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Abstract Strong recent clinical evidence links the presence of prominent oscillations of ventricular repolarization in the low-
frequency range (0.04–0.15 Hz) to the incidence of ventricular arrhythmia and sudden death in post-MI patients
and patients with ischaemic and non-ischaemic cardiomyopathy. It has been proposed that these oscillations reflect
oscillations of ventricular action potential duration at the sympathetic nerve frequency. Here we review emerging
evidence to support that contention and provide insight into possible underlying mechanisms for this association.
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Introduction

Oscillations of ventricular repolarization measured from the electro-
cardiogram (ECG) T-wave vector have recently been shown to be
one of the strongest predictors of arrhythmia and sudden death in
cardiac patients in a large prospective multicentre study. The results
provide clear evidence that a fluctuating pattern of ventricular repo-
larization at a frequency <0.1 Hz, when enhanced, is highly predictive
of ventricular arrhythmia and sudden cardiac death in cardiac
patients.1 This trial builds on previous work in which the ECG T-
wave vector angle was first shown to exhibit oscillations in the low-
frequency (LF) spectral range (<0.1 Hz, generally one cycle in a little
over 10 s). These oscillations referred to as periodic repolarization
dynamics (PRD) were independent of respiration and heart rate

variability and were considered to represent oscillations of ventricu-
lar repolarization.2 Periodic repolarization dynamics was shown to
be strongly predictive of total mortality and cardiac mortality in post-
MI patients2 and of arrhythmia risk in a retrospective analysis of data
from the MADIT-2 study.3 A subsequent large multicentre prospec-
tive trial involving 44 centres in 15 EU countries conducted between
2014 and 2019 showed that PRD strongly predicted shocks in im-
plantable cardioverter-defibrillator (ICD) patients and predicted
mortality in conservatively treated patients.4

Despite the obvious importance of these findings, the link between
oscillation of the ECG T-wave vector and ventricular arrhythmia is at
present unclear. Understanding the electrophysiological basis for this
association is important in order to refine the PRD and facilitate its
use as a potential clinical tool for risk stratification. Furthermore, the
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link between oscillatory behaviour of repolarization and ventricular
arrhythmia may provide valuable insight into arrhythmia mechanisms.
In this regard, several key questions arise. What does the ECG T-
wave vector angle represent? It has been proposed that these oscilla-
tions of T-wave dynamics represent the effect of phasic changes in
sympathetic activation on ventricular repolarization possibly associ-
ated with changes in action potential duration (APD) related to
different layers of the myocardium. But does APD exhibit
oscillations? If so what drives the oscillatory behaviour? What are the
electrophysiological mechanisms linking APD oscillation and
ventricular arrhythmia? Do LF oscillations of ventricular repolariza-
tion interact with proarrhythmic mechanisms such as beat-to-beat
variability of repolarization and T-wave alternans? Here we review
emerging evidence for a mechanistic basis to help answer these
questions.

The electrocardiogram T-wave
vector

The ECG T-wave vector reflects the spatiotemporal orientation of
the repolarization wavefront with respect to the body surface.
Oscillations of the T-wave vector referred to as PRD occur in the LF
range (<0.1 Hz, Figure 1). In Figure 2, PRD recordings are shown from
a post-MI patient who survived a 5-year period (left) and a patient
who died 8 months after an MI (right). Typical PRD oscillations are
seen which are of much greater amplitude in the patient who died
compared to the survivor. It was proposed that these T-wave dynam-
ics represent oscillations of repolarization which in turn reflect oscil-
lations of ventricular APD.2,4

Ventricular action potential
duration may exhibit low-
frequency oscillations

Oscillatory behaviour is a ubiquitous property throughout many bio-
logical systems. However, it is only relatively recently that ventricular
APD has been shown to exhibit oscillatory behaviour.5,6 This was
first observed in patients undergoing routine electrophysiological
procedures for supraventricular arrhythmias using left and right ven-
tricular endocardial catheter electrodes. Activation recovery inter-
vals (ARIs) derived from unipolar electrograms as a conventional
surrogate for APD7–9 showed oscillations at the LF spectral range in
the region 0.04–0.15 Hz5,6 (Figure 3). Oscillations typically occurred
over a fairly narrow range within the LF spectrum (Figure 4). Low-
frequency oscillations were subsequently observed in a number of
other studies including recordings from the left and right ventricular
endocardium,10 studies recording ARIs from the left ventricular epi-
cardium in ambulatory patients with an implanted cardioverter-defi-
brillator1,11,12 and from monophasic action potential recordings in an
established animal model.13

Low-frequency oscillations of
ventricular action potential
duration enhanced by
sympathetic provocation

The question arises as to what drives these rhythmic fluctuations of
APD. It was suggested that LF oscillations of the ECG T-wave vector
could be related to the characteristic oscillations of sympathetic
nerve activity at this frequency.14 This proposal was supported by
clinical studies showing that the ECG T-wave vector oscillation was
enhanced during increased sympathetic activity and reduced follow-
ing beta-adrenergic blockade.2 Recordings of ventricular APD (mea-
sured as ARIs) in patients showed that LF oscillations of APD were
also increased following sympathetic provocation1 and decreased fol-
lowing beta-adrenergic blockade.10 In the study by Porter et al. sym-
pathetic provocation was induced by the Valsalva manoeuvre during
steady-state pacing in patients with an ICD. Recordings of left ventric-
ular epicardial APD (ARI) showed an increase in LF power.1 In an-
other study in patients undergoing routine electrophysiological
procedures for supraventricular arrhythmia, unipolar electrograms
were obtained from 10 right and 10 left ventricular endocardial sites
during steady-state pacing. Acute beta-adrenergic blockade reduced
LF oscillation of ARIs.10 Collectively, these studies support the con-
tention that LF oscillations of the ECG T-wave vector reflect oscilla-
tions of ventricular APD and that the enhancement of the T-wave
vector LF oscillations in response to enhanced sympathetic activity
reflects the effect of phasic increases in sympathetic activity on ven-
tricular APD.

Electrophysiological mechanisms
underlying low-frequency
oscillations of ventricular
action potential duration

What are the cellular mechanisms whereby phasic sympathetic acti-
vation generates an LF oscillatory pattern of APD? Beta-adrenergic
stimulation initiates a signalling cascade in cardiac myocytes through
G protein activation of adenyl cyclase which enhances cyclic AMP
production and activation of protein kinase A. Protein kinase A phos-
phorylates multiple targets including regulating the L-type calcium
current (ICaL) and the slowly activating delayed rectifier current
(IKs).

15 Most studies examining the effect of beta-adrenergic stimula-
tion on ventricular APD have reported a shortening.16 However,
these observations have traditionally been made under steady state
or near steady-state conditions. Studies in myocytes and in silico
modelling have recently demonstrated a biphasic response of ventric-
ular APD in the immediate few beats following abrupt beta-
adrenergic stimulation.17,18 The application of Isoprenaline transiently
prolonged APD for a few beats and then subsequently progressively
shortened APD. This biphasic response was the result of a mismatch
between the fast phosphorylation/dephosphorylation time constants
of the L-type calcium current (ICaL) and the slower time constants of
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slow component of the delayed rectifier current (IKs). The fast time
constant of inward ICaL current results in initial APD lengthening.
After a few beats, outward IKs catches up, counterbalances ICaL, and
induces APD shortening17,18 (Figure 5). Pueyo et al.19 used computa-
tional modelling to investigate the cellular mechanisms underlying LF
oscillations of APD in response to phasic beta-adrenergic stimulation
in the LF range. They found that ICaL/IKs mismatch following beta-
adrenergic stimulation as described above could play a major role.
For their computations, they simulated an oscillatory pattern of beta-
adrenergic stimulation by consecutive 10 s on/off sequences of iso-
prenaline. A biphasic APD response was observed for each isoprena-
line application, with initial transient APD prolongation accompanied
by dominant ICaL followed by APD shortening accompanied by domi-
nant IKs.

19 Similarly, isoprenaline washout led to transient APD short-
ening followed by APD prolongation (Figure 6A–C).

A contributory role of mechano-
electric feedback to the genera-
tion of low-frequency oscillations
of ventricular action potential
duration

Beta-adrenergic stimulation increases cardiac contractile function by
excitation contraction coupling15 with an increase in the force of con-
traction and muscle fibre excursion. These alterations in stress/strain
patterns exert a feedback effect on the cardiac electrophysiology by
a process known as mechano-electric feedback (MEF).20–22

Mechano-electric feedback is a complex process involving stretch-
activated channels and calcium cycling mechanisms. Experimental
work has shown that sympathetic provocation amplifies the effect of

Figure 1 Recording of ECG T-wave vector measures of ventricular repolarization (PRD). Upper panel: ECGs are recorded using the X, Y, Z con-
figuration. (Middle) T waves are converted into polar vector angles. Two successive T-wave vectors are shown projected onto virtual spheres. The
angle between successive vectors is taken as a measure of repolarization stability. Lower panel: Plot of vector angle over time showing pronounced
regular peaks with a frequency of about 0.1 Hz, i.e. 1 per 10 s. From Rizas et al.2 with permission.
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alterations in ventricular loading on the electrophysiology.23 Studies
in patients during sympathetic provocation showed an increase in left
ventricular contractility, measured as dp/dtmax, the first derivative of
systolic pressure,24 and showed a correlation between the increase
in LF power of APD and the LF power of dp/dt max. Pueyo and col-
leagues incorporated MEF in their modelling of mechanisms underly-
ing LF APD oscillations, simulated as phasic LF changes in sarcomere
length. Mechano-electric feedback exerted a synergistic effect with
the beta-adrenergic-induced ICaL/IKs mismatch mechanism described
above in the generation of LF oscillations of APD following enhanced
sympathetic activity19 (Figure 6D).

Thus the foregoing provides a possible framework whereby phasic
LF sympathetic stimulation may induce an oscillatory pattern of ven-
tricular APD at the same frequency through cellular mechanisms
which include a mismatch between the time constants of the L-type
calcium current (ICaL) and the slow component of the delayed recti-
fier potassium current (IKs) together with MEF.

Oscillations of ventricular action
potential duration and
arrhythmogenesis: importance
of disease conditions

The autonomic nervous system, particularly enhanced sympathetic
activity, has long been known to play an important role in arrhythmo-
genesis.25,26 The majority of studies investigating mechanisms have
mainly Focused on steady-state conditions and until recently rela-
tively little attention had been given to transient or oscillatory dynam-
ics. As described above Liu et al.17 showed in genetically engineered
rabbit cardiac myocytes that the mismatch between the faster phos-
phorylation/dephosphorylation kinetics of ICaL and the slower IKs ki-
netics following isoprenaline could result in a window after about 5–

10 beats when ICaL could be reactivated and generate EADs and trig-
gered activity. Pueyo et al simulated consecutive 10 or 20 s cycles of
beta-adrenergic stimulation in the presence of disease conditions by
incorporating calcium overload and reduced repolarization reserve,
modelled as reduced rapid delayed rectifier potassium current (IKr)
and reduced slow component of the delayed rectifier potassium cur-
rent (IKs). They found that the LF power of APD oscillations was sub-
stantially increased and early afterdepolarizations and runs of
triggered activity were observed19 (Figure 7). In an established A-V
block dog model, ventricular APD was measured using monophasic
action potentials.13 Low-frequency oscillations were present under
control conditions in sinus rhythm and the LF power increased fol-
lowing acute A-V block, and increased further in chronic A-V block
conditions (2 weeks later) attributed to the effect of ventricular
remodelling. Inducibility of Torsades de Pointes with dofetilide (IKr

blocker) showed that LF power of APD was larger in inducible
chronic A-V block dogs.13 Thus both modelling and experimental
work provide a possible mechanistic basis for a role of oscillatory re-
polarization dynamics in generating afterdepolarization and highlight
the importance of the presence of disease/remodelling In facilitating
arrhythmogenesis.

Interaction between low-
frequency oscillation of ventricu-
lar action potential duration and
proarrhythmic beat-to-beat vari-
ability of repolarization

Beat-to-beat variability of ventricular repolarization (BVR) has been
shown to be proarrhythmic in a wide range of experimental models
and humans particularly when enhanced in response to beta-

Figure 2 Low-frequency oscillations of the ECG T-wave vector and ventricular APD. Low-frequency ECG T-wave oscillations in a post-MI survi-
vor (left) and a non-survivor (right) showing higher amplitude oscillations in the non-survivor. From Rizas et al.2 with permission.
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adrenergic stimulation.12,27–30 In a recent study in patients with an
ICD,11 beat-to-beat variability of left ventricular epicardial APD (mea-
sured as ARI during RV pacing) was shown to increase following sym-
pathetic provocation (Valsalva). This effect was almost entirely
eliminated by a beta-adrenergic blocking agent. An interactive effect
has been demonstrated between LF oscillation of APD and BVR.11

The mechanism for this interaction at the cellular level was investi-
gated using computer simulation. The major ionic contributors to
concomitant variations in LF oscillation of APD and BVR were the
magnitudes of IKr, ICaL, and the inward rectifier potassium current
(IK1).

31 The same three ionic currents were found to explain the de-
velopment of proarrhthmic events in the form of afterdepolarizations
and runs of spontaneous beats in response to enhanced sympathetic
activity.31

Theoretical considerations

In the foregoing, we have reviewed evidence supporting the conten-
tion that LF oscillations of ventricular repolarization are related to
the effect of rhythmic sympathetic nerve activity on APD. However,
the PRD is an electrocardiographic phenomenon and could also be
influenced by structural changes and functional properties of the
myocardium. For example, it has been suggested that the different in-
trinsic properties of myocardial cells across the ventricular wall ob-
served in single cells may play a role.2 However, in the whole heart
where cells are electrically and mechanically coupled differences in
APD between cells may be markedly attenuated by electrotonic in-
teraction.32,33 In diseased hearts, the presence of structural changes
such as scar and fibrosis can impact on repolarization. Therefore, in

Figure 3 Recording of activation-recovery intervals (APD). (A) Upper panel: Unipolar electrogram recorded from the LV lead of an ICD device in
a patient. Dots represent dv/dt min of the QRS and dv/dt max of the T wave. The interval between them defines the ARI widely used as a surrogate
for APD. Lower panel: Beat-by-beat plot of ARI showing oscillatory pattern at a frequency of about 15–20 s, 0.05 Hz within the LF range. (B)
Activation recovery interval provides an established measure of APD.
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these hearts, phasic sympathetically mediated changes in APD might
be expected to induce phasic increases in dispersion of repolarization
and contribute to the PRD.

Clinical implications

Low-frequency oscillatory behaviour of ventricular repolarization
may provide a novel approach to both risk stratification and

mechanisms of arrhythmogenesis. There is urgent need to improve
risk stratification for the use of ICD devices for the prevention of ven-
tricular arrhythmia and sudden cardiac death. Current guidelines
from the American Heart Association, American College of
Cardiology, and the European Cardiac Society recommend prophy-
llactic ICD implantation in patients with ischaemic and non-ischaemic
cardiomyopathy with ejection fraction below 35%.34,35 Although ICD
implantation has proved to be highly effective, less than 1 in 10 of the
implanted devices are actually needed. Hence a large number of

Figure 4 Beat-to-beat plot of left ventricular ARIs as a surrogate for APD showing oscillations in the low-frequency range at �0.05 Hz (upper
trace) and 0.1 Hz (lower trace). Corresponding power spectral densities (PSD) are shown to the right of each trace.

Figure 5 Left panel: Illustration of the timing of two currents thought to play a key role in generation oscillations of the ventricular action potential
in humans. The inward L-type calcium current (ICaL) occurs early during phases 0, 1, and 2 and the outward potassium current (IKs) occurs later during
phases 2 and 3. Right panel: The overall effect of ICaL is APD prolongation and the effect of IKs is APD shortening.
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patients are unnecessarily exposed to side effects such as infection
and inappropriate shocks, and needlessly contribute to the escalating
cost estimated at in excess of 2 billion euros per annum in Europe
alone. In ICD patients, PRD <7.5 deg was associated with only a 31%
reduction in mortality by the device compared to a 75% reduction in
patients with PRD >7.5 deg. Numbers need to treat to prevent one
death were reduced from 18.3 in patients with PRD <7.5 deg

compared to 3.1 in patients with PRD >7.5 deg. Periodic repolariza-
tion dynamics is a dynamic measure operating over a time frame of
seconds in contrast to a number of other risk markers which mea-
sure static or near static properties.36 Several dynamic tests have
proven value as risk predictors of sudden cardiac death such as baro-
receptor sensitivity,37 heart rate turbulence,38 deceleration capac-
ity,39 microvolt T-wave alternans,40 and tests of RR interval

Figure 6 (A) Time course of normalized phosphorylation levels for the slow delayed rectifier potassium IKs current (fIKs, blue) and L-type ICaL cur-
rent following constant beta-adrenergic stimulation. (B) Normalized peak current values for IKs,(blue) and ICaL current (red) following prolonged
beta-adrenergic stimulation. (C) Systolic levels of free cytosolic calcium (Cai, blue) and calcium bound to troponin (Ca Trop, red) following prolonged
phasic and mechanical stretch. (D) Current through all stretch-activated channels (ISAC, blue) and through Kþ-selective stretch-activated channels
(ISACK, red) following prolonged mechanical stretch.

Figure 7 Simulated ventricular action potentials during beta-adrenergic stimulation (BAS). (A) Healthy myocardium during constant BAS, (B)
Healthy myocardium during phasic BAS and stretch, (C) Myocardium with diseased conditions (simulated by addition of reduced repolarization re-
serve and calcium overload) during constant BAS, (D) Diseased conditions during phasic BAS and stretch. In C early afterdepolarizations are seen but
no arrhythmia occurred. In D early afterdepolarizations and triggered activity are evident (see text).
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dynamicity.41 The mechanistic link between each of these risk predic-
tors and arrhythmia is highly complex but a main focus centres round
separating the balance between sympathetic and parasympathetic ac-
tivity, whereas PRD may relate more to the electrophysiological time
constants that govern the repolarization process. The potential value
of incorporating the dimension of time into risk stratification proto-
cols has been suggested particularly in regard to tests incorporating
autonomic function.36,42 Future work might focus of elucidating the
physiology and electrophysiology of these dynamic markers in combi-
nation. This approach may be beneficial not only for risk stratification
strategies but also for the development of anti-arrhythmic drug ther-
apy and device therapy.

Conclusions

The powerful role of LF oscillatory dynamics of ventricular repolari-
zation in the prediction of ventricular arrhythmia and sudden cardiac
death is now firmly established.2–4 It was proposed that these oscilla-
tions reflect oscillations of ventricular APD at the sympathetic nerve
frequency. There is now a substantial body of evidence to support
this contention and to provide a framework for underlying mecha-
nisms. Specifically, the demonstration of the existence of oscillatory
behaviour of ventricular APD in humans; its amplification by sympa-
thetic activity and reduction by beta-adrenergic blockade similar to
LF T-wave vector oscillations; the demonstration of possible cellular
mechanisms including mismatch of the phosphorylation kinetics of
ICa and IKs in response to beta-adrenergic stimulation together with
MEF; the generation of afterdepolarizations and triggered activity in
the presences of disease conditions and interaction between LF oscil-
lations of ventricular APD with other proarrhythmic mechanisms.
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