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Osteoporosis is defined by low bone mineral density (BMD), which is mainly due to the
imbalances in osteoclast and osteoblast activity. Previous studies indicated that early ac-
tivation of osteoclasts relies on calcium entry through store-operated calcium (SOC) entry,
and several genes, including STIM1, ORAI1, and ITPKC, are known as key regulators of
SOC entry. However, the relationships between STIM1, ORAI1, ITPKC, and human BMD
are still unclear. In order to investigate the plausible associations between these genes and
BMD, we conducted a meta-analysis of genes expression and BMD using the publicly avail-
able GEO database. We further recruited 1044 subjects and tested associations between
polymorphisms in these genes and BMD. Clinical information (including age, sex, and BMI)
was collected and used for the analysis. Our results indicated that ITPKC gene expres-
sion was significantly associated with BMD. Furthermore, we found that one ITPKC SNP
(rs2607420) was significantly associated with lumbar spine BMD. Through bioinformatics
analysis, rs2607420 was found to be very likely to participate in the regulation of ITPKC ex-
pression. Our findings suggest that ITPKC is a susceptibility gene for BMD, and rs2607420
may play an important role in the regulation of this gene.

Introduction
Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) that increases the risk
of fracture [1]. Its prevalence among the elderly population in Taiwan is 24.15% in females and 11.03%
in males [2]. Several factors contribute to the pathogenesis of osteoporosis, including age, sex, and ge-
netics [3]. The heritability of BMD has been estimated at 50–85% according to twin and family stud-
ies [4,5], and numerous genes have been identified as being related to osteoporosis and BMD in candi-
date gene-based studies and genome-wide association studies (GWASs) [6]. The largest meta-analysis of
GWASs, published by the GEFOS consortium, revealed several loci associated with BMD [7,8]. Most of
the BMD-related common variants function within the RANK–RANKL–OPG signaling pathway, and the
low-frequency variants of EN1 have effects on BMD as well. Based on these and other findings, BMD is
widely considered to be a polygenic trait.

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Bone loss is due to imbalances between osteoclastic bone resorption and osteoblastic bone production.
Store-operated calcium (SOC) entry is an important regulator of osteoclast differentiation [9,10], and when
early-stage osteoclasts receive the signals from the receptor activator of the nuclear factor κ-B ligand (RANKL),
the store-operated calcium channel will be activated, causing calcium influx [9]. This influx leads to calcium os-
cillations that activate downstream nuclear factor of activated T cells c1 (NFATc1) to promote osteoclastogenesis
[9,11]. The SOC channel is the main calcium influx pathway in non-excitable cells—including T cells, mast cells,
and osteoclasts—and it is activated by depletion of calcium stores in the endoplasmic reticulum (ER) [12–14]. Upon
depletion of stored calcium in the ER, stromal interacting molecule 1 (STIM1) will aggregate and bind ORAI1 to in-
duce influx of extracellular calcium [15]. Inositol-trisphosphate 3-kinase C (ITPKC) is a negative regulator of the SOC
entry, which affects the NFATc1 signaling pathway through the phosphorylation of inositol 1,4,5-trisphosphate (IP3)
[16,17]. Once IP3 is phosphorylated to IP4, IP3 receptors on the ER are incapable of activating SOC entry, contributing
to calcium reductions in the cell [18].

In 2003, Mentaverri et al. [19] reported that 2-aminoethoxy-diphenyl borate (2-APB) and SKF-96365, two SOC
channel blockers, can significantly decrease bone resorption and the survival of osteoclasts. Additionally, knockdown
of STIM1 expression or inhibition of IP3R in bone marrow macrophages reduced calcium signaling and diminished
osteoclast differentiation [20]. Hwang et al. [21] demonstrated that by using short hairpin (sh)RNA to silence ORAI1,
a SOC entry component in the plasma membrane, RANKL-induced osteoclastogenesis was blocked. Moreover, com-
pared with wild-type mice, ORAI1−/− mice lacked multinucleated osteoclasts and exhibited markedly decreased cor-
tical ossification and BMD [22,23]. Together, these reports strongly suggest that SOC entry is an important regulatory
signal for bone remodeling.

Since the RANKL-induced calcium influx in the early stages of osteoclastogenesis occurs via SOC entry [24], genes
in the SOC pathway are likely to be involved in the regulation of bone metabolism. As such, ITPKC, an upstream
regulator of SOC entry, is a potential candidate gene for osteoclastogenesis as well. However, the genetic relationships
between STIM1, ORAI1, ITPKC, and BMD remained unclear in humans. In the present study, we aimed to inves-
tigate the association between these genes and BMD by examining data from the Gene Expression Omnibus (GEO)
database and individual’s genotype from 1044 subjects.

Methods
Dataset collection
Gene expression datasets were collected by searching the GEO database (https://www.ncbi.nlm.nih.gov/geo/) with the
following key words: ‘osteoporosis’, ‘BMD’, and ‘Homo sapiens’. We included studies in the analysis of their phenotype
data that are available. Other diseases as their major phenotype or the study only contained control samples were
excluded. For each study, we extracted information including sample number, platform, phenotype, cell type, and
gene expression data.

Meta-analysis of gene expression
Raw expression values of each dataset were normalized using Robust Multi-array Average (RMA) algorithm [25].
If raw CEL files were not available, the processed expression values were downloaded directly form GEO. Biocon-
ductor hgu133a.db package was used to annotate each probe ID with its corresponding gene symbol. Each dataset
was normalized and mapped to gene symbol individually, and we conducted a meta-analysis by combing expression
mean and standard deviation value of each study afterward. R meta package was used to perform meta-analysis and
generate forest plot. A statistical test of heterogeneity between studies was estimated by I2. Both the fixed-effect and
random-effects model were implemented in this analysis. We used meta-regression under REML model to analyze
the high heterogeneity result. The metafor package of R was used to conduct this analysis.

Patients and methods
We enrolled a total of 1044 patients from Wan-Fang Hospital, Taipei, Taiwan. The study protocol conformed to the
Declaration of Helsinki. Males and postmenopausal women aged ≥55 years who visited Neurological Clinics of Wan
Fang Hospital due to back pain or lumbar radiculopathy were recruited for the present study. Patients with patholog-
ical fractures or high-impact fractures (such as those due to motor vehicle accidents) and continuous steroid use (of
over 6 months) were excluded. Patients with the long-term inflammatory disease were also excluded.

BMD was measured by dual energy radiograph absorptiometry with standard protocols at the lumbar spine (LS;
L2-4 or L1-4) and femoral neck (FN). Vertebral fractures were assessed by digital measurements of morphologic
changes on a lateral radiograph of the thoracolumbar spine. We collected clinical information of the subjects such as
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Table 1 Characteristics of the individual studies

Dataset Race

Sample size
(High: Low

BMD) Subjects Cell Phenotype Platform

GSE2208 Caucasian 19 (10:9) Pre-and postmenopausal female Monocytes BMD GPL96 [HG-U133A]

GSE7429 Caucasian 20 (10:10) Postmenopausal female B lymphocytes BMD GPL96 [HG-U133A]

GSE7158 Chinese 26 (14:12) Premenopausal female Monocyte BMD GPL570 [HG-U133 Plus 2]

GSE35956 Caucasian 10 (5:5) Female and male (9:1) Mesenchymal
stem cells

BMD GPL570 [HG-U133 Plus 2]

GSE56816 Caucasian 80 (40:40) Pre- and postmenopausal female Monocyte BMD GPL96 [HG-U133A]

BMD: bone mineral density; HG-U133A: AffymHG-U133 Plus 2etrix Human Genome U133A Array; HG-U133 Plus 2: Affymetrix Human
Genome U133 Plus 2.0 Array

age, gender, and BMI. The study was approved by the Joint Institutional Review Board of Taipei Medical University.
All subjects provided written informed consent.

Genotyping
DNA was extracted from whole-blood samples using a Gentra (Qiagen, Valencia, CA) extraction kit and 70% alcohol
precipitation. The region we used to select tagging SNPs was defined by the position of each gene locus +− 1500 KB.
Based on HapMap SNP database (release27 phase II + III Feb 09, dbSNP b126) and the Haploview 4.2, our study
selected tagging SNPs among each linkage disequilibrium (LD) block (r2 = 0.8). Besides, the SNP with any prior
functional report had the priority to be selected. We selected six tagging single-nucleotide polymorphisms (tSNPs)
of ITPKC, four tSNPs of STIM1, and five tSNPs of ORAI1 with a minimum allele frequency of ≥10% in a Beijing
Han Chinese and Taiwanese population (Supplementary Figures S1–3). Genotyping was performed with a TaqMan
Allelic Discrimination assay (Applied Biosystems, Foster City, CA). A polymerase chain reaction (PCR) was carried
out using an ABI StepOnePlus Thermal Cycler (Applied Biosystems). In a subsequent PCR, the fluorescence from
specific probes was detected and analyzed through the System SDS software version 2.2.2 (Applied Biosystems).

Functional annotation of SNPs
To investigate the association between gene expression profiles and the SNPs of ITPKC, we also queried the GTEx
Portal (http://www.gtexportal.org/home/) that includes a variety of tissue expression quantitative trait loci (eQTLs).
HaploReg browser (www.broadinstitute.org/mammals/haploreg), which provides regulatory elements estimated by
ENCODE and Epigenomics project data, was also used to discover the potential influence of these SNPs.

Statistical analysis
R 3.2.0 was used for the statistical analyses. Associations between genotypes and BMD at the two sites were tested by
the likelihood ratio test. Age, body mass index (BMI), and sex were adjusted in the models as potential confounders.
Pairwise LD among genotyped SNPs was assessed and used to define haplotype blocks via Haploview software vers. 4.1
[26]. The general linear model (GLM) implemented in R were used to examine the associations between haplotypes
and BMD. To correct for multiple testing, the false discovery rate (FDR) was applied, and q values were estimated to
control for proper type I errors. FDR q values of <0.05 were considered statistically significant.

Results
Studies included in the meta-analysis
After carefully curating available data and removing duplicate datasets, five distinct gene expression datasets were
downloaded from GEO. Three datasets were based on RNA extracted from peripheral blood monocytes, and the
other two datasets were derived from RNA collected from B lymphocytes and mesenchymal stem cells, respectively.
Overall, we included 155 individuals from five datasets. Among them, 79 belonged to the high BMD group and 76
belonged to the low BMD group. Most of the subjects were female, except one male in the high BMD group. The
detailed parameters of each study are displayed in Table 1.

Meta-analysis
Figure 1 shows the forest plot of ITPKC expression profiling for the low and high BMD groups across all examined
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Figure 1. Forest plot of ITPKC expression profiling across five datasets

Table 2 Baseline characteristics of the Taiwanese population

Female Male Total

Number (%) 794 (76.1%) 250 (24.0%) 1044

Age (years) 68.5 +− 9.4 71.2 +− 9.8 69.1 +− 9.6

Body-mass index (kg/m2) 25.2 +− 3.9 24.8 +− 3.3 25.1 +− 3.8

Lumbar spine BMD (g/cm2) 0.95 +− 0.17 1.11 +− 0.21 0.98 +− 0.19

Femoral neck BMD (g/cm2) 0.74 +− 0.12 0.82 +− 0.14 0.76 +− 0.13

Data are presented as the mean +− SD or number (%). BMD, bone mineral density.

studies. The mean difference in ITPKC expression between low BMD and high BMD groups was −0.07 ( 95% CI:
−0.12 to −0.01). Based on a fixed effect model, the expression level of ITPKC was significantly associated with BMD
(p = 0.03), even under a random-effects model (p = 0.04). There was no severe heterogeneity across studies (I2

= 40%). Neither STIM1 nor ORAI1 showed any significant association between expression level and BMD status
(Supplementary Figures S4 and S5). The heterogeneity of STIM1 was 89%, so we further conducted a meta-regression.
This high value was mainly due to differences in cell types, which accounted for 94.93% of the heterogeneity.

Demographic and clinical characteristics of subjects
A total of 1044 individuals (794 females and 250 males) were recruited in this study (Table 2). The mean age +−
standard deviation was 68.5 +− 9.4 years for females and 71.2 +− 9.8 years for males.

Associations between genetic polymorphisms and BMD of LS and FN
The frequencies of the tag SNPs for ITPKC (rs7257602, rs7251246, rs890934, rs10420685, rs2607420, and rs2290692),
STIM1 (rs2304891, rs3750996, rs1561876, and rs3750994), and ORAI1 (rs12320939, rs12313273, rs7135617,
rs6486795, and rs712853) were similar to those from the Taiwan Biobank [27] (Supplementary Table S1). After ad-
justing for age, sex and BMI, the SNP, rs2607420, was significantly associated with LS BMD (q = 0.028). Furthermore,
SNP rs10420685 was associated with FN BMD (p = 0.028) (Table 3); however, the association did not reach statistical
significance after multiple testing corrections (q = 0.131). The genetic polymorphisms in STIM1 and ORAI1 did not
reach statistical significance in either sites (Supplementary Table S2).

Haplotype associations for ITPKC and BMD at the LS and FN
In order to elucidate the most important haplotype of ITPKC, we further constructed a LD map for ITPKC. Two
haplotype blocks were found after pair-wise LD analysis of the genotyped SNPs (Figure 2). A haplotype association
analysis was then performed on each block. For haplotype block one, formed by rs7251246, rs890934 and rs10420685,
the C-G-A haplotype was significantly associated with LS BMD compared with the reference T-T-A haplotype after
adjusting for covariates (p = 0.008) (Table 4). The C-G haplotype of block two was compared with the T-C haplo-
type and significant association was found with LS BMD (p = 0.008). Neither haplotype block showed a significant
association with FN BMD (Table 4).
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Table 3 Association between single-nucleotide polymorphisms (SNPs) in ITPKC and bone mineral density in the entire
population

SNP Genotype Lumbar spine Femoral neck
Number Mean SE p value q value Number Mean SE p value q value

rs7257602 G/G 175 0.997 0.015 0.300 0.493 208 0.749 0.008 0.387 0.493

A/G 317 0.965 0.011 377 0.753 0.007

A/A 211 0.981 0.013 254 0.763 0.008

rs7251246 C/C 193 0.968 0.013 0.084 0.214 235 0.759 0.009 0.644 0.644

C/T 386 0.984 0.010 448 0.76 0.006

T/T 213 1.000 0.014 254 0.756 0.007

rs890934 T/T 169 0.995 0.015 0.107 0.214 202 0.753 0.008 0.350 0.493

G/T 374 0.991 0.010 436 0.761 0.006

G/G 240 0.974 0.012 288 0.764 0.008

rs10420685 G/G 38 0.993 0.032 0.576 0.620 44 0.782 0.020 0.028 0.131

A/G 252 0.989 0.012 297 0.767 0.007

A/A 473 0.981 0.009 559 0.751 0.005

rs2607420 C/C 61 0.938 0.021 0.003 0.028 68 0.747 0.014 0.386 0.493

C/T 288 0.969 0.012 344 0.757 0.008

T/T 422 0.997 0.009 499 0.763 0.006

rs2290692 G/G 181 0.974 0.014 0.070 0.214 219 0.762 0.008 0.460 0.537

C/G 366 0.982 0.010 429 0.763 0.007

C/C 224 1.003 0.014 268 0.752 0.007

The p value was adjusted for age, sex, and the body-mass index. p and q values of < 0.05 are shown in bold. q values of < 0.05 were considered
statistically significant after correction for multiple testing.

Figure 2. Linkage disequilibrium and haplotype block structure of the ITPKC gene

The number in a cell is D’ x 100.
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Table 4 Associations of ITPKC haplotypes with the bone mineral density

Haplotype Frequency Lumbar spine Femoral neck
β p value β p value

Block 1: rs7251246-rs890934-rs10420685

TTA 0.435 Reference Reference

CGA 0.263 −0.027 0.008 −0.005 0.458

CGG 0.213 −0.003 0.800 0.013 0.054

CTA 0.016 0.023 0.480 −0.014 0.515

TGA 0.072 0.002 0.892 0.001 0.950

Block 2: rs2607420-rs2290692

TC 0.521 Reference Reference

CG 0.255 −0.026 0.008 −0.001 0.826

TG 0.218 −0.002 0.861 0.012 0.058

β represents the regression coefficient. Haplotype frequency less than 1% was excluded. The analyses were performed under an addictive model
adjusted for age, sex, and BMI. Significance (p < 0.05) shows in bold.

Discussion
In the present study, we first conducted a meta-analysis of STIM1, ORAI1, and ITPKC gene expression based on
GEO data. We then further investigated the association between BMD and SNPs in these three genes using 1044
subjects. Our results revealed that among the genes we examined, only ITPKC expression was positively correlated
with BMD. In addition, one intronic SNPs of ITPKC, rs2607420, showed strongly association with LS BMD, yet there
was no statistically significant association between polymorphisms of ITPKC and FN BMD (Table 4).

Previous studies have illustrated the importance of ORAI1 in bone metabolism. In the present study, we found that
the genetic association between ITPKC and BMD is more pronounced. This observation may due to the fact that
ITPKC acts as a negative regulator of the SOC channel, which can directly influence calcium signals. Therefore, our
data suggest that either the expression level or genetic polymorphisms of ITPKC may be a better biomarker to predict
BMD compared with ORAI1 or STIM1-related measurements.

Our results also showed that SNPs may have site-specificity effects, which is consistent with previous studies [7].
Because the proportions of constituent cortical and trabecular bones are distinct at different body locations [28],
and various genes differentially regulate the two types of bones, the same genetic polymorphism may have different
impacts at different sites [29,30]. Analysis of eQTLs using the GTEx Portal indicated that rs2607420 was significantly
associated with the expression of ITPKC, ADCK4, and C19orf54 (Supplementary Table S3). According to 1000
Genomes (Pilot 1 CHB + JPT), rs2607420 is in high LD (r2 > 0.6) with other SNPs that are located in C19orf54 and
ADCK4 (Supplementary Figure S6). Moreover, the HaploReg browser indicated that rs2607420 is an intronic SNP,
which lies in enhancer histone marks (H3K27ac and H3K9ac) and DNase I-hypersensitivity site in several cell lines
including primary T cells and B cells from peripheral blood [31]. These results support a functional role for ITPKC
in BMD regulation.

A limitation of our study is that we did not collect bone remodeling markers and fracture data to conduct associa-
tion analyses. These types of data may be required to investigate the further relationships between genetic polymor-
phisms and osteoporosis-related clinical events. Besides, by using tagging SNP study design we did not genotype all
the genetic variants of ITPKC. Target sequencing may be used to detect the potential causal variants. Importantly,
other replication studies are needed to validate our results. Although several bioinformatics tools have allowed us
to understand the potential functions of ITPKC polymorphisms in determining the risk of osteoporosis, functional
studies on animal models in relevant tissues are still needed to clarify the underlying mechanisms.

Conclusion
In summary, our results not only revealed a relationship between ITPKC expression and BMD, but also identi-
fied specific BMD-related loci within the ITPKC gene. These results highlight the role of ITPKC in determining
inter-individual variations in BMD. Our findings may be useful in the development of novel diagnostic tools or treat-
ment targets for osteoporosis in the future.
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