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Simple Summary: Deregulation of the FGF/FGFR axis is associated with many types of cancer and
contributes to the development of chemoresistance, limiting the effectiveness of current treatment
strategies. There are several mechanisms involved in this phenomenon, including cross-talks with
other signaling pathways, avoidance of apoptosis, stimulation of angiogenesis, and initiation of EMT.
Here, we provide an overview of current research and approaches focusing on targeting components
of the FGFR/FGF signaling module to overcome drug resistance during anti-cancer therapy.

Abstract: Increased expression of both FGF proteins and their receptors observed in many cancers
is often associated with the development of chemoresistance, limiting the effectiveness of currently
used anti-cancer therapies. Malfunctioning of the FGF/FGFR axis in cancer cells generates a number
of molecular mechanisms that may affect the sensitivity of tumors to the applied drugs. Of key
importance is the deregulation of cell signaling, which can lead to increased cell proliferation,
survival, and motility, and ultimately to malignancy. Signaling pathways activated by FGFRs inhibit
apoptosis, reducing the cytotoxic effect of some anti-cancer drugs. FGFRs-dependent signaling
may also initiate angiogenesis and EMT, which facilitates metastasis and also correlates with drug
resistance. Therefore, treatment strategies based on FGF/FGFR inhibition (using receptor inhibitors,
ligand traps, monoclonal antibodies, or microRNAs) appear to be extremely promising. However,
this approach may lead to further development of resistance through acquisition of specific mutations,
metabolism switching, and molecular cross-talks. This review brings together information on the
mechanisms underlying the involvement of the FGF/FGFR axis in the generation of drug resistance
in cancer and highlights the need for further research to overcome this serious problem with novel
therapeutic strategies.
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1. Introduction

The development of resistance to pharmaceutical treatment is a common problem
that affects a broad spectrum of diseases, in particular cancer. Despite current advances in
medicine and the existence of many initially effective anti-cancer therapies, patients are
often found to have cancer relapse, which is more malignant, invulnerable to treatment,
and significantly correlates with poor prognosis [1]. Therefore, intensive research has been
carried out for many years to develop new therapeutic strategies that may reduce the risk
of recurrence of drug-resistant cancers [1,2]. A large range of mechanisms potentially in-
volved in the emergence of chemoresistance exists, which severely hinders overcoming this
problem. These mechanisms, often arising from DNA mutations and metabolism switch-
ing, include expression of efflux cell membrane transporters, drug inactivation, alteration
in drug molecular targets, enhancing DNA repair machinery, epithelial-to-mesenchymal
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transition (EMT), or inhibition of apoptosis [1,3]. Another aspect is the diverse tumor
microenvironment and heterogeneity of cancer cells, characterized by the formation of
many subpopulations of cells with different drug sensitivity and the evolution of resistant
clones [2]. It is supposed that this phenomenon may be of great importance in the recur-
rence of less sensitive or treatment-resistant cancers that may spread to other organs [1]. In
recent years, particular attention has been paid to the involvement of growth factors and
their receptors in processes leading to drug resistance, due to their biological functions and
the frequent correlation of overproduction of these proteins with cancer progression [3,4].
EGF (epithelial growth factor), IGF (insulin-like growth factor), VEGF (vascular endothelial
growth factor), and their receptors have been identified as key players in the response of
cancer cells to cytotoxic drugs, but the exact mechanisms of this phenomenon have not
been fully elucidated [5–8]. Recent studies suggest that fibroblast growth factors (FGFs)
and their receptors (FGFRs) are also an important group of proteins in the development of
drug resistance.

The FGF family includes 22 highly conserved proteins that interact with specific recep-
tors (FGFR1-4) belonging to RTKs (receptor tyrosine kinases) [9]. The FGF binding forces
the conformational changes of FGFRs, followed by receptor dimerization and transphos-
phorylation in the intracellular kinase domain [10]. This interaction is stabilized by heparan
sulfate proteoglycans located on the cell surface, due to their high affinity to both FGFs
and FGFRs [9]. Upon FGFR dimerization, its phosphorylated kinase domain recruits and
activates adaptor proteins, including FRS2α (fibroblast growth factor receptor substrate
2), which in turn interacts with GRB2 (growth factor receptor-bound 2) [11]. Furthermore,
activated GRB2 recruits SOS1 (son of sevenless 1) to activate the RAS/MAPK (rat sarcoma
virus protein/mitogen-activated protein kinases) pathway, which includes ERK1/2 (extra-
cellular signal-regulated kinase 1/2) and p38, or GAB1 (GRB2-associated binding protein 1)
to activate the PI3K/AKT/mTOR pathway (phosphoinositide 3-kinase/AKT/mammalian
target of rapamycin) [10,11]. Independently of the interaction with FRS2α, activated FGFR
kinase domain triggers activation of other signaling pathways, such as JAK/STATs (Janus
kinases/signal transducers and activators of transcription) and PLCγ/PKC (phospholipase
Cγ/protein kinase C) pathways [11]. Downstream FGF/FGFR signaling regulates pivotal
cellular processes such as proliferation, differentiation, migration, and apoptosis, which
govern embryogenesis, organs development and the maintenance of homeostasis in adult
tissues [9,11,12]. Given the role of FGFs and FGFRs in cell and tissue development and func-
tion, they have been rapidly linked to tumorigenesis and chemoresistance occurring during
anti-cancer therapy [13,14]. Here, the relationship between the action of FGF/FGFR and
the occurrence of drug resistance in cancer cells is presented and their specific mechanisms
of action are proposed to be considered as targets for cancer treatment.

2. FGFs and Their Receptors in Cancer Progression

In the late 1970s and early 1980s, FGFs and their specific receptors began to be associ-
ated with tumors [15,16]. Baird and co-workers showed that antibodies directed to FGF
significantly decreased tumor size from transplantable chondrosarcoma [17]. At the same
time, Fgf-3 gene was identified as a proto-oncogene in MMTV (mouse mammary tumor
virus)-induced tumor in mice [18]. In the following years, the number of correlations of
FGFs and FGFRs with tumors increased [10]. Currently, ample evidence points to a role of
unusual occurrence of FGFs and/or their receptors in the progression of cancer, including
breast, lung, prostate, colorectal, brain, and other cancers, which is usually associated with
poor patient prognosis [10,13]. However, there are reports showing that FGF2/FGFR2
protein level in glioma and breast cancer tissue does not differ from that in non-malignant
parental cells, or is even lower [19,20].

A number of dysfunctional aberrations, such as gene amplification, chromosomal
translocations, or missense point mutations have been identified in FGFs and FGFRs genes
in various cancers [12,21–24]. These anomalies often lead to overexpression of FGFs or their
receptors, the formation of fusions of FGFRs with other proteins and/or the generation
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of a constitutively active kinase domain in FGFRs (Figure 1) [10]. This may result in
imbalanced FGFRs-dependent cell signaling, which in turn facilitates uncontrolled cell
proliferation, evasion of apoptosis, angiogenesis, and EMT (Figure 1) [10,11]. This may
also cause genome instability, leading to further random mutations and the emergence
of other mechanisms driving tumorigenesis [25]. However, it is still unclear whether
the dysregulation of FGF/FGFR is directly responsible for carcinogenesis or whether the
abnormalities, caused by genome instability, are site effects and only drive neoplastic
progression. Nevertheless, FGFs and their receptors play an important role in cancer
development and deregulated intracellular signaling may be largely responsible for the
formation of malignant tumors, resistant to chemotherapy.
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Figure 1. FGFRs-mediated mechanisms of cancer development and progression. Fibroblast growth
factor receptors (FGFRs) and their natural ligands (FGFs) are involved in many biological processes,
crucial for the proper operating of the cells and entire organism. However, many aberrations
in FGFRs and/or FGFs genes may generate deregulations in the FGFRs/FGFs axis, which often
upregulate downstream cell signaling and drive tumorigenesis. Activating mutations may lead
to ligand-independent receptor dimerization and activation or creating the constitutively active
kinase domains. The amplification of FGFRs or FGFs genes results in protein overexpression, which
may also contribute to enhanced FGFRs-mediated cell signaling. Chromosomal translocations lead
to the formation of fusion proteins that in some cases cause, similarly to activation mutations,
receptor activation independently of FGFs presence. Regardless of the type of FGFRs dysfunction, the
consequence is upregulated cell signaling that may drive cancer progression, through uncontrolled
cell division, apoptosis avoidance, new blood vessel formation and/or EMT.
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3. The Role of Cell Signaling Pathways in the Development of Anti-Cancer
Drug Resistance

The increasing number of cases correlating FGF and FGFR expression in cancer cells
with treatment failure and poor patient prognosis highlights the important role of these
proteins in the cellular response to anti-cancer drugs. FGFs and FGFRs have been associated
with resistance to several cytotoxic agents, such as paclitaxel, cisplatin, etoposide, 5-
fluorouracil, doxorubicin, and others in various tumor types (Table 1) [26–36]. Most
studies on the involvement of FGF proteins in the development of drug resistance involve
FGF1 and FGF2, while there are a few reports on the role of other FGFs in this process,
including FGF4, FGF5, FGF9, FGF10, FGF13, and FGF19 [37–44]. Overexpression of FGF
receptors in cancer cells has also been observed with a concomitant reduction in response
to protein kinase inhibitors (including RTKs) or endocrine therapy (Table 1) [39,45–50].
To investigate the involvement of FGF proteins and their receptors in the process of
chemoresistance, particular attention has been paid to FGFR-dependent signaling pathways
and their downstream targets, which can lead to deregulation of a number of biological
processes, including apoptosis and metastasis.

Table 1. Examples of resistant cancer types associated with FGF/FGFR.

Cancer Type Drug Involved Protein(s) References

Breast cancer

Etoposide

FGF2

[30]
5-fluorouracil

Mifepristone, Telepristone [50]

Paclitaxel [31,33]

Tamoxifen FGF1, FGFR2 [48,51]

Trastuzumab
FGFR4 [49]

FGF4 [43]
Lapatinib

Colorectal cancer
5-fluorouracil FGFR4 [52]

Irinotecan FGF2, FGF9 [37]

Liver cancer Sorafenib
FGF19, FGFR4 [39]

FGF9 [42]

Head and neck cancer

Paclitaxel FGF2 [31]

Cisplatin FGF2, FGFR2 [35]

Bevacizumab FGF2, FGFR3 [53]

Lung cancer

Gefitinib FGFR1 [54]

Cisplatin FGF2 [36]

Erlotinib FGFR1 [45]

Bladder cancer
Cisplatin

FGF2
[27]

Paclitaxel [31]

Prostate cancer
Paclitaxel

FGF2 [31]

FGF1, FGF2 [29]Doxorubicin

5-fluorouracil

Blood cancer

Cytarabine
FGF2, FGFR1 [55]

Etoposide

Fludarabine FGF2 [26]
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Table 1. Cont.

Cancer Type Drug Involved Protein(s) References

Ovarian and
cervical cancer

Paclitaxel FGF2 [31]

Etoposide
FGF1

[56]

Cisplatin
[32]

FGF13 [38]

Brain cancer Temozolomide
FGFR1 [57]

FGF2 [58]

Melanoma

Paclitaxel
FGF2 [34]

Cisplatin

Vemurafenib FGFR3 [47]

Bone cancer Doxorubicin FGF2 [28]

Cancer cell signaling is a highly unpredictable “life-to-death” machinery due to the
interference of multiple independent factors. Therefore drug-resistant tumors frequently
exhibit deregulations in more than one signaling pathway, with growth factor-associated
cascades often playing a significant role here [3,11]. A growing number of cases indicate
that mutations in various signaling proteins, aberrant signal transduction, and abnormal
cross-talks between different cascades are key problems in overcoming the after-treatment
recurrence of more aggressive and resistant cancers.

3.1. MAPK Cascade

Mitogen-activated protein kinases (MAPKs) are an integral part of signaling pathways
with high mitogenic and pro-survival potential and include three main families: ERK
family as mitogen-responsive and JNK and p38 kinase families as stress-responsive [59].
The MAPK pathways, initiated by G proteins (RAS for ERK and RAC, RHO or RAP for
JNK and p38), are three-tiered kinase cascades that act through phosphorylation of subse-
quent kinases (MAPKKK, MAPKK, and MAPK) (Figure 2) and regulate many biological
processes, such as embryogenesis, cell differentiation, proliferation, and cell death [60].
All three MAPK families have been reported to control apoptosis in response to anti-
cancer drugs [59]. However, the activity of the RAS/RAF/MEK/ERK pathway is most
commonly correlated with FGF/FGFR-dependent drug resistance in many types of can-
cer [37,47,53,61]. ERK upregulation caused by increasing FGFR3 level in HNSCC (head
and neck squamous cell carcinoma) cells led to an increase in FGF2 expression, which
correlated with reduced sensitivity to bevacizumab (Figure 2) [53]. In colorectal cancer
(CRC) cells, resistance to irinotecan, a topoisomerase I inhibitor, was dependent on FGF2
and FGF9 expression followed by MAPK pathway activation [37]. FGF9 seems to have
a key role in irinotecan resistance as it correlates with other identified genes, such as
Prkacb (cAMP-dependent protein kinase catalytic subunit beta) and Macom (MDS1 and
EVI1 complex locus protein EVI1), and also with Ffg2 and Pla2g4c (cytosolic phospholipase
A2γ) [37]. Hepatic stellate cells (HSC), but not HCC cells, produce FGF9 which correlates
with poor patient survival [42]. However, the exogenous addition of FGF9 in HCC cells
activated ERK and JNK, and led to a decrease in sorafenib sensitivity, which suggests the
FGF-dependent HSC-HCC cross-talk in liver cancers [42]. The reactivation of ERK seems
to be crucial for the resistance to BRAF inhibitors in melanoma cells with BRAF-V600E mu-
tations, and one of the mediators is FGFR3 [47]. In BRAF/MEK inhibition-resistant cancer
cells carrying BRAFV600E mutation, the dual MAPK inhibition drives the overexpression
of FGF1 followed by the FGFR activation and the reactivation of ERK [62]. The addition
of FGFR inhibitors re-sensitized cells to combination treatment with vemurafenib and
cobimetinib, BRAF and MEK inhibitors, respectively [62]. Resistance to trametinib (MEKs
inhibitor) treatment via FGFR1-dependent activation of ERKs and AKT was also observed
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in lung and pancreatic cancer cells with mutated KRAS [61]. Similarly, reactivation of ERKs
by exogenous FGF4 in HER2-positive breast cancer led to the resistance to dual HER2
inhibition [43].

Cancers 2021, 13, x FOR PEER REVIEW  10  of  36 
 

 

 

Figure 2. FGFR‐dependent cell signaling in the development of drug resistance. Many drugs show 

reduced efficacy over time. Recent studies have linked this phenomenon to activation of FGFR and 

disruption of  its downstream signaling including mutations of  individual signaling proteins,  im‐

paired  signal  transduction  and  cross‐talks  between  different  cascades.  The mode  of  action  of 

PI3K/AKT in the development of chemoresistance is mainly based on the upregulation of pro‐sur‐

vival genes such as Bcl2‐A1 or Bcl‐xL by activation of IKKβ or inactivation of GSK3β and further 

nuclear translocation of NFκB or Nrf2, respectively. Another mechanism is inhibition of TSC1/2 af‐

fecting protein synthesis. Activation of ERK kinases in MAPK pathway appears to be crucial in the 

acquisition of drug resistance, as  it  leads  to  increased expression of proteins associated with cell 

cycle progression (e.g., cyclin D1) and apoptosis control (e.g., Mcl‐1). Another signaling pathway 

STAT, in particular STAT3, can directly affect the tumor microenvironment through increased hya‐

luronan (HA) synthesis, as well as the regulation of apoptosis through Mcl‐1 or Bcl‐xL. Finally, the 

PLCγ/PKC pathway is often complicit in other signaling cascades and is also able to directly activate 

multidrug resistant proteins such as P‐gp. 

6. Dysregulation of Apoptosis in Cancer by FGFs/FGFRs System 

One of the most essential processes for the functioning of cells and the whole organ‐

ism is apoptosis, a programmed cell death, controlled by two main pathways: extrinsic 

(death‐receptor  pathway)  and  intrinsic  (mitochondrial‐mediated  pathway)  [120].  In‐

creased survival of cancer cells by avoiding apoptosis is one of the most potent mecha‐

nisms of tumor progression and drug resistance [2]. A majority of anti‐cancer drugs act 

by activating apoptosis mediated by cell cycle inhibition, DNA damage, immune surveil‐

lance, and other cellular stresses  [2]. Therefore, alteration of pathways  involved  in cell 

death and  imbalance between activators (such as BAD or BAX) and inhibitors (such as 

Bcl‐2 or Bcl‐xL) of apoptosis often leads to reduced drug sensitivity and the development 

of chemoresistance in tumors [2,120]. 

The action of FGFs and their receptors is also involved in the regulation of apoptosis, 

mainly through the activation of downstream signaling, such as PI3K/AKT, MAPKs, or 

Figure 2. FGFR-dependent cell signaling in the development of drug resistance. Many drugs show
reduced efficacy over time. Recent studies have linked this phenomenon to activation of FGFR
and disruption of its downstream signaling including mutations of individual signaling proteins,
impaired signal transduction and cross-talks between different cascades. The mode of action of
PI3K/AKT in the development of chemoresistance is mainly based on the upregulation of pro-
survival genes such as Bcl2-A1 or Bcl-xL by activation of IKKβ or inactivation of GSK3β and further
nuclear translocation of NFκB or Nrf2, respectively. Another mechanism is inhibition of TSC1/2
affecting protein synthesis. Activation of ERK kinases in MAPK pathway appears to be crucial in the
acquisition of drug resistance, as it leads to increased expression of proteins associated with cell cycle
progression (e.g., cyclin D1) and apoptosis control (e.g., Mcl-1). Another signaling pathway STAT,
in particular STAT3, can directly affect the tumor microenvironment through increased hyaluronan
(HA) synthesis, as well as the regulation of apoptosis through Mcl-1 or Bcl-xL. Finally, the PLCγ/PKC
pathway is often complicit in other signaling cascades and is also able to directly activate multidrug
resistant proteins such as P-gp.

Another concern is the development of resistance to tamoxifen, an antagonist of
estrogen receptor (ER), commonly used in breast cancer therapy [1]. In vivo studies in
ER-positive breast cancer (MCF-7 cells) showed that resistance to tamoxifen treatment is
dependent on reactivation of ERK1/2 and p38 kinase [8]. Zhang and co-workers showed
that overexpression of FGF1 promotes tumor growth in breast cancer treated with tamox-
ifen [48]. A similar effect was observed for FGF2 and FGF4 [63,64]. Administration of
exogenous FGF1, but not EGF, reduced the inhibitory effect on ERK1/2 activation by
MEK inhibitors and reduced the inhibition of tumor growth by the ER antagonist ICI
182780 in MCF-7 cells [65]. Other studies showed that amplification of FGFR1, FGFR2,
or FGFR3 in ER-positive human breast cancers correlates with concomitant resistance to
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estrogen-related therapy [65–69]. The mechanism is probably based on prolonged ERK1/2
activation after FGF/FGFR stimulation [65,66]. It has been suggested that it depends on
RAP1 (RAS-proximate-1 or Ras-related protein 1) and SNT-1 (Suc1-associated neurotrophic
factor-induced tyrosine-phosphorylated target)/FRS2 rather on RAS or RAF-1 proteins
(Figure 2) [65]. Stimulation with FGFs causes SNT-1/FRS2 phosphorylation and its binding
to FGFRs via the phosphotyrosine-binding domain, which consequently leads to activation
of downstream signaling pathways through its interaction with adaptor proteins GRB2,
GAB1 and SOS1 [65]. Inhibition of the interaction between SNT-1/FRS2 and FGFRs de-
creases MAPK, PI3K, and mTOR activity, leading to a reduction in anti-estrogen resistance
induced by FGF1 stimulation [69]. Furthermore, FGFR1 signaling activation decreased pro-
gesterone receptor expression [69]. FGF2/FGFR-dependent ERK activation induced cyclin
D1 expression, which activates key mediators of cell cycle progression, cyclin dependent
kinases 4 and 6 (CDK4, CDK6), in ER-positive breast cancer (Figure 2) [64]. Turner and
co-workers have shown that stimulation with FGF2 led to the development of resistance
to tamoxifen in breast cancer cells with elevated expression of FGFR1 [66]. It has been
suggested that FGF2/FGFR1 signaling is essential for overcoming tamoxifen action, and
this process has been associated with high activity of MAPK and AKT cascades as well as
increased level of cyclin D1 [66].

3.2. PI3K/AKT Cascade

Protein kinase B (PKB), also known as AKT, is a major downstream effector of PI3K and
one of the main perpetrators associated with the resistance to various anti-cancer agents, in-
cluding cisplatin, paclitaxel, etoposide, RTKs inhibitors, as well as radiation [70–74]. Activated
by PI3K and mTORC2 (mammalian target of rapamycin complex 2), AKT directly or indirectly
exerts control over the activity of various intracellular processes, including apoptosis, through
inactivation of proapoptotic BAD (Bcl-2 antagonist of cell death), BIM (Bcl-2-like protein
11), pro-caspase 9, and/or FOXO (forkhead box protein O1) proteins or phosphorylation of
MDM2 (mouse double minute 2 homolog) followed by increased p53 (cellular tumor antigen
p53) degradation; protein synthesis, by inhibition of TSC1/2 (tuberous sclerosis complex 1/2,
mTOR inhibitors) and subsequent activation of mTORC1 (mammalian target of rapamycin
compex 1); and cell cycle regulation through inhibition of the cyclin-dependent kinase in-
hibitors, p21 and p27, or glycogen synthase kinase 3β (GSK3β), which prevents cyclin D1
degradation [75]. AKT can also regulate angiogenesis and cell migration, which in turn can
lead to EMT in cancer cells [76]. The PI3K/AKT pathway has been indicated as a major
player in FGF/FGFR-dependent tumor progression with a significant role in the regulation of
apoptosis and the development of chemoresistance [57,67,77,78]. The interaction of FGF2 and
FGFR1, through activation of the PI3K/AKT pathway, mediates cell survival, proliferation,
motility, and consequently resistance to cytarabine and paclitaxel treatment [55,79].

The use of anti-FGFR1 antibody reduces AKT phosphorylation, inhibits tumor growth
and restores drug sensitivity both in vitro and in vivo [55]. FGF/FGFR activity plays
also an important role in acquired resistance to EGFR inhibitors [80–83]. Overexpression
of FGFR1 in resistant to gefitinib (EGFR inhibitor) NSCLC (non-small-cell lung cancer)
cells led to increased activation of AKT and mTOR, whereas FGFR1 inhibition decreased
phosphorylation of both kinases and re-sensitized cells to gefitinib [54,83]. The investigation
into the role of the PI3K/AKT pathway in FGF2-dependent resistance to etoposide, 5-
fluorouracil, camptothecin, and the C2 ceramide analogue in breast cancer cell lines (MCF-7,
T47-D, and BT-20) revealed subsequent AKT-dependent stimulation and translocation of
nuclear factor-κB (NFκB) to the nucleus via activation of IKK-β (inhibitors of NFκB kinase-
β), but not on the MAPK pathway [30]. Further studies have revealed that FGF2/PI3K-
dependent translocation of NFκB mediates transcriptional upregulation of pro-survival
Bcl2-A1 (Bcl-2-related protein A1) and Bcl-xL (Bcl-2-like protein 1) genes (Figure 2) [84]. Gao
and co-workers demonstrated that FGF19/FGFR4 signaling in hepatocellular carcinoma
(HCC) cells is one of the main resistance mechanisms to sorafenib, a multikinase inhibitor
inducing the ROS (reactive oxygen species)-associated apoptosis [39]. Further research
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revealed that overexpression of FGF19 induced by endoplasmic reticulum stress in HCC
cells leads to increased resistance to apoptosis through the inactivation of GSK3β and
subsequent nuclear translocation of Nrf2 (nuclear factor E2-related factor 2) (Figure 2) [85].
FGFR-mediated activation of the PI3K/AKT pathway is also observed in cancer cells
during BRAF (serine/threonine-protein kinase B-raf) or MEK (mitogen-activated protein
kinase kinase) inhibitors treatment [62,86,87]. In neural stem cells, transactivation of
FGFR1 by Notch2 (neurogenic locus notch homolog protein 2) led to GSK3 inhibition
via AKT, but independently from mTOR activation, resulting in a reduced response to
etoposide [58]. Knock-down of FGF2, but not EGF or insulin, re-sensitized these cells to
treatment. Interestingly, inhibition of the mTOR pathway, but not the PI3K pathway, in
triple-negative breast cancer cells led to increased FGF1 and Notch1 expression, enhanced
FGFR1 activation and the formation of a resistant cancer stem cell-like population [88].

Recently, autocrine FGFR activation has been correlated with HES1 (hairy and en-
hancer of split-1) expression and AKT-dependent cell proliferation in endometrial cancers
insensitive to Notch inhibition [89]. HES1 has been also identified as a potential driver
of anti-cancer drug resistance, in addition to upregulation of cancer cell proliferation and
migration [90]. The development of resistance to the BRAF inhibitor (vemurafenib) in
melanoma cancer cells was correlated with the induction of transcription and secretion
of FGF1 through enhanced activity of PI3K/AKT pathway and FRA1 (Fos-related anti-
gen 1) (Figure 2) [87]. Expression of FGF2 by endothelial cells promoted prostate cancer
cells proliferation and led to the acquisition of docetaxel resistance via activation of the
AKT/mTOR pathway and upregulation of the erythroblast transformation specific related
gene [91]. In ovarian cancer, the FGFR/PI3K/AKT pathway has been implicated in the
development of cisplatin resistance induced by the GLT8D (glycosylotransferase 8 domain
containing2) protein through the interaction with FGFR1 and the subsequent signaling
activation [92].

Additionally, the FGF7/FGFR2 axis has been identified as driving tamoxifen resistance
in breast cancer cells (T47-D, MCF-7). It has been shown that FGFR2 activation counter-
acted the effect of tamoxifen on ER stabilization and that the acquisition of resistance to
the aforementioned drug was promoted by the PI3K/AKT cascade and not by MAPKs,
further targeting ER-Ser167 and Bcl-2 expression [51]. They showed that FGFR2 signaling
promoted ER ubiquitination and suggested that the ER degradation/turnover is the main
mechanism responsible for the suppressed cellular response to tamoxifen [51]. This obser-
vation is in agreement with previous work confirming that CUEDC2 (a ubiquitin-binding
motif-containing protein which regulates ER degradation) is the molecule that leads to
resistance to tamoxifen-based therapy [93].

3.3. STAT Cascade

Another important group of proteins activated by extracellular signals transmitted by
RTKs and involved in cancer progression and survival are signal transducers and activators
of transcription (STATs), in particular STAT3 and STAT5 [94]. Upon activation by receptor-
bound JAK1-3 (Janus kinases) and TYK2 (tyrosine kinase 2), phosphorylated STATs form
homo- or heterodimers and translocate to the nucleus, where they act as transcription
factors [94,95]. STATs directly target genes that regulate cell cycle, such as cyclin D1, p21,
c-myc, and apoptosis, such as Bcl-xL and Mcl-1 (myeloid cell leukemia sequence 1), and
thus may also affect cellular response to anti-cancer drugs [95]. FGF/FGFR-dependent
STAT3 activity has been correlated with resistance to doxorubicin, 5-fluorouracil, cisplatin,
paclitaxel, and MEK/BRAF inhibitors in several cancers [52,96]. Activation of FGFR1
induces hyaluronan (HA) synthesis via STAT3 pathway and causes accumulation of HA in
extracellular matrix (ECM) of breast cancer cells (Figure 2) [96]. Inhibition of HA synthesis
and/or accumulation by STAT3 inhibition reduces cell migration and proliferation, and
partially reverses resistance to doxorubicin [96]. Overexpression of FGFR3 decreases
apoptosis in multiple myeloma cells, with concomitant increase in STAT3 phosphorylation
and Bcl-xL expression (Figure 2) [97]. Another study demonstrated that resistance to
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5-fluorouracil and oxaliplatin in CRC cells was associated with the upregulation of FGFR4
and subsequent STAT3 activity [52]. Additionally in CRC, the FGFR2/JAK/STAT3 pathway
promotes the expression of programmed cell death ligand 1 (PD-L1), a transmembrane
protein associated with reduced T-cell proliferation [98].

Recently, studies in EGFR-positive cancer cells have shown that sustained activation
of STAT3, due to enhancement of its binding to FGFR1, plays a key role in the acqui-
sition of resistance to EGFR inhibitors [99]. Moreover, STAT3 activation was indepen-
dent of gp130/JAK activity or HER2/EGFR heterodimer formation and administration of
PD173074 led to suppression of STAT3 activation and inhibition of cancer cell prolifera-
tion [99]. Interestingly, in the osteosarcoma U2OS cells, FGF2-dependent drug resistance
was determined by activation of JAK1, JAK2, and TYK2, but not STATs activation [100].

3.4. PLCγ/PKC Cascade

Finally, phospholipase Cγ (PLCγ) is also a very important signaling mediator in-
volved in many biological processes, acting by cleavage of PIP2 (phosphatidylinosi-tol-
4,5-bisphosphate) into IP3 (inositol-1,4,5-triphosphate) and DAG (diacyloglycerol), and
regulating Ca2+ channels and PKC activity [101]. Aberrations in the PLCγ/PKC path-
way also contribute to the development and progression of many types of cancers, but
their role in the drug sensitivity is not fully elucidated [101]. PLCγ acts primarily by
PKC activation as a regulator and/or alternative activator of other pro-survival proteins,
such as AKT or RAS (Figure 2) [5,67,101]. Activated PKC can also phosphorylate mul-
tidrug resistance proteins, such as P-gp (P-glycoprotein 1, also known as MDR1 or ABCB1)
(Figure 2) [31]. It has been observed that increased expression of FGF2, but not FGF1,
in tumors with reduced sensitivity to paclitaxel also correlates with increased level of P-
gp [31]. In FGF/FGFR-dependent mechanisms of drug resistance involving other signaling
pathways, co-involvement of the PLCγ/PKC cascade has been observed, indicating an
important role for PLCγ in the development of molecular cross-talks necessary for cell
survival [53,67,102,103].

4. Signals from the Tumor Microenvironment

It is well established that the complex tumor microenvironment can play an important
role in cancer progression, metastasis, as well as in gaining the resistance to treatment. Its
components including ECM, immune cells, blood vessels, cytokines and growth factors,
and non-epithelial cells, especially cancer-associated fibroblast (CAFs), provide additional
pro-survival stimuli to adapt to treatment and evade therapies. Activated fibroblasts
acquire an invasive phenotype and promote tumor growth and proliferation via paracrine
and autocrine pathways, further fueled by the immune response [104,105].

Members of FGF family (including FGF1, FGF2, FGF4, FGF5, FGF6, FGF7, and FGF9)
were reported to be secreted by CAFs [51,106–108] and FGFR2 was shown to be a key
mediator of tumor niche-derived signals that are responsible for the acquisition of tamox-
ifen resistance [51]. In addition, FGF2 secreted by CAFs was found to contribute to lung
cancer cells growth through overexpression of Tgfb, Mmp7, Fgf2, Fgf9, enhanced collagen
synthesis, and increased expression of inflammatory cytokines such as Csf1, Cxcl12, and
Ccl2 [109]. Furthermore, FGF1 promotes tumor-niche fibroblasts to express and secrete
HGF (hepatocyte growth factor), a mediator of angiogenesis and cell motility, and an
important tumor-resistant factor in melanomas [87].

Another study showed that HGF secreted by CAFs induced FGF2 secretion by HNSCC
in order to drive glycolysis for extensive use of glucose for their growth and survival [110].
Additionally in pancreatic adenocarcinoma, CAFs secrete FGF2, which enhances cancer
survival by increasing CXCL8 level [111]. In HER-positive breast cancer, the secretion of
FGF5 by CAFs leads to FGFR2 activation in cancer cells and acquisition of resistance to
trastuzumab and lapatinib (EGFR/HER2 inhibitors) through FGFR2/c-Src-mediated HER2
transactivation [112]. Furthermore, FGF2 secreted by CAFs stimulated cell migration and
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invasiveness in a breast cancer cell line (MDA-MB-231), which could be inhibited by an
FGF2-neutralizing antibody [113].

5. Cross-Talks between FGF/FGFR Signaling Pathways in Cancer

Due to the frequent involvement of more than one pathway and the formation of
molecular cross-talks between them, it is difficult to pinpoint the main mechanism respon-
sible for the impaired cellular response to anti-cancer treatment. For instance, RAS/MAPK
and PI3K/AKT pathways may alternately activate when one pathway is inhibited, thereby
preventing apoptosis in cancer cells [114]. Clinical studies indicate that parallel inhibition
of the PI3K/AKT and RAS/MAPK pathways can significantly improve treatment efficacy,
especially in advanced cancers with genetic alterations in these pathways [115]. Interest-
ingly, also in doxorubicin-treated non-cancerous NIH3T3 cells, the PI3K/AKT and p38
MAPK pathways were transiently activated and their chemical inhibition accelerated and
enhanced drug-induced apoptosis, whereas the ERK and JNK pathways were continuously
active and their inhibition repressed the apoptotic function of doxorubicin [116]. More-
over, AKT activity has been shown to negatively affect long-term ERK phosphorylation
followed by PARP (poly (ADP-ribose) polymerase) cleavage and caspase activation during
doxorubicin-induced cell death [116]. In KRAS mutant cancer cells, only inhibition of
both the PI3K/AKT and MEK pathways resulted in complete inactivation of mTOR and
increased cell death (Figure 2) [117]. Increased phosphorylation of both AKT and ERKs
was commonly observed in cancer cells treated with RAS/MAPK pathway inhibitors, sug-
gesting the importance of the PI3K/AKT pathway in reactivating ERKs and reducing the
cytostatic effect of the inhibitors (Figure 2) [61,62,118]. In lung and pancreatic cancer cells
with mutated KRAS, treatment with trametinib, a MEK inhibitor which acts downstream
of KRAS to suppress MAPK cascade, led to a compensatory response through activation of
FGFR1 and subsequent phosphorylation of FRS2, thus resulting in alternative signal trans-
duction and generating adaptive drug resistance [61]. Inhibition of FGFR1 in combination
with trametinib treatment induced cell death in KRAS-mutant cancer cells [61]. Another
study showed that in HNSCC cells, co-inhibition of MEK and FGFR3 activity reduced AKT
and ERKs phosphorylation, which in turn led to increased DNA fragmentation, caspase 3
cleavage, and reduced tumor growth in vivo [118].

One of the multi-functional mediators of linking different signaling pathways is the
aforementioned PLCγ/PKC pathway. PLCγ downstream signaling has been shown to
activate MAPK and PI3K pathways in the development of resistance to estrogen-related
therapy (Figure 2) [67]. Additionally, increased FGF2 expression in bevacizumab-resistant
HNSCC cells, accompanied with upregulation of PLCγ, ERKs, and AKT, correlated with
the reduced sensitivity to the bevacizumab treatment [53]. Other studies indicate an
important role for the interaction of MAPKs and S6K2 (ribosomal p70 S6 kinase 2) in FGFs-
dependent cancer cells proliferation and survival [102,119]. As a consequence of FGF2
stimulation, PKCε complex formation with BRAF and S6K2, but not with S6K1 and RAF-1,
induced drug resistance in SCLC (small cell lung cancer) cells, HEK293 and U2OS cells
(Figure 2) [100,102]. FGF2 was also found to mediate the interaction of TYK2 with PKCε
and BRAF, leading to full phosphorylation of ERK1/2, MCL-1 activation and inhibition
of apoptosis (Figure 2) [100]. Furthermore, another phospholipase, PLA2G4C (cytosolic
phospholipase A2γ), has been linked together with FGF9 and the MAPK pathway to
irinotecan resistance in CRC cells [37].

6. Dysregulation of Apoptosis in Cancer by FGFs/FGFRs System

One of the most essential processes for the functioning of cells and the whole organ-
ism is apoptosis, a programmed cell death, controlled by two main pathways: extrinsic
(death-receptor pathway) and intrinsic (mitochondrial-mediated pathway) [120]. Increased
survival of cancer cells by avoiding apoptosis is one of the most potent mechanisms of
tumor progression and drug resistance [2]. A majority of anti-cancer drugs act by activating
apoptosis mediated by cell cycle inhibition, DNA damage, immune surveillance, and other
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cellular stresses [2]. Therefore, alteration of pathways involved in cell death and imbalance
between activators (such as BAD or BAX) and inhibitors (such as Bcl-2 or Bcl-xL) of apop-
tosis often leads to reduced drug sensitivity and the development of chemoresistance in
tumors [2,120].

The action of FGFs and their receptors is also involved in the regulation of apopto-
sis, mainly through the activation of downstream signaling, such as PI3K/AKT, MAPKs,
or STATs [10,97,121]. Several studies have shown that FGF2 regulates apoptosis through
upregulation of Bcl-2, Bcl-xL, Mcl-1, and XIAP (X-linked inhibitor of apoptosis protein)
[78,84,100,102,121,122]. In addition, Sun and co-workers have reported that FGF2 increases
the expression of survivin, an anti-apoptotic protein that acts by inhibiting caspase 3 and 7
and linked this to the PI3K/AKT pathway in HCCs [78]. FGF2 has also been found to increase
mitochondrial localization of Bcl2-A1 and Bcl-xL proteins via the PI3K/NFκB pathway [84].
Other work has indicated that increased levels of Bcl-xL and XIAP correlate with FGF2-
dependent upregulation of PKCε [102]. FGF2 was also shown to protect SCLC cells from
etoposide-induced apoptosis through upregulation of Bcl-xL and Bcl-2 at the translational
level via the MEK pathway (Figure 3) [121]. On the other hand, the action of FGF1 or FGF2
was associated with inhibition of pro-apoptotic proteins, indicating a dual mode of action of
FGFs in inhibiting apoptosis [121,123,124]. FGF2 has been shown to prevent cisplatin-induced
activation of p53 by increasing MDM2 expression and block etoposide-triggered induction of
BAD (Figure 3) [123]. FGF2 can also lead to MDM2 stabilization and enhanced p53 degrada-
tion by increasing the transcription of Enigma protein, which directly interacts with MDM2,
forms a ternary complex with p53, and prevents MDM2 self-ubiquitination (Figure 3) [125]. It
has been noted that only intracellular and not extracellular FGF1 affects p53-dependent apop-
tosis by increasing MDM2 expression [124]. However, it is known that exogenous FGF1 and
FGF2 can translocate into the cytoplasm and cell nucleus independently of FGFRs activation,
which is correlated with increased cell survival under stress conditions [126,127].

Inside the cell, FGF1 and FGF2 interact with many intracellular proteins, including p53,
HSP90 (heat shock protein 90), CK2 (casein kinase 2), and others involved in the regulation
of cell signaling, cell cycle, and apoptosis, which may contribute to the acquisition of drug
resistance [128]. In PC12 cells, nuclear localization of FGF1 determines its anti-apoptotic
effect, whereas in ovarian cancer cells FGF1 affects mitochondrial localization of p53 and
reduces etoposide- and cisplatin-induced apoptosis (Figure 3) [56,129]. Of note, the nuclear
FGF2 was associated with doxorubicin resistance in triple negative breast cancers with high
level of DNA-dependent protein kinase, which is responsible for repairing double-stranded
breaks in DNA [130]. Knockdown of FGF2 restored sensitivity to doxorubicin treatment.
Furthermore, also nuclear localization of the FGF receptor has been associated with cancer
progression and invasiveness [131–133]. In NSCLC cells, the importance of EGFR, another
RTK, localized in the nucleus has been confirmed in the development of resistance to
cetuximab, suggesting that FGFRs nucleocytoplasmic transport may also contribute to the
development of drug resistance [134]. Treatment of patients with ER+/FGFR1-amplified
breast cancers with letrozole, an aromatase inhibitor, increased the expression of FGFR1
and FGFs, as well as the nuclear localization of FGFR1 and ERα [135]. Estrogen deprivation
led to an interaction between FGFR1 and ERα in the nucleus of cancer cells and subsequent
regulation of ER-dependent genes transcription. This FGFR1:ERα interplay was abolished
by the administration in the presence of TKIs (tyrosine kinase inhibitors) inhibitors or a
kinase-dead FGFR1 mutant [135]. Another study has shown that doxorubicin treatment
led to the formation of resistant cancer cell clones characterized by upregulated FGFR4
and Bcl-xL genes expression [136]. FGFR4 knockdown in these cells reduced ERK1/2
activity and Bcl-xL expression and resulted in re-sensitization of the cells to the drug [136].
Moreover, siRNA-mediated silencing of FGFR4 in CRC cells decreased the expression of
Bcl-2 and c-FLIP (FLICE-like inhibitory protein), an inhibitor of caspase 8, while reducing
STAT3 activity, which in turn induced caspase-dependent apoptosis (Figure 3) [52].
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Figure 3. Involvement of FGF/FGFRs in cellular processes during the development of drug resis-
tance. The active FGF/FGFR complex leads to avoidance of apoptosis through increased expression
of apoptosis inhibitors (Bcl-2, Bcl-xL), inhibition of its activators (BAD, BAX) or activation and stabi-
lization of MDM2, with consequent increased ubiquitination and degradation of p53. Additionally,
p53 degradation can be enhanced by the formation of a ternary complex of p53, MDM2, and Enigma
protein. Another mechanism of action is indirect inhibition of caspase 3/7 and caspase 8 by increasing
the expression of survivin or c–FLIP, respectively. It is also likely that increased nuclear localization of
FGFRs may be associated with enhanced survival of cancer cells and development of drug resistance.
FGF/FGFR (especially involving FGF2) also promotes angiogenesis through increased expression of
VEGF, HA, and c-MYC, and enhanced secretion of HGF. EMT, in turn, is a consequence of activation
of the MAPK signaling pathway leading to stabilization of Twist, switching of FGFR isoforms from
IIIb to IIIc, switching of cadherins (from E-cadherin to N-cadherin), upregulation of mesenchymal
markers (such as Twist and vimentin) and transcription factors (Slug and Snail), and activation of
downstream signaling proteins (such as Smad3 and mTOR). Furthermore, the FGFR4-R388 mutant
can interact with matrix metalloproteinases (e.g., MT1-MMP), proteins involved in tumor invasion.

7. Role of FGFs/FGFRs Axis during Cancer-Associated Angiogenesis

Angiogenesis, the formation of new blood vessels from existing vasculature, is an
essential process in mammalian tissues, e.g., during embryogenesis or wound healing [137].
However, this process is also involved in the development of many pathological conditions
including carcinogenesis, as it supplies tumors with nutrients, oxygen, and cytokines,
and promotes neovascularization, growth, invasion, and metastasis of tumors [138–140].
Several growth factors are involved in the regulation of angiogenesis, both physiological
and pathological, e.g., VEGF, PD-ECGF (platelet-derived endothelial cell growth factor),
FGF2, which act as major angiogenic agents by stimulating endothelial cells growth and
motility [137,141].
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The FGF/FGFR signaling pathway is often disrupted during malignant tumor pro-
gression and there are several examples of its impact on tumor-associated angiogene-
sis [138,140,142–145]. Huang and co-workers showed that in addition to the proliferative
effect on hepatoma cells, FGFR1 ectopic expression also upregulates VEGF expression,
which in turn enhances angiogenesis necessary for later stages of cancer progression
(Figure 3) [142]. Previous studies have shown that both VEGF and FGF2 act synergistically
in tumor-driving angiogenesis [146,147]. On the other hand, in VEGFR-positive tumors,
expression of FGF2 and FGF receptors was correlated with resistance to anti-VEGF ther-
apy [148]. Another group reported that co-treatment of a T lymphoma cell line with HA
and doxorubicin stimulated angiogenesis and this effect was FGF2-dependent rather than
VEGF-dependent [149]. This revealed that the mechanism of negative response to doxoru-
bicin is not only due to drug efflux, but also to angiogenesis [149]. Schönau and co-workers
evaluated the effect of 5-fluorouracil-resistant colon carcinoma cells on endothelial cells
growth [144]. The stimulatory effect of FGF2 released from cancer cells was higher in
macrovascular endothelial cells than in microvascular cells [144]. Interestingly, the level
of chemoresistance of cancer cells did not differentially affect growth of endothelial cells
in vitro [144]. An increase in FGF2 and FGFR3 expression was also found in HNSCC
cells resistant to bevacizumab, a monoclonal antibody targeting VEGF used as an anti-
angiogenic drug [53]. Simultaneous inhibition of VEGFR2 and FGFs blocked angiogenesis
and tumor growth in pancreatic cancer resistant to anti-VEGFR treatment [150]. Further-
more, elevated levels of FGFR1 and FGFR3 associated with tumor progression and drug
resistance, also correlated with expression of c-MYC, another protein responsible for tumor
angiogenesis (Figure 3) [151–153]. Inhibition of FGFR3 in a urothelial cancer cell line or
FGFR1 in a lung cancer cell line resulted in decreased c-MYC protein level [153,154].

8. Contribution of FGFs/FGFRs to EMT

EMT results in the transformation of epithelial cells into cells with a mesenchymal
phenotype [155]. In this process, epithelial cells lose cell polarity, cell–cell adhesion, and ac-
quire the ability to migrate. EMT is involved in embryonic development, but also plays an
important role in cancer pathogenesis, as cells become able to move to distant regions, lead-
ing to tumor invasion and metastasis [155,156]. Cells that have undergone EMT have lower
expression levels of epithelial markers, such as E-cadherin, a cell adhesion molecule (CAM),
while they exhibit higher expression of mesenchymal markers, including vimentin and
fibronectin, as a result of upregulation of transcription factors from the zinc finger family,
e.g., Twist, Slug, Snail, E12/E47 (E2A-encoded transcription factors), EF1/ZEB1 (elonga-
tion factor 1/zinc finger E-box-binding homeobox 1), and SIP1/ZEB2 (Smad interacting
protein 1/zinc finger E-box-binding homeobox 2) [157,158]. Furthermore, during EMT,
a decrease in E-cadherin level is accompanied by increased level of N-cadherin, another
CAM commonly expressed by mesenchymal cells, and this process is known as cadherin
switching [158,159]. Most EMT processes are regulated by extracellular matrix components,
cytokines, and growth factors, among which FGFs affect various functions by binding to
FGF receptors [160–162]. One of the main inducers of EMT in many types of cancer is FGF2,
which activates EMT through the MEK/ERK signaling pathway (Figure 3) [157]. In lung
cancer cell lines (H1581 and DMS114), FGF2-dependent activation of the FGFR1/ERKs
pathway led to upregulation of SOX2 (Sry-related HMG box 2), which in turn promoted
EMT and cell migration [162]. Moreover, it has been suggested that high expression of
both FGFR1 and SOX2 is associated with shorter survival of lung cancer patients [162].
However, SOX2 may be also regulated by the PI3K/AKT pathway, which is related with
drug resistance in lymphoma [163]. Importantly, activation of epithelial FGFR1/2 by
paracrine FGFs promotes tumor progression and induces EMT in vivo, which is associated
with a switch of FGFR isoforms from IIIb to IIIc (Figure 3) [164–168]. In metastatic cancer
cells, increased level of FGFR1c was triggered by transcription factor FOXC1, one of the
predictors of EMT (Figure 3) [169]. Transformation of FGFR2b to FGFR2c also inhibited
E-cadherin expression but increased vimentin expression (Figure 3) [168]. Furthermore, N-
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cadherin-induced tumor invasiveness was increased by FGF2, through stabilization of the
FGF2-FGFR1 complex and sustained activation of the MAPK pathway [158]. Interestingly,
the expression of FGFR2b in PC-3 cells caused the decrease in level of EMT markers [170].
EMT has been also found to contribute to the chemoresistance of cancer cells [171,172].

There are several examples demonstrating that upregulation of EMT markers can affect
the drug sensitivity of cancer cells, e.g., in prostate cancer patients to docetaxel treatment
or in NSCLC patients to cisplatin-based chemotherapy [81,157,170]. In lung and breast
cancer cell lines resistant to ErbB inhibitors, the increased expression of FGFR1 and/or
FGF2 accompanied EMT [81–83,173–175]. Another study showed that TGFβ (transform-
ing growth factor β) and FGF2 efficiently induced EMT in human lung adenocarcinoma
cell lines: in PC-9 cells via the Smad3 pathway, and in HCC-827 cells through Smad3,
MEK/ERK, and mTOR pathways resulting in reduced sensitivity to gefitinib in both cell
lines and to cisplatin only in HCC-827 cells (Figure 3) [81]. Inhibition of FGF2 or FGFR1
in a pemetrexed-resistant lung adenocarcinoma cell line resulted in downregulation of
vimentin and Slug level, reversed EMT cell morphology, and partially restored sensitivity
to pemetrexed [176]. Prifenidone and nintedanib reversed EMT-related chemoresistance
induced by TGFβ and FGF2 in human lung adenocarcinoma cells [157]. Breast cancer cells
resistant to lapatinib with a post-treatment mesenchymal phenotype showed increased
level of FGFR1IIIc and FGF2 [177]. Interestingly, FGFR1 expression was induced by the
EMT transcription factor Twist, while the following FGFR1-induced MAPK pathway stabi-
lized Twist, and thus maintained the drug resistance (Figure 3) [177]. In afatinib-resistant
lung cancer cell line, among EMT-related markers, only knockdown of Twist resulted in a
complete downregulation of FGFR1, with concomitant inhibition of AKT and ERKs phos-
phorylation, which re-sensitized cells to afatinib [174]. Furthermore, FGFR1 was shown to
contribute to acquired resistance to mesenchymal–epithelial transition by cabozantinib in
prostate cancer PC-3 cells and that this process is regulated by YAP/TBX5 [178].

Studies in patients with primary breast cancer have shown that there is a correlation be-
tween the presence of FGFR4 polymorphism (FGFR4-Gly388Arg) and tumor aggressiveness
and poor response to adjuvant CMF chemotherapy (cyclophosphamide/methotrexate/5-
fluorouracil) but not to endocrine therapy or NCT (neoadjuvant chemotherapy consisting
of doxorubicin, cyclophosphamide, docetaxel, and pemetrexed) [179–181]. In patients with
resected colon cancer (CC) or gastric cancer (GC), the R388 allele was associated with
worse overall survival than the G388 allele, especially when fluorouracil/leucovorin or
no adjuvant chemotherapy (in CC) or oxaliplatin (in GC) was used [182,183]. In contrast,
HNC (head and neck cancer) and ovarian cancer patients carrying the FGFR4-R388 mu-
tation exhibited increased sensitivity to cisplatin treatment, prolonged progression-free
and overall survival [184,185]. This diversity is not fully understood, but the R388 allele
correlates with increased cell motility and metastasis in many cancers [181–183,186,187].
In CC patients the presence of the R388 allele correlated with changes in EMT markers
(increased vimentin and Twist, decreased E-cadherin), with concomitant upregulation of
AKT, ERKs, and STAT3, compared with patients carrying the G388 allele (Figure 3) [182].
Similarly in NSCLC, FGFR4-R388 led to activation of MAPKs and STAT3, which in turn
induced expression of EMT-related genes, including Twist1, N-cadherin, Snail1, and vi-
mentin [187]. STAT3 inhibition in FGFR4-R388 GC cells contributed to decreased vimentin
and increased E-cadherin levels, suggesting that the FGFR4-R388/STAT3 pathway plays
a key role in EMT of these cells [183]. Interestingly, Whittle and co-workers showed
that degradation and internalization of the FGFR4-R388 is slower than that observed for
FGFR4-G388 [188]. One mechanism may be the formation of a complex of FGFR4-R388
variant with membrane type 1 matrix metalloproteinase (MT1-MMP) (Figure 3), which
controls many cellular functions through proteolytic and non-proteolytic interactions with
membrane-associated proteins [189]. MT1-MMP has been identified as a mediator of
chemoresistance and modulator of DNA damage response in breast cancer [190]. The
MT1-MMP/FGFR4-R388 interaction was found to increase MT1-MMP phosphorylation,
endosomal stabilization, and decrease lysosomal degradation of MT1-MMP, which in turn
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enhances FGFR4-R388 autophosphorylation [189]. Furthermore, increased FGF1-induced
MT1-MMP expression was observed in prostate cancer and was found to be dependent
on the STAT3 pathway [191]. In another study, the expression of MT1-MMP expression in
pancreatic cancer cells was induced by FGF10, which was also correlated with increased
cell migration and invasion [192]. In contrast, in MCF-7 cells, MT1-MMP exhibited the
opposite effect and downregulated FGF2-dependent signaling by attenuating FGF2/FGFR
binding [193].

9. Sensitization of Tumor Cells to Chemotherapy by Inhibition of FGF/FGFR
Complex Activity

Mutations and alterations on the FGF-FGFR axis have been reported in many, includ-
ing resistant, cancer types. Therefore, a new opportunity to develop personalized therapy
based on FGFR-targeting has emerged. In recent years, tremendous progress has been
made in modulating or correcting aberrant FGF/FGFR signaling [12,105,194,195]. Such a
strategy includes the application of receptor inhibitors, ligand traps, monoclonal antibodies,
microRNAs, and combination therapy (Figure 4) [12,105,194–196].
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Figure 4. Anti-cancer therapy strategies based on targeting of FGF/FGFR. Ligand traps are fusion
molecules that prevent FGF binding and subsequent receptor dimerization. Monoclonal antibodies
neutralize specific members of the FGF family members. Chemical receptor tyrosine kinase inhibitors
(TKi) are able to inhibit FGFR activation and phosphorylation. Finally, microRNA molecules are
capable of silencing both oncogenes and tumor suppressors. Targeting the FGF/FGFR axis with these
agents may hold promise for anti-cancer treatment, including overcoming chemoresistance.



Cancers 2021, 13, 5796 16 of 37

9.1. TK Inhibitors

Currently, some TKIs have been developed to inhibit FGFR, that can be divided
into two groups: (i) non-selective FGFR TKIs, targeting a wide range of tyrosine ki-
nases, including FGFR, and (ii) selective FGFR TKIs, targeting specifically the FGFR group
(Table 2) [194–197]. AZD4547, as an example of the second group, exhibits pro-apoptotic
and anti-proliferative activity in cell lines with deregulated FGFR expression, such as KG1a
(acute myeloid leukemia line), Sum52-PE (breast cancer cell line), and KMS11 (multiple
myeloma line) [198]. Simultaneous treatment with AZD4547 and PLX51107 (BET inhibitor)
was shown to counteract FGF2-induced resistance to PLX51107 and to suppress the growth
of uveal melanoma tumors [199]. Simultaneous treatment of NSCLC cells with AZD4547
and gefitinib prevented the formation of gefitinib-resistant clones [82]. Similarly, PD173074
was shown to re-sensitize NSCLC to gefitinib treatment [83] and esophageal squamous
cell carcinoma (ESCC) to lapatinib treatment [200]. It was also able to prevent prolif-
eration of SCLC lines (H-510 and H-69) in a dose-dependent manner and counteracted
FGF2-induced resistance to cisplatin [201]. In HNSCC cells resistant to bevacizumab or
pemetrexed-resistant lung adenocarcinoma cells, PD173074 showed potent inhibition of
tumor growth and re-sensitization of cancer cells to these drugs [53,176]. Additionally,
PD173074 also potentiated the effect of doxorubicin and paclitaxel in endometrial cancer
cells carrying a mutation in FGFR2 [202]. Treatment of ER+ breast cancer cells with FGFR
inhibitors AZD4547 and PD173074 sensitized the cells to the anti-estrogen tamoxifen sug-
gesting that targeting FGF10/FGFR2 may be a new approach to overcome resistance to
hormone-deprivation therapy [203].

Furthermore, PD173074 was able to downregulate P-gp (P-glycoprotein 1) and MRP7
(multidrug resistance protein 7), which in turn increased drug accumulation inside cancer
cells and enhanced the toxicity of drugs, such as paclitaxel or vincristine [204,205]. Two
other FGFR inhibitors, erdafitinib (JNJ-42756493) and ASP5878, can also re-sensitize cancer
cells overexpressing P-gp to anti-cancer drugs [153,206]. However, it is still unclear whether
the effect of erdafitinib is solely due to FGFR inhibition, as further analysis revealed an
interaction between the inhibitor and P-gp [206,207]. ASP5878 was confirmed to have a clin-
ical potential in the treatment of urothelial cancers expressing mutated FGFR3, including
gemcitabine- and doxorubicin (adriamycin)-resistant forms [153]. ASP5878 reduced c-MYC
protein level in both parental and gemcitabine-resistant urothelial cancer cell lines, suggest-
ing that c-MYC expression may be regulated by the FGFR signaling [153]. Recent studies
on lung cancer revealed that c-MYC is a key downstream effector of FGF/FGFR-dependent
signaling in response to oxidative stress, and that FGFR inhibition induced apoptosis
through c-MYC downregulation [152]. Interestingly, co-expression of FGFR1 and c-MYC
resulted in higher sensitivity to FGFR inhibitors [154]. Another interesting compound is
infigratinib (BGJ398), which is a selective pan-FGFR inhibitor and a potent anti-cancer
drug candidate [208–210]. Inhibition of FGFR by BGJ398 resulted in inactivation of AKT
and STAT3 and reduced viability of SKOV3ip1 ovarian carcinoma cells [208]. Treatment
with BGJ398 enhanced the cytotoxic effect of paclitaxel/carboplatin cytotoxic activity in
ovarian carcinoma cells [208]. A similar effect was observed for alofanib, an allosteric
FGFR2 inhibitor [211]. The administration of BGJ398 reduced cell viability and enhanced
apoptosis in GIST (gastrointestinal stromal tumor) T-1 cell line resistant to imatinib, but
not in parental cells [46]. In GIST cells resistant to doxorubicin, the administration of
BGJ398 resulted in a delay in DNA repair [212]. BGJ398 was also found to reduce cell
viability, induce apoptosis, and increase the cytotoxicity of 5-fluorouracil or oxaliplatin
in CRC cells [52]. Simultaneous treatment of EGFR-positive mesenchymal cancer with
BGJ398 and an EGFR inhibitor overcame EGFR inhibitor insensitivity by elimination of
EGFR mutant drug-tolerant cells, preventing EMT-associated resistance in both in vitro
and in vivo models [213]. Another FGFRs inhibitor, LY2874455, re-sensitizes BRAF-mutant
melanoma cells to vemurafenib [47]. A study in drug-resistant gastric cancer cell lines
revealed that the specific FGFR2 inhibitor, Ki23057, restored the sensitivity of these cells to
irinotecan, paclitaxel, and etoposide, but not to oxaliplatin or gemcitabine [214]. The effect



Cancers 2021, 13, 5796 17 of 37

of Ki23057 was accompanied by a decrease in ERCC1 (excision repair-cross complementing
gene 1) expression level, and an increase in p53 expression level [214].

9.2. Monoclonal Antibodies and Ligand Traps

Two classes of drugs associated with FGF/FGFR inhibition, monoclonal antibodies
(mAbs) and FGF-ligand traps, characterized by lower toxicity compared to chemical
inhibitors, represent an alternative and promising tool in anti-cancer treatment.

The first group, mAbs, are biologically active molecules that bind to a specific tar-
get, such as FGFs, FGFRs or even their isoforms, leading to its inactivation [197,215].
Recently, several mAbs directed towards the FGF/FGFR axis have been developed, includ-
ing burosumab (KRN23), bemarituzumab (FPA144), BAY1179420, MFGR1877S, GAL-F2,
R1MAb1 [12]. Bemarituzumab, an mAb targeting FGFR2b that binds specifically to the
IgG III region of the receptor, preventing ligand binding and downstream signaling, has
been reported to show anti-tumor activity in breast cancer and gastroesophageal adeno-
carcinoma [12,105]. Furthermore, the mAb MGFR1877S inhibiting FGFR3 dimerization
has been shown to have positive results in the treatment of multiple myeloma and solid
tumors [12,105]. Additionally, antibodies against FGFR ligands, including anti-FGF2 mAb
3F12E7, and antibodies targeting FGF8b or FGF19, are being investigated as therapeutic
approaches to inhibit tumor growth [12,215].

A second, rapidly developing approach uses ligand traps, fusion molecules that
prevent the ligand binding to the receptor. Current FGF-targeting drugs include FP-1039
(GSK3052230), SM27, NSC12, sFGFR2IIIc, sFGFR3, and peptide P3 [12,105]. For example,
FP-1039 is an FGF-ligand trap that consists of the extracellular domain of FGFR1 fused to
the Fc region of IgG1, capable of binding and neutralizing multiple FGFs such as FGF1,
FGF2, and FGF4 [12,197,215–217]. This ligand trap has been shown to be able to block FGF2-
dependent cell proliferation and inhibit the growth of several cancers in xenograft models,
including FGFR1-amplified lung cancer and FGF2-overexpressing mesothelioma [216].
In addition, FP-1039 reduces plasma level of FGF2 in cancer patients in whom standard
therapy has been ineffective [216]. Another example is NSC12, which in addition to being
a trap for multiple FGFs, can also modulate the formation of FGF/FGFR complex with
heparan sulphate proteoglycans, and has been linked to inhibition of lung cancer growth
and metastasis [12].

As mAbs and ligand traps are relatively new forms of anti-cancer drugs and their
clinical application is limited, there are no reports to date of their action in counteracting
drug resistance. However, suramin, a small-molecule compound that acts similarly to ligand
traps by preventing growth factors, including FGFs, from binding to receptors [29,218,219],
has been shown to significantly reverse FGF-induced resistance and enhance the anti-tumor
effect of doxorubicin in the human prostate PC3 cancer model, leading to complete inhibition
of tumor growth [218]. It should be mentioned here that another study in NSCLC patients
receiving paclitaxel or carboplatin did not confirm the positive effect of suramin (at non-toxic
doses) on tumor sensitization to treatment [220].

9.3. MicroRNAs

A new approach to anti-cancer therapy and overcoming drug resistance is the admin-
istration of microRNAs (miRNAs) [221]. In cancer progression and the development of
drug resistance, specific miRNAs, which regulate various cellular processes by silencing
the expression of genes, both oncogenes and tumor suppressors, may be down- or upreg-
ulated [221–223]. For example, miR-205, an FGF2- and VEGFA-targeting molecule that
negatively regulates their expression, is highly expressed in breast cancer sensitive to TAC
(taxol, doxorubicin, cyclophosphamide) chemotherapy, in contrast to drug-resistance cell
lines, in which miR-205 is downregulated [223]. In temozolomide-resistant glioma cells, up-
regulation of FGFR1 was found to cooperate with downregulation of miR-3116, a molecule
silencing the FGFR1 [57]. Re-introduction of miR-3116 resulted in the decrease in FGFR1
level, inhibited the PI3K/AKT pathway, and re-sensitized cancer cells to treatment [57].
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All abovementioned strategies strongly demonstrate that targeting the FGF/FGFR
axis by different classes of molecules may be a promising strategy for cancer treatment,
reducing cancer cell growth, and overcoming chemoresistance (Table 2).

Table 2. Anti-cancer strategies overcoming drug-resistance in FGFR-positive tumors.

Class of Drug Name Eliminating Resistance to Cancer Type References

Chemical inhibitors

AZD4547

Gefitinib NSCLC [82]

PLX51107 Melanoma [199]

Tamoxifen Breast cancer [203]

PD173074

Gefitinib NSCLC [83]

Lapatinib ESCC [200]

Cisplatin SCLC [201]

Bevacizumab HNSCC [53]

Pemetrexed Lung cancer [176]

Doxorubicin
Endometrial cancer [202]

Paclitaxel NSCLC [205]

Epidermoid carcinoma

[204]
Vincristine

Erdafitinib
(JNJ-42756493) Colchicine [206]

ASP5878
Gemcitabine

Urothelial cancer [153]
Doxorubicin

BGJ398 (Infigratinib)

Paclitaxel/carboplatin Ovarian cancer [208]

5-fluorouracil
Colorectal cancer [52]

Oxaliplatin

Imatinib
GIST

[46]

Doxorubicin [212]

Gefitinib NSCLC [213]

Alofanib Paclitaxel/carboplatin Ovarian cancer [211]

LY2874455 Vemurafenib Melanoma [47]

Ki23057

Irinotecan

Gastric cancer [214]Paclitaxel

Etoposide

Ligand trap Suramin Doxorubicin Prostate cancer [218]

miRNAs
miR-205 Paclitaxel/doxorubicin/

cyclophosphamide Breast cancer [223]

miR-3116 Temozolomide Glioma [57]

10. Limitations of FGFR Inhibition Therapy—FGFR Mutations and Molecular
Cross-Talks with Other Protein

Despite the proven anti-tumor activity of FGFRs inhibitors, the emergence of new
mutations must be taken into account, as well as the existence of molecular cross-talk
between the FGFs/FGFRs axis and other proteins, especially other RTK (Figure 5).



Cancers 2021, 13, 5796 19 of 37

Cancers 2021, 13, x FOR PEER REVIEW  19  of  36 
 

 

10. Limitations of FGFR Inhibition Therapy—FGFR Mutations and Molecular   

Cross‐Talks with Other Protein 

Despite the proven anti‐tumor activity of FGFRs  inhibitors, the emergence of new 

mutations must be taken into account, as well as the existence of molecular cross‐talk be‐

tween the FGFs/FGFRs axis and other proteins, especially other RTK (Figure 5). 

 

Figure 5. Mutations and molecular cross‐talks in the acquisition of resistance to FGFR  inhibitors. 

The use of TKIs in cancer cells expressing FGFRs leads to the acquisition of gatekeeper mutations in 

the FGFR kinase domain (FGFR1‐V561M/F, FGFR2‐V561I, FGFR3‐V555M, and FGFR4‐V550M/L), 

which in turn desensitize cells to the inhibitor used and may also induce cross‐resistance to other 

inhibitors. FGFR2‐ASCL5 fusion leads to the development of resistance to LY2874455, an FGFR in‐

hibitor that overcomes resistance caused by gatekeeper mutations. FGFR inhibition can also lead to 

the activation of other RTKs, including EGFR, PDGFR, and IGFR, which alternatively trigger down‐

stream cell signaling and render cells insensitive to TKIs. 

Clinical trials have shown that a significant fraction of patients with FGFR‐positive 

tumors do not respond to treatment with FGFRs inhibitors [224,225]. Mutations located in 

ATP‐binding sites of the kinase domain of FGFR have been shown to be a common cause 

of inhibitor resistance in FGFR‐dependent tumors, especially gatekeeper mutation result‐

ing in increased receptor activity [195,196,226–228]. Generated gatekeeper FGFR3‐V555M 

mutation in KMS‐11 myeloma cells with acquired resistance to AZ12908010 caused cross‐

resistance  to  two other FGFR  inhibitors, AZD4547 and PD173074  [227]. Byron and  co‐

workers identified 14 mutations in the FGFR2 kinase domain responsible for resistance to 

dovitinib, which with one exception also provided cross‐resistance to PD173074 but not 

to ponatinib [226]. Only the gatekeeper FGFR2‐V565I mutation confers resistance to both 

inhibitors. A similar mutation was observed for FGFR1 (FGFR1‐V561M) in lung cancer, 

which drives  resistance  to AZD4547  through  the  activation of STAT3  and EMT  [229]. 

However, a  third generation FGFR  inhibitor, GZD824, overcomes resistance caused by 

FGFR1‐V561M/F mutation [230]. Point mutations in the FGFR2 kinase domain were also 

found in FGFR2 fusion‐positive intrahepatic cholangiocarcinoma (ICC) [231,232]. FGFR2 

gene fusions with BICC1, AHCYL1, TACC3, MGEA5, and PPHLN1 result in chimeric pro‐

teins that can dimerize and activate independently of ligand binding but are still sensitive 

to FGFR inhibitors. 

Recently, clinical trials have also shown a positive effect in ICC patients after treat‐

ment with BGJ398 [231]. Unfortunately, in some patients the acquisition of secondary mu‐

tations has led to further tumor progression and drug resistance [231,233]. However, ad‐

ditional studies in ICC patients resistant to BGJ398 revealed that an irreversible FGFR in‐

hibitor, TAS‐120, eradicated drug resistance  [233]. Additionally,  in a myeloma cell  line 

resistant to AZ12908010 with a gatekeeper mutation in the FGFR3 gene, a secondary gate‐

keeper mutation was identified, resulting in the development of cross‐resistance to two 

other FGFR inhibitors, AZD4547 and PD173074 [227]. Gatekeeper mutations in the kinase 

domain (V550) and hinge‐1 (C552) of FGFR4 are acquired as a mechanism of resistance to 

Figure 5. Mutations and molecular cross-talks in the acquisition of resistance to FGFR inhibitors. The
use of TKIs in cancer cells expressing FGFRs leads to the acquisition of gatekeeper mutations in the
FGFR kinase domain (FGFR1-V561M/F, FGFR2-V561I, FGFR3-V555M, and FGFR4-V550M/L), which
in turn desensitize cells to the inhibitor used and may also induce cross-resistance to other inhibitors.
FGFR2-ASCL5 fusion leads to the development of resistance to LY2874455, an FGFR inhibitor that
overcomes resistance caused by gatekeeper mutations. FGFR inhibition can also lead to the activation
of other RTKs, including EGFR, PDGFR, and IGFR, which alternatively trigger downstream cell
signaling and render cells insensitive to TKIs.

Clinical trials have shown that a significant fraction of patients with FGFR-positive
tumors do not respond to treatment with FGFRs inhibitors [224,225]. Mutations located
in ATP-binding sites of the kinase domain of FGFR have been shown to be a common
cause of inhibitor resistance in FGFR-dependent tumors, especially gatekeeper mutation
resulting in increased receptor activity [195,196,226–228]. Generated gatekeeper FGFR3-
V555M mutation in KMS-11 myeloma cells with acquired resistance to AZ12908010 caused
cross-resistance to two other FGFR inhibitors, AZD4547 and PD173074 [227]. Byron and
co-workers identified 14 mutations in the FGFR2 kinase domain responsible for resistance
to dovitinib, which with one exception also provided cross-resistance to PD173074 but
not to ponatinib [226]. Only the gatekeeper FGFR2-V565I mutation confers resistance to
both inhibitors. A similar mutation was observed for FGFR1 (FGFR1-V561M) in lung
cancer, which drives resistance to AZD4547 through the activation of STAT3 and EMT [229].
However, a third generation FGFR inhibitor, GZD824, overcomes resistance caused by
FGFR1-V561M/F mutation [230]. Point mutations in the FGFR2 kinase domain were also
found in FGFR2 fusion-positive intrahepatic cholangiocarcinoma (ICC) [231,232]. FGFR2
gene fusions with BICC1, AHCYL1, TACC3, MGEA5, and PPHLN1 result in chimeric
proteins that can dimerize and activate independently of ligand binding but are still
sensitive to FGFR inhibitors.

Recently, clinical trials have also shown a positive effect in ICC patients after treatment
with BGJ398 [231]. Unfortunately, in some patients the acquisition of secondary mutations
has led to further tumor progression and drug resistance [231,233]. However, additional
studies in ICC patients resistant to BGJ398 revealed that an irreversible FGFR inhibitor,
TAS-120, eradicated drug resistance [233]. Additionally, in a myeloma cell line resistant
to AZ12908010 with a gatekeeper mutation in the FGFR3 gene, a secondary gatekeeper
mutation was identified, resulting in the development of cross-resistance to two other FGFR
inhibitors, AZD4547 and PD173074 [227]. Gatekeeper mutations in the kinase domain
(V550) and hinge-1 (C552) of FGFR4 are acquired as a mechanism of resistance to fisogantib,
a selective FGFR4 inhibitor, in HCC [41]. Interestingly, a gatekeeper-agnostic, LY2874455,
decreased HCC xenograft growth in the presence of these mutations, demonstrating
continued FGF19–FGFR4 pathway dependence [41]. Moreover, FGFR2-ACSL5 fusion,
newly identified in GC, led to acquired resistance to LY2874455, highlighting the need to
study FGFR2 amplification in terms of developing drug resistance [234].
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Another noteworthy aspect is the interaction between FGF/FGFR and other proteins,
which may serve cancer cells as an alternative to activate mutagenic cell signaling pathways,
including by passing the action of FGFR inhibitors. FGFRs have been identified as co-
partners for many cell membrane-associated proteins, including RTKs and G-protein-
coupled receptors (GPCRs) [235]. Adachi and co-workers identified a role for other receptor
tyrosine kinases such as EGFR, PDGFRα (platelet-derived growth factor receptor α), and
IGFR (insulin-like growth factor receptor) in the emergence of resistance to FGFR inhibitor
treatment in FGFR1-amplified lung cancer [236]. Combination therapy of BGJ398 with
lapatinib in the HCC95 cell line or with linsitinib (an IGFR inhibitor) in the DMS114
cell line was necessary for the downregulation of FRS2α to suppress reactivation of both
AKT and ERK and the subsequent induction of apoptotic proteins BIM and PUMA (p53
upregulated modulator of apoptosis) [236]. Interestingly, the acquisition of resistance
to BGJ398 in DMS114 cells and urothelial carcinoma cells (RT112) was mediated by the
AKT pathway [237]. Monotherapy of BGJ398 or imatinib, a PDGFR inhibitor, resulted in
phosphorylation of the second receptor and activation of the downstream MAPK pathway,
and only administration of both drugs induced complete inactivation of ERK, indicating an
interaction between these receptors, which was confirmed by pull-down [236]. Similarly,
in FGFR2-positive GC, resistance to AZD4547 was abolished by EGFR, HER3, or MET
inhibition, indicating that these other RTKs are responsible for cancer cell resistance to FGFR
inhibition [238]. Acquisition of resistance to infigratinib, a promising FGFR inhibitor used
to treat HCC, was associated with elevated HER2 and HER3 levels along with increased
enhancer of zeste homolog 2 (EZH2) expression [239]. In HER2-positive breast cancer
cells with EMT, resistance to HER2 inhibitor was mediated by increased expression and
direct interaction of FGFR1 and neuropilin-1 (NRP1) [175]. Silencing of NRP1 reduced
FGF2-dependent ERK activation and inhibited cancer cell growth [175]. Interestingly, NRP1
expression and subsequent drug resistance was mediated by two EMT-related transcription
factors, Twist1 and BRD4 [175]. A study by Wang and colleagues linked the activation of
HER2/3 to the development of resistance to FGFR inhibitors such as BGJ398 and ponatinib
in cell lines harboring FGFR3 amplification [240]. Moreover, FGFR3 was also found as
one of the fusion proteins that cause acquired resistance to EGFR inhibitors in lung cancer
patients [241].

Another study has shown that the expression of FGF2 by human melanoma cells me-
diated the promotion of tumor-associated B (TAB) cells to express IGF1 [34]. Co-culture of
melanoma cells with TAB cells, but not normal B cells, led to the development of resistance
to BRAF and MEK inhibitors as well as cisplatin and paclitaxel treatment. The expression
of IGF1 mediated upregulation of FGFR3 and STAT3 in both TAB and melanoma cells.
The silencing of IGF1 re-sensitized melanoma cells to BRAF/MEK inhibition, suggesting
that IGF1 plays a major role in developing drug resistance in that case. Interestingly, the
deactivation of FGFR3 was also able to overcome the resistance indicting the correlation
between IGF1 and FGFR3 in the chemoresistance in human melanoma cells. Another
notable mechanism of drug resistance related to the FGFR family is that overexpression
of FGFRL1 (fibroblast growth factor receptor-like 1) was found in patients with multi-
drug resistance SCLC [242]. Although FGFRL1 lacks the kinase domain, there is some
evidence indicating the role of FGFRL1 in the regulation of FGF signaling pathways and
cancer progression [242–244]. In SCLC cells, FGFRL1 was found to interact with ENO1
(alpha-enolase), a protein involved in activation of the PI3K/AKT pathway in tumors,
therefore FGFRL1 might modulate drug resistance in SCLC cells [242]. Additionally, it was
demonstrated that knockdown of androgen receptor mediated prostate tumor-inducing
response of paracrine FGF10, suggesting the role of tumor environment in the initiation of
carcinomas and underlying its importance as well as its implications in the development of
treatment strategies [245].
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11. Enhancement of Chemotherapy by FGFs/FGFRs Action

The protective properties of FGFs and their receptors have been widely described, nev-
ertheless, several lines of evidence point to their opposing effects. Ohashi and co-workers
found a correlation of FGFR2 lower expression with increased cancer cell proliferation
and poor prognosis in patients with gliomas [19]. In MCF-7 breast cancer cells, FGF2 not
only inhibited cell growth and proliferation but also potentiated the effects of anti-cancer
drugs by downregulation of BCL2 and upregulation of BAX level, thereby enhancing
apoptosis [246,247]. Coleman and co-workers suggested that FGF2-induced sensitization
to anti-cancer treatment is independent of increased proliferation, S-phase of cell cycle, or
p53 activity [248]. FGF2, but not FGF1, was shown to enhance cisplatin toxicity in MCF-7
breast cancer cells and A2780 ovarian cancer cells, but not in SKOV3 ovarian cancer cells or
a panel of pancreatic cancer cell lines. In this work, FGF2 did not sensitize cells to etoposide,
however, in the other study Wang and co-worker observed reduced colony formation and
increased apoptosis in MCF-7 cells induced by FGF2 upon treatment with etoposide or
5-fluorouracil [247,248]. Moreover, in the mouse myoblast cell line C2C12, FGF2 through
NFκB activity, but not the PI3K pathway, increased the expression of uridine phosphorylase
1, the enzyme that activates 5-fluorouracil, which was correlated with enhanced toxicity of
the drug [249].

In another study, the interaction of FGFR4 with the βKlotho (KLB) co-receptor, a
metabolic regulator that is frequently disrupted in hepatic cancers, was shown to inhibit cell
proliferation and induce caspase-3-dependent apoptosis in hepatomas by decreasing AKT
and mTOR activity [250]. Similarly, KLB expression was downregulated in prostate cancer
cells, whereas its overexpression was able to induce apoptosis, inhibit cell proliferation and
reverse androgen receptor-dependent and -independent EMT [251]. Furthermore, in breast
cancer patients receiving radiochemotherapy (5-fluorouracil, vinorelbine, radiotherapy),
FGFR1 expression correlated with good response to treatment, whereas FGFR1-negative
cancers showed resistance to this treatment [252]. Additionally, the reduced FGF14 level
was correlated with poor survival and oncogenic mutation status (e.g., KRAS, EGFR)
in lung adenocarcinoma (LUAC) patients [253]. Overexpression of FGF14 in NSCLC
LUAC cell line (A549) resulted in decreased proliferation, colony formation and migration,
and enhanced mesenchymal to epithelial transition, indicating that FGF14 reduces the
invasiveness of lung cancer cells in vitro while ablation of FGF14 in these cells reversed the
above changes, supporting its suppressive role in lung cancer progression. Furthermore,
RNA sequencing data suggested that genes affected by FGF14 were associated with the
extracellular matrix (upregulation of Ccbe1 and Adarb1, downregulation of Coll11a1 and
Muc16), and thus could play a role in proliferation and migration. Therefore, therapeutics
activating the tumor suppressive properties of FGF14 would be a promising strategy for
the treatment of LUAC patients.

12. Concluding Remarks

Due to multiple critical biological activities, the FGF/FGFR axis plays an important
role in cancer growth and progression. Chromosomal abnormalities often lead to over-
expression of FGFs and their receptors, formation of fusion proteins, and generation of
constitutively active kinase domains that can deregulate downstream signaling and further
promote uncontrolled proliferation, apoptosis avoidance, and metastasis. However, the
role of FGF/FGFR in carcinogenesis extends beyond cancer development and progression,
as increasing evidence suggests a close link between FGF/FGFR signaling and the failures
of various currently available anti-cancer therapies. To date, several distinct mechanisms
of FGF/FGFR-mediated anti-cancer drug resistance have been described, but the picture is
far from complete, highlighting the need for further studies in this field.

Although many drugs (such as paclitaxel, cisplatin, etoposide, or doxorubicin) show
promising anti-cancer activity, the acquisition of drug resistance complicates the treatment.
The reduced responses to therapeutic agents have been associated with the deregulation of
several signaling pathways, such as PI3K/AKT, MAPKs, STATs, and PLCγ/PKC, which can



Cancers 2021, 13, 5796 22 of 37

be activated by FGF/FGFR. Not only mutations in signaling proteins and aberrant signal
transduction, but also cross-talks with other pathways are major obstacles to overcome
acquired resistance. Abnormalities in signal transduction can lead to deregulation of
biological process such as apoptosis (through an imbalance between its inhibitors and
activators), angiogenesis (through an increase in VEGF expression), and EMT (through
disproportion in expression between epithelial and mesenchymal markers), making the
development of effective therapy even more challenging [105].

In addition to canonical FGFs, other members of the FGF family may be involved in
the acquisition of drug resistance by cancer cells. For example, FGF13, a representative of
intracrine FGFs, has been found to contribute to the insensitivity of cervical cancer cells
to cisplatin [38]. Recent studies have shown that also FGF12 has anti-apoptotic properties
in the osteosarcoma U2OS cell line overexpressing FGFR1 (U2OS-R1), but this has not yet
been linked to drug resistance [254].

The interference of multiple factors can result in an impaired cellular response to
anti-cancer treatment. For instance, tumor heterogeneity may lead to the development of
different drug sensitivities in individual cells as well as the evolution of more resistant
clones. Another aspect is the diverse microenvironment of cancer cells, where the presence
of various cytokines, growth factors, and extracellular matrix compounds, often derived
from CAFs, may cause additional changes in cellular metabolism.

Deregulated metabolism can drive further mutations (e.g., gatekeeper mutations in
kinase domain of FGFR) leading to cross-resistance and thus to the ineffectiveness of even
the most specialized strategies [195,196,226–228]. On the other hand, reports of positive
effects of FGF/FGFR on chemotherapy further emphasize the complexity of the whole
system [246–248].

Finally, interactions of FGF receptors with other proteins, including RTKs, and cross-
activation between proteins from independent signaling pathways might prevent effective
therapy. A good example is the interaction of FGF/FGFR complex with galectins, which
constitute a family of carbohydrate binding proteins that modulate many critical cellular
processes [255]. In recent years, galectins have emerged as major determinants of tumor
sensitivity or resistance to various anti-cancer therapies [256]. Importantly, the involvement
of galectins in the FGF/FGFR signaling was suggested several years ago [257]. We have
recently shown that extracellular galectin-1 activates FGFR1 and thereby stimulates cell
proliferation and apoptosis avoidance [258]. In addition, galectins may facilitate cross-talk
of FGFRs with themselves [259]. The role of galectins in FGFR-dependent chemoresistance
has not been demonstrated yet. Since FGFRs and galectins are involved in diverse mech-
anisms of chemoresistance, it is tempting to speculate that these two groups of proteins,
may form a complex network modulating tumor sensitivity to various anti-cancer drugs.

Targeted therapy based on modulation of FGF/FGFR activity using ligand traps,
monoclonal antibodies, RTK inhibitors, and microRNAs offers promising, effective thera-
peutic approaches. Several studies on FGF/FGFR inhibition have demonstrated its efficacy
in re-sensitizing cells to treatment. Another interesting therapeutic option to overcome
resistance to TK inhibitors is the disruption of lysosome architecture to release sequestrated
TK inhibitors [196]. Similarly, the concomitant use of inhibitors to abolish drug resistance
has been shown to be more effective in clinical trials [194,260]. Another promising strategy
is combination therapy with TKIs and signaling pathway inhibitors [194,237,261,262], as
well as simultaneous inhibition of FGFRs and induction of apoptosis [263–265]. Ligand
traps and mAbs targeting FGFR/FGF are relatively new approaches and are still relatively
few in clinical trials. However, they appear tohave great potential to overcome drug re-
sistance, particularly when combined with other therapies, including inhibitor treatment,
radiotherapy, or chemotherapy.

In recent years, antibody–drug conjugates (ADCs) have emerged as a precise and
powerful tool in cancer treatment [266]. These bioconjugates consist of an mAb that specifi-
cally binds a tumor surface antigen and a potent drug, such as monomethylauristatin E,
calicheamicin, maytansinoid, or camptothecin [267]. To date, 12 ADCs have been approved
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by Food and Drug Administration as therapeutics for oncology indications, and many
more are currently under investigation [267]. Nevertheless, they usually contain a single
cytotoxic drug, which can easily lead to the development of chemoresistance. Therefore,
dual-drug conjugates, with two distinct mechanisms of action, showing enhanced efficacy
and hindering the development of drug resistance, appear to be the future of anti-cancer
strategies [268,269].

Moreover, endocytosis and RTK signaling are closely connected, also in cancer cells [270].
It is plausible that endocytosis, including FGF/FGFR endocytosis, may influence resistance
to anti-cancer treatment by modulating the level of FGF/FGFR and/or the specificity and
duration of their signaling, and consequently the efficacy of targeted therapies [271–273].
An effective solution could be the generation of targeting molecules that, by exploiting
multiple endocytosis routes simultaneously, enable continuous delivery of drugs when
cancer cells begin to manipulate endocytosis pathways as a defense mechanism [274].

The multitude of alternative strategies being developed in parallel, and the rapid
progress of targeted therapies, bring hope in the field of personalized medicine in overcom-
ing drug resistance in various cancers, including FGFR-dependent ones.
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Abbreviations

ADC antibody–drug conjugate
BAD BCL-2 antagonist of cell death
BAX apoptosis regulator BAX
BCL-2 B-cell CLL/lymphoma 2
BCL-XL B-cell lymphoma-extra large
BIM BCL-2-like protein 11
BRAF serine/threonine-protein kinase B-raf
CAFs cancer-associated fibroblasts
CAM cell adhesion molecule
CC colon cancer
CK2 casein kinase 2
CMF cyclophosphamide/methotrexate/5-fluorouracil chemotherapy
CRC colorectal cancer
DAG diacyloglycerol
E12/E47 immunoglobulin enhancer-binding factor lub transcription factor E2-alpha
ECM extracellular matrix
EF1/ZEB1 elongation factor 1/zinc finger E-box-binding homeobox 1
EGF epithelial growth factor
EGFR epithelial growth factor receptor
EMT epithelial-to-mesenchymal transition
ENO1 alpha-enolase
ER estrogen receptor
ERCC1 excision repair-cross complementing gene 1
ERK extracellular signal-regulated kinase
ESCC esophageal squamous cell carcinoma
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FGF fibroblast growth factor
FGFR fibroblast growth factor receptor
FGFRL1 fibroblast growth factor receptor-like 1
ESCC esophageal squamous cell carcinoma
FLIP FLICE-like inhibitory protein
FOXO1 forkhead box protein O1
FRA1 Fos-related antigen 1
FRS2α fibroblast growth factor receptor substrate 2
GAB1 GRB2-associated binding protein 1
GC gastric cancer
GIST gastrointestinal stromal tumor
GPCR G-protein-coupled receptor
GRB2 growth factor receptor-bound 2
GSK3β glycogen synthase kinase 3β
HA hyaluronan
HER2/3 receptor tyrosine-protein kinase erbB-2/3
HES1 hairy and enhancer of split1
HCC hepatocellular carcinoma
HGF hepatocyte growth factor
HNC head and neck cancer
HNSCC head and neck squamous cell carcinoma
HO-1 hemeoxygenase 1
HSC hepatic stellate cells
HSP90 heat shock protein 90
IP3 inositol-1,4,5-triphosphate
ICC intrahepatic cholangiocarcinoma
IGF insulin-like growth factor
IGFR insulin-like growth factor receptor
IKK-β inhibitors of NFκB kinase-β
JAK Janus kinases
JNK c-Jun N-terminal kinase
KLB βKlotho
LUAC lung adenocarcinoma
mAb monoclonal antibody
MACOM MDS1 and EVI1 complex locus protein EVI1
MAPK mitogen-activated protein kinases
MCL1 myeloid cell leukemia sequence 1
MDM2 mouse double minute 2 homolog
MEK mitogen-activated protein kinase kinase
MMTV mouse mammary tumor virus
miRNA microRNA
MRP7 multidrug resistance protein 7
MT1-MMP membrane type 1 matrix metalloproteinase
mTOR mammalian target of rapamycin
mTORC1/2 mammalian target of rapamycin complex 1/2
NCT neoadjuvant chemotherapy
NFκB nuclear factor-κB
Notch neurogenic locus notch homolog protein
NRP1 neuropilin-1
Nrf2 nuclear factor E2-related factor 2
NSCLC non-small-cell lung cancer
P53 cellular tumor antigen p53
PARP poly (ADP-ribose) polymerase
PD-ECGF platelet-derived endothelial cell growth factor
PDGFRα platelet-derived growth factor receptor α
P-gp P-glycoprotein 1
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PI3K phosphoinositide 3-kinase
PIP2 phosphatidylinositol-4,5-bisphosphate
PKB protein kinase B
PKC protein kinase C
PLA2G4C phospholipase A2γ
PLCγ phospholipase Cγ
PPHLN1 periphilin-1
PRKACB cAMP-dependent protein kinase catalytic subunit beta
PUMA p53 upregulated modulator of apoptosis
RAP1 RAS-proximate-1 or Ras-related protein 1
RAS rat sarcoma virus protein
ROS reactive oxygen species
RTK receptor tyrosine kinase
S6K2 ribosomal p70 S6 kinase 2 (jest teżskrót S6K1)
SCLC small cell lung cancer
SIP1/ZEB2 smad interacting protein 1/zinc finger E-box-binding homeobox 2
SNT-1 suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target
SOS1 son of sevenless 1
SOX2 Sry-related HMG box 2
STAT signal transducers and activators of transcription
TAB tumor-associated B cells
TAC taxol, doxorubicin, cyclophosphamide chemotherapy
TGFβ transforming growth factor β
Tin-PP Tin-Protoporphyrin
TKI tyrosine kinase inhibitor
TSC1/2 tuberous sclerosis complex
TYK2 tyrosine kinase 2
UPP1 uridinephosphorylase 1
VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor receptor
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