resistance
sEVs derived from cancer cells associated with the transfer of
noncoding RNA and cancer-promoting proteins can be inter-
nalized by neighboring cells [24, 25]. As expected, the intracellular
levels of DNAJB8 were increased upon incubation with sEVs from
L-OHP-resistant cells, but not upon incubation with sEVs from
DNAJB8 knockdown L-OHP-resistant cells (Fig. 7A). The increase of
DNAJB8 levels in recipient cells was not affected by the RNA
polymerase II inhibitor actinomycin D, excluding the involvement
of endogenous induction (Fig. 7B). To further confirm that DNAJB8
could be transferred to recipient cells via sEVs, we isolated and
labeled sEVs with PKH67. As shown in Fig. 7C, after incubation
with labeled sEVs, co-localization of PKH67 and COAD cells was
observed in recipient cells. We further examined whether sEV-
transferred DNAJB8 could confer the resistant phenotype to

Fig. 5 DNAJB8 positively correlates with TP53/P-gP pathway expression in COAD. A DNAJB8 and TP53 expressions were tested using IHC in
the COAD tissues. B The results of multivariate COX regression analysis were shown in a tree diagram. C The calibration curve for predicting
patient survival at 5 years; the nomogram-predicted probability of overall survival is plotted on the x-axis; and the actual overall survival is
plotted on the y-axis. D The results of the receiver operating characteristic (ROC). E Prognostic nomogram for COAD. F Kaplan–Meier curve
analyses. G Decision curve analysis for the prognostic nomogram, where the y-axis measures the net benefit. Results shown are mean ± s.d.
from a representative experiment. *p < 0.05; **p < 0.01; Student’s t test. Similar results were obtained in three independent experiments.
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recipient COAD cells. In a co-culture mammosphere formation,
apoptosis, and proliferation assay, parental cells incubated directly
with sEVs from L-OHP-resistant cells displayed reduced sensitivity
to L-OHP (Fig. 7D), which could be abrogated by treatment with
siRNA against DNAJB8 in recipient cells. Parental COAD cells
incubated with sEVs from resistant cells displayed increased
expression of P53 and P-gP, which was abrogated by treatment
with siRNA against DNAJB8 in recipient cells (Fig. 7E). It has been
reported that P-gP could be packaged into the sEVs of breast
cancer cells. However, in the present study P-gP expression in
resistant cells was not significantly different from that in parental
cells (Fig. S7). Taken together, these data indicated that the
transfer of exosomal DNAJB8 confer·red L-OHP resistance to the
recipient cells.
To demonstrate the effect of DNAJB8 from sEVs on the response

to L-OHP in vivo, we administered sEVs derived from L-OHP-
resistant and parental cells intratumorally into COAD cell
xenografts. Our data showed that sEVs from L-OHP-resistant cells
significantly dampened the response of COAD xenografts to L-

OHP, but those from parental cells did not (Fig. 7F and G),
accompanied by increased DNAJB8 expression in the tumors (Fig.
7H). Our data suggested that DNAJB8 might modulate L-OHP
resistance through the P53/MDR1 signaling pathway in vivo.
Next, a prognostic signature based on the expression of sEV-

transferred DNAJB8 in serum has been built. COAD patients with
high risk scores exhibited significantly worse OS than patients
with low risk scores (Fig. S8). Collectively, these findings indicated
that sEVs from resistant cells could endow recipient COAD cells
with L-OHP resistance via intercellular transfer of DNAJB8,
conferring L-OHP resistance (Fig. 8).

DISCUSSION
L-OHP-based chemotherapy remains one of the most widely used
COAD treatments. In the past, much attention has been paid to the
mechanisms underlying L-OHP resistance [3, 26]. In the present
study, we investigated the potential role of DNAJB8 in the response
of COAD to L-OHP treatment and the underlying mechanisms.
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As a first-line drug for COAD treatment, resistance develops
after long-term L-OHP usage, which leads to refractory tumors
[27, 28]. To investigate the mechanisms underlying L-OHP
resistance in COAD, L-OHP-resistant COAD cell lines were
established by continuous exposure of SW480 and SW620 cells
to L-OHP from a low concentration to gradually increasing
concentrations. We found that DNAJB8 is upregulated in SW480/
L-OHP and SW620/L-OHP cells. DNAJB8 knockdown improves the
response of COAD cells to L-OHP treatment both in vitro and

in vivo, in a TP53-dependent manner. Furthermore, DNAJB8 could
be incorporated into sEVs and transmitted to parental cells, thus
promoting L-OHP resistance. Treatment of L-OHP-resistant COAD
cells with siRNA targeting DNAJB8 restored the response to L-OHP.
In the present study, we demonstrated that DNAJB8 and P-gP

are both upregulated in L-OHP-resistant COAD cells and tissues.
Abnormal expression of CDC42, P-gP, and MRP1 can be induced in
L-OHP-resistant human COAD cells [29, 30]. The SIRT1–NRF2
pathway is activated in L-OHP-resistant colon cell lines [30–32].
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Moreover, L-OHP-resistant gastric cancer cells exhibit elevated
expression of HSP72, and HSP72 overexpression is critical for
L-OHP resistance [32]. Consistent with previous studies, our data
showed that DNAJB8 silencing can promote sensitivity through
upregulation of MDR1 expression in L-OHP-resistant COAD cells.
The expression of MDR1, a molecule involved in multidrug
resistance in COAD, may be related to the resistance to multiple
chemotherapeutics including L-OHP and Fluorouracil. Our results
showed that the resistance of colon cancer cells to both 5-FU
increased following DNAJB8 upregulation (Fig. S9), which suggests
that DNAJB8 may promote the multidrug resistance of COAD
through MDR1. Activated ERK phosphorylates the transcription
factor c-Jun, contributing to nuclear translocation of c-Jun and
subsequently promoting MDR1 expression [33]. Additionally,
luciferase reporter assays revealed the β-catenin-responsive
elements in the promoter of the human MDR1 gene [34, 35].
Nuclear translocation of c-Jun and β-catenin was not significantly
different between L-OHP-resistant cells and parental cells (Fig.
S10), which indicated that transcriptional activation of MDR1
mainly relied on TP53 function.
A growing number of studies have provided compelling

evidence that gain-of-function P53 mutants promote cancer
development and progression. It has been reported that Ets-1
interacts with mutant P53, but not with wild-type P53, in vivo. Our
results also show that DNAJB8 can interact with mutant TP53, but
can weakly interact with wild-type P53 (Fig. S11), which may be
due to changes in the spatial conformation of the P53 protein
after mutation and the interactive abilities of different conforma-
tions of P53.
The regulation of P53 depends on a sophisticated chaperone

machine composed of HSP70, HSP90, and HSP40. HSP70 was
reported to promote the stability of wild-type P53 and maintain its
DNA-binding ability. By inhibiting ubiquitination, stable associa-
tion with HSP90 was shown to increase the half-life of mutant P53.
Using quantitative reverse transcription-PCR (qRT-PCR) and
Western blot analysis, we found that the expression of HSP70
and HSP90 in the L-OHP-resistant COAD cell lines was not
significantly different compared with that in parental cells (Fig.
S12), suggesting that DNAJB8 may directly bind to TP53 without
depending on HSP70 and HSP90 to promote the stability of TP53.
Ganetespib, an HSP90 inhibitor, modulates DNA methylation

through downregulation of DNMT expression to inhibit COAD

proliferation and survival [36]. Pharmacological inhibition of
HSP70 with VER-155008 can induce caspase-3/7-dependent
apoptosis in COAD cells [18]. While our work has provided
invaluable insight into the role of DNAJB8 in L-OHP-resistant
COAD, ongoing research is needed to confirm whether inhibitors
of DNAJB8 could potentially promote L-OHP sensitivity in COAD
and to determine possible underlying mechanisms.
sEV transport has been reported to play an important role in

modulating cell signaling and biological function in recipient cells
[37]. sEVs, which transfer noncoding RNAs and drug efflux pumps,
might confer drug resistance traits from drug-resistant cells to
drug-sensitive cells [38]. However, the contribution of exosomal
proteins to the regulation of L-OHP resistance remains poorly
understood. Here, our results suggest that DNAJB8 protein
embedded in sEVs derived from L-OHP-resistant cells could confer
the resistant phenotype to recipient COAD cells. Carcinoma-
associated fibroblast-derived exosomal Wnt3α could induce the
dedifferentiation of cancer cells to promote L-OHP resistance in
COAD [39]. However, sEVs from normal intestinal cells could
increase chemosensitivity of L-OHP-resistant COAD [40].
Personalized medicine is the current trend in chemotherapy,

and the identification of novel potential therapeutic targets is a
major challenge. Here, we systematically explored the effects of
DNAJB8 knockdown on L-OHP sensitivity in cells and cell line-
based xenografts, suggesting this treatment approach could be
used for L-OHP-resistant COAD.

DATA AVAILABILITY
Original data and code used in this study are provided in the supplementary file. All
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