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Abstract. Introduction: Intracranial aneurysms (IAs) are devastating cerebrovascular diseases with multi-
factorial etiology. The role of inflammation is indisputable, and interleukins are pivotal in supporting lo-
cal inflammatory pathways and endothelial dysfunction at the aneurysm wall. In the light of insufficient 
evidence reported in the literature, this meta-analysis was aimed to investigate the genetic linkage between 
IL-1β (rs16944) -511C>T polymorphisms and IAs susceptibility. Methods: A comprehensive online literature 
review was completed using the PubMed/Medline and Web of Science databases in accordance with the 
PRISMA guidelines. “Interleukin-1β,” “IL-1β,” “polymorphism,” “intracranial aneurysm,” and “subarachnoid 
hemorrhage” were the main keywords. Only human case-control studies, published from 2005 to 2021, writ-
ten in English or translated, were screened. In the statistical analysis, we applied the fixed- and random-effect 
models, according to the level of heterogeneity, to assess the odds ratios (ORs) and 95% confidence intervals 
(CIs). RevMan 5.0 software was used for the statistics. Results: Only 4 studies were eligible, with a total of 
2070 patients, 1050 of which were assigned to the study group. Combined results showed a statistically sig-
nificant association between the risk of IAs and -511CC (OR=0.79, 95% CI [0.65-0.95], p=0.01), and CT 
(OR=0.69, 95% CI [0.58-0.82], p<0.0001; OR=0.71, 95% CI [0.55-0.93], p=0.01) allele variations, both in 
the fixed- and random- models. No correlation was identified for the -511TT genotype (p=0.42; p=0.78). All 
the texts showed a low level of publication bias. Conclusion: The present meta-analysis proved a potential role 
of IL-1β -511CC/CT genotypes in the pathogenesis of IAs. Additional studies are imperative to explain the 
underlying neuroimmune mechanisms, also allowing tailoring the potential inflammatory-target therapies for 
IAs. (www.actabiomedica.it) 

Key words: Allele Variations; Gene Polymorphisms; IL-1β; Inflammatory Cytokines; Interleukin-1β; Intrac-
ranial Aneurysm; Subarachnoid Hemorrhage.

Acta Biomed 2021; Vol. 92, Supplement 4: e2021419	 DOI: 10.23750/abm.v92iS4.12668	 © Mattioli 1885

R e v i e w

Introduction

Proinflammatory cytokines, as interleukins (ILs), 
control the adaptive immune response and upregulate in-
flammatory reactions. Recent advances in immunogenet-

ics strongly support the liability of ILs in the pathogenesis 
of neuro-oncological and neurovascular diseases includ-
ing intracranial aneurysms (IAs) (1-10). IAs are focal 
vessels enlargements featured by histological changes and 
vascular remodeling of the arterial wall (11-13). Recruit-
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ing of macrophages, T lymphocytes, and platelets, infil-
tration of proteases and ILs through vessels wall, lead to 
endothelial dysfunction and arterial weakening (14-17). 
Thinning of vascular layers increases IAs growth, result-
ing in rupture and subarachnoid hemorrhage (SAH) (18-
22). The interleukin-1β (IL-1β), a pleiotropic cytokine, 
promotes lymphocytes activation, boosts the immune 
cascade, and regulates inflammatory pathways (23-25). 
The genetic cluster, which encodes for the IL-1 family, 
was mapped on chromosome 2. C>T polymorphisms of 
the IL-1β gene, at the -511promoter region (rs16944), 
affect the over-expression of IL-1β and, consequently, 
promote inflammatory pathways (25-27). 

The increased immune response and the high se-
rum concentration of IL-1β may influence the IAs’ 
natural history, worsening morbidity and mortality of 
SAH (28, 29).

Our meta-analysis intends to explore the genetic 
linkage between -511C>T polymorphic variations of 
IL-1β genotype and IAs susceptibility in different 
population samples. Future perspectives and novel im-
munotherapeutic targets are also discussed. 

Methods

Literature selection process 

The PubMed/Medline (https://pubmed.ncbi.nlm.
nih.gov) and Web of Science (https://www.webofsci-
ence.com) online databases were used for the literature 
review, which was reported according to the PRISMA 
(Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) recommendations. The keywords 
were “interleukin-1β,” “IL-1β,” “interleukin-1β poly-
morphism,” “IL-1β polymorphism,” “interleukin-1β 
genotype,” “IL-1β genotype”, combined with “intrac-
ranial aneurysm,” “brain aneurysm,” and “subarachnoid 
hemorrhage.” The inclusion criteria were set as follows: 
articles written in English or translated, reference pe-
riod ranging between 2005 and 2021, case-control hu-
man studies, genome-wide linkage analysis for IL-1β 
-511C>T (rs16944) polymorphisms, availability data 
on allele frequencies (CC/CT/TT). 

Studies involving animals, those lacking a control 
group, editorials, letters to editors, reviews, and case 

reports were excluded. Eligible articles were filtered 
based on the best match and relevance. The quality lev-
el of the articles was estimated through the Newcastle-
Ottawa quality assessment scale (NOS). A NOS score 
greater than 6 documented a high-quality study.

Statistical analysis 

The Mantel-Haenszel method for fixed effects 
was applied to estimate the pooled odds ratios (ORs) 
and 95% confidence intervals (CIs). Heterogeneity of 
the study sample was calculated by Cochrane’s Q test, 
whereas pq <0.05 and I2 >50% were considered signifi-
cant. In the case of high-level heterogeneity, the Der Si-
monian-Laird method was used for the random effects 
model. Z-test for overall effect was always completed 
and the ORs and CIs of each endpoint were built in as 
Forest plots. The p-value was set at < 0.05. Begg’s rank 
correlation and Egger’s regression asymmetry methods 
were used to assess the risks of publication bias. The rel-
ative funnel plots were reported. RevMan 5.0 software 
(Cochrane Informatics & Knowledge Management 
Department) was used for the meta-analysis. 

Results

Literature Volume 

The search retrieved a total of 58 articles. After 
removing duplicates, screening, and application of the 
exclusion criteria, 9 studies were found initially eligi-
ble. Then implementation of the inclusion criteria al-
lowed to select 4 studies. Figure 1 shows the PRISMA 
flow chart on the study (Figure 1). 

All studies tested allelic frequencies of the IL-1β 
gene -511C>T (rs16944) polymorphisms. 3 articles 
were prospective observational and the other retro-
spective. NOS score was 6 in 2 studies and 7 in the 
remaining. The studies were conducted in Italy, China, 
India, and Poland.

Demographics and Genetic Data

1050 IAs belonged to the study groups, whereas 
the control groups consisted of 1020 healthy subjects, 
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for a total of 2070 recruited patients. The average pa-
tients’ age was 55 and 56.8 years for the IAs groups 
and control groups, respectively. Males were 40.5% 
and 34.6% in the study and control groups, respec-
tively. Patients’ demographics and genetic records were 
summarized in Table 1. 

Quantitative Synthesis and Heterogeneity Analysis

Cochrane’s Q test revealed a high level of het-
erogeneity (I2=77%, I2=53%, I2=79%) for all the tests. 
Accordingly, both fixed- and random-effect model was 
applied in the entire dataset. Concerning the -511CC 
polymorphism, the results were as follows: OR=0.79, 
95% CI [0.65-0.95], p=0.01, and OR=0.79, 95% CI 
[0.53-1.18], p=0.25, for the fixed- and random-effect 
model, respectively (Figure 2). 

Both fixed and random model analysis on the 
-511CT polymorphism unveiled high statistical sig-
nificance: OR=0.69, 95% CI [0.58-0.82], p<0.0001; 
and OR=0.71, 95% CI [0.55-0.93], p=0.01 (Figure 3). 

Results of the -511TT genotype examination 
were as follows: OR=0.91, 95% CI [0.72-1.15], 
p=0.42; OR=1.08, 95% CI [0.62-1.88], p=0.78, for 
the fixed- and random-effect models, respectively 
(Figure 4).

Figure 1. PRISMA flow diagram on the meta-analysis selec-
tion process
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Figure 2. Forest plot for -511CC polymorphism

Figure 3. Forest plot for -511CT polymorphism
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Publication Bias

Low risks of bias were detected by Begg’s rank 
and Egger’s methods for the -511CC/CT/TT geno-
types evaluation (Figure 5).

Discussion

The present study was aimed to prove the asso-
ciations between IL-1β -511C>T genotype variations 
and the risk of IAs. 

-511C>T polymorphisms stimulate the aberrant 
production of IL-1β and the systemic increment of im-
mune and inflammatory processes (25-27). The abnor-
mal expression of IL-1β was demonstrated to interfere 
with the pathogenesis and prognosis of several neuro-
logical disorders, as multiple sclerosis, Parkinson’s and 
Alzheimer’s disease, and high-grade brain tumors (27, 
30-41). The rise of IL-1β in serum concentration and 
cerebrospinal fluid of SAH-patients explains its role in 
the genesis and rupture of IAs (42, 43). Furthermore, 
the local interleukin increase triggers the endothelial 
dysfunction at the aneurysm wall by upregulating the 

Figure 4. Forest plot for -511TT polymorphism

Figure 5. Funnel plot for -511 CC/CT/TT polymorphisms

(A) -511CC, (B) -511CT, and (C) -511TT polymorphisms
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synthesis of proteases, leukocytes’ adhesion molecules, 
and nitric oxide (NO) (17). 

Data about the potential causative role of IL-1β 
genotypes in the formation and progression of IAs are 
contradictory and scant, accounting only for 4 case-
control studies. In 2006, Slowik and colleagues reported 
a case-control study on 231 SAH patients. They geno-
typed the IL-1β polymorphisms finding a link between 
the -511TT allele variation and the risk of IAs (44). 
In 2010, a prospective study involving 215 consecutive 
patients affected by IAs was performed on the Italian 
population, whose results did not support any genetic 
association between IL-1β and aneurysmal SAH (45). 
Sathyan et al. conducted genetic tests for cytokine genes 
in the population of south India concerning the IL-1β 
rs16944 polymorphisms, confirming no genetic liability 
(46). Even a more recent study by Xu and colleagues, 
in 2021, failed to identify genetic associations between 
aneurysms and IL-1β in univariate and multivariate lo-
gistic regression analyses (47). 

Contrary to what was reported by every single 
study, our meta-analysis highlighted a strong associa-
tion between -511C>T polymorphisms and brain an-
eurysms. Despite the high level of heterogenicity, both 
fixed- and random-effects models proved significant 
genetic relationships between the -511CC (p=0.01) and 
511CT (p<0.0001; p=0.01) polymorphisms. The pre-
sent data can be interpreted as a starting point for future 
researches aimed to identify genetic aspects involved in 
the natural history of IAs, concurrently providing valu-
able insights for the management of SAH (19, 48).  

Future Perspectives: Anti-Inflammatory Target Therapy

The overactivation of the inflammatory cascade 
is responsible for the IAs progression and the post-
SAH complications also, including cerebral ischemia, 
cortical spreading depression, hydrocephalus, and va-
sospasm (28, 49-55).

In-depth knowledge of molecular pathways, un-
derlying the inflammation-based aneurysmal devel-
opment, is of dramatic importance to identify novel 
therapeutic targets (56). Blood products, interleukins, 
chemokines, and tumor necrosis factors bind respec-
tive ligands, expressed on endothelial cells, and upreg-
ulate leukocytes activation (57-59).

In this rationale, one among the earlier therapeu-
tic approach was aimed at inhibiting the activation of 
lymphocytes and suppressing the immune response 
(60).

Since 1998, the ISUIA study (International Study 
of Unruptured Intracranial Aneurysms) investigated 
the role of acetylsalicylic acid (ASA) in preventing IAs 
rupture (61-63). ASA acts as an antiplatelet and anti-
inflammatory agent. It blocks cyclooxygenase 2, in-
hibits the recruitment of macrophages, suppresses the 
metalloproteinases, and increases endothelium protec-
tion by NO (61, 64-68). Despite encouraging prem-
ises, the ASA was not finally approved as prophylactic 
for unruptured IAs. Statins have a pleiotropic effect 
in reducing the local immune response and increasing 
NO production (69-71). A combined treatment, ASA 
plus statins, has been tested on human and animal 
models and was potentially effective to reduce the risk 
of aneurysm rupture (72-74).

Lymphocytes’ activity can also be modulated 
through the T-helper regulatory cells. Boosting the T-
reg expression is a potentially valid approach in reduc-
ing inflammation and preserving endothelial integrity 
(75-79). M2 macrophages are involved in the tissue re-
pairing processes and collagen production, counterbal-
ancing the proinflammatory reaction of the microglia. 
Further advanced strategies were designed to promote 
the polarization of the microglial M2 and to heighten 
their neuroprotective effect (80-82).

Stem cell-based approaches have a rationale for 
IAs similarly to what known in neuro-oncology and 
regenerative medicine. In fact, mesenchymal stem 
cells may be theoretically administered to modulate 
the pro-inflammatory microenvironment and prevent 
the aneurysm rupture (83-88). Furthermore, emerging 
therapeutic frontiers are based on the neuro-immune 
communication strategies through the vagus nerve 
stimulation or tailoring of NO and acetylcholine re-
ceptors, to suppress the inflammatory microenviron-
ment post-SAH (89, 90).

Limitations of the Study

The main limitations of this meta-analysis are 
the unavoidable selection bias, the limited number 
of patients involved, and the high population hetero-
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geneity. Moreover, the acquired risk factors were not 
considered. 

Conclusion

Genetic polymorphisms of proinflammatory cy-
tokines increase the production of ILs, ultimately re-
sulting in the upregulation of inflammatory processes 
at the IAs wall. 

As opposed to what was reported by previous 
case-control studies, the present meta-analysis showed 
a direct association between the IL-1β -511CC/CT 
allele variations and the occurrence of IAs. 

Further ethnicity-related data are necessary to 
clarify the genetic linkage between IL-1β and SAH, 
concurrently providing future directions for clinical re-
search and novel therapeutic strategies.
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