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Abstract 
Bacteriophages are the viruses that infect bacterial cells. They are the most diverse biological entities on earth and play important roles 
in microbiome. According to the phage lifestyle, phages can be divided into the virulent phages and the temperate phages. Classifying 
virulent and temperate phages is crucial for further understanding of the phage–host interactions. Although there are several methods 
designed for phage lifestyle classification, they merely either consider sequence features or gene features, leading to low accuracy. A 
new computational method, DeePhafier, is proposed to improve classification performance on phage lifestyle. Built by several multilayer 
self-attention neural networks, a global self-attention neural network, and being combined by protein features of the Position Specific 
Scoring Matrix matrix, DeePhafier improves the classification accuracy and outperforms two benchmark methods. The accuracy of 
DeePhafier on five-fold cross-validation is as high as 87.54% for sequences with length >2000bp. 
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Introduction 
Bacteriophages, viruses that infect bacterial cells, are the most 
common and diverse biological entities in the biosphere [1]. It is 
estimated that at least 100 million phages exist globally, which 
is 10 times that of bacteria on average [2]. In microbiome, they 
play an important role in host death, metabolism, physiology, and 
evolution by interacting with their host. When a phage infects a 
bacterial cell, it exists as one of two lifestyles, namely virulent 
phage or temperate phage. As a virulent phage, its genome is repli-
cated multiple times during infecting, and the newly replicated 
copies are released into the surrounding environment by lysis, 
extrusion, or budding. In contrast, when temperate phages infect 
bacteria, they either integrate their DNA into the bacterial genome 
or transform their DNA into a loop to form a stable plasmid. 
As the host bacterium grows and divides, the temperate phage 
will exist as a prophage in this semi-stable lifestyle. During the 
subsequent process of bacterial host cell division, the prophage 
will remain present until appropriate environmental conditions 
allow the temperate phage to enter a virulent lifestyle and be 
released from the host bacterium. This shift to a virulent lifestyle 
is known as induction and is usually caused by host cell damage 
[3] or environmental stress [4, 5]. Although phages may destroy 
bacteria, they also benefit bacterial populations in some cases 
and have a crucial impact on the composition of microbial com-
munities [6]. Thus, the accurate classification of phage lifestyle 

contributes to the understanding of phage population changes, 
genomics, and microbiology [7]. It plays key roles in understand-
ing the phage–host interactions and their effects in microbial 
community regulation. In addition, the accurate identification 
of virulent phages has significant application values in Phage 
Therapy and Biocontrol [3, 8]. 

In recent years, several tools have been proposed to distinguish 
virulent and temperate phages. Although there are few marker 
genes, phages may still have high frequencies of functional genes 
used to determine their lifestyles. For example, Emerson et al. [9] 
found that temperate phages have some functional genes, such 
as integrases and kinases. Schmidt et al. [10] found that leucine 
substitutions in DNA polymerase genes are closely associated 
with temperate phages. Based on these functional genes, two 
protein-based methods were developed. PHACTS [7] utilized all 
protein sequence information of phage genome and uses Random 
Forest algorithms to discriminate whether a phage is virulent 
or temperate at the protein sequence level. It proved that viru-
lent phages typically contain genes associated with phage lysis, 
nucleotide metabolism, or structural proteins, and temperate 
phages typically contain genes associated with toxins, excision, 
integration, lysogenicity, or expression regulation. Mavrich [11] 
classified phages containing at least one temperate phage Pham 
as temperate phages. These two methods are both based on 
protein sequences, classifying phage lifestyles based on their gene
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features. However, they cannot effectively deal with metagenomic 
data because reconstructing the complete genomes of all organ-
isms in metagenomic data is not currently possible. Furthermore, 
only a few reads in metagenome may contain functional genes 
that contribute to classification [12]. PHACTS shows that if a 
phage genome contains more than 25 proteins, it can be clas-
sified with 95% accuracy, while the accuracy is greatly reduced 
if there are fewer proteins in the phage genome. For example, 
the accuracy of PHACTS is about 65% if only five proteins are 
present in a phage sequence, and 50% if there are only two 
proteins. 

To deal with the shortcomings, PhagePred [1] is proposed by  
extracting features of k-mer frequency and using Markov model 
to identify phage lifestyles from metagenomes. However, by 
identifying viral sequences using k-mer based methods [12–14], 
k-mer frequency feature generates a lot of noise in short 
sequences [15] and the accuracy reduces a lot when the sequences 
become shorter. 

In order to identify phage lifestyle directly from metagenomic 
data, DeePhage [16] is proposed by encoding bases as one-hot 
vectors before building a convolutional neural network (CNN) 
model for automated feature extraction. Similar to the methods 
using CNN model to identify viral sequences, these methods 
only focus on the local information of a sequence and ignore 
the global information of the whole sequence, which implies the 
performance still needs to be improved. 

To improve the identification accuracy of phage lifestyles, 
DeePhafier is proposed based on a multilayer self-attention 
neural network combining protein information. It directly 
extracts high-level features from a sequence by combining global 
self-attention and local attention and combines the protein 
features from genes to improve the identification performance. 

Methods 
Construction of DeePhafier 
The construction of DeePhafier is shown in Fig. 1. It is built by 
a set of parallel Basic Multi-layer Self-attention Network Mod-
els (BMSNMs) and the corresponding protein feature embedding 
models. The input of BMSNM is a codon sequence with maximum 
length of 100 codons (detailed in Supplementary S7). 

Firstly, a query sequence is randomly divided into k short 
sequences of 300 bp. Secondly, these short sequences are embed-
ded with protein features and then are input into k BMSNMs. The 
rest of (k − m) BMSNMs are fed by zero. Thirdly, the output of 
each BMSNM is sequentially input into a single-layer global self-
attention neural network as the order of its position in the original 
query long sequence. Finally, the co-relationships between each 
short sequence are learned and then classified through a fully 
connected layer and a softmax layer. The chosen m and k is 
detailed in supplementary S2. 

BMSNM 
When the input sequence is shorter than 300bp, it is equiv-
alent to training only one BMSNM. The structure of BMSNM 
is shown in Fig. 2. Each layer of the self-attention network in 
BMSNM is constructed as a local self-attention network. Simi-
lar to the local self-attention mechanism of Poolingformer [17], 
when computing the attention values, a sliding window of length 
(2w1 + 1) with stride of 1 is constructed, where every input is 
only calculated with w1 inputs to its left and right. For the i − th 

input with window size of w1, the sliding window is denoted 
as �

(
i, w1

)
:

�
(
i, w1

) = {
i − w1, . . . , i − 1, i, i + 1, . . .  , i+w1

}
(1) 

The output vector corresponding to the i − th input of the first 
layer in the self-attention network is 

L1i = soft max
(
α1qT 

1iK�(i,w1)

)
VT

�(i,w1). (2)  

The structure of the second layer and third layer in the self-
attention network is like that of the first layer, except that the size 
of the sliding window is set to (2w2 + 1) and (2w3 + 1), respectively. 
The outputs of the second layer and third layer in the self-
attention network are 

L2i = soft max
(
α2qT 

2iK�(i,w2)

)
VT

�(i,w2) (3) 

L3i = soft max
(
α3qT 

3iK�(i,w3)

)
VT

�(i,w3). (4)  

The structure of the fourth layer has a sliding window size of 
(2w4 + 1) with a sliding step size ξ . Its output is 

L4i = soft max
(
α4qT 

4iK�(i,ν4)

)
VT

�(i,ν4), (5)  

where K�(i,wj) and V�(i,wj) are the key vectors and value vectors, 
respectively, constructed from the inputs of this layer in the 
sliding window �(i, wj) from the j−th layer. αj is a constant-valued 
scalar for compression in the j − th layer. qji is a query vector 
element constructed in the j−th layer according to the i−th input. 

Furthermore, several residual connections are added between 
each layer to the four-layer self-attention neural network. Specif-
ically, the input of the third layer is the sum of outputs from the 
second layer L2i and the first layer L1i. The input of the fourth layer 
is the sum of outputs from the third layer L3i and the first two 
layers L1i, L2i. The dimension of the final output is n/ξ . 

For each layer in the self-attention neural network, a pooling 
operation (with a pooling kernel Kj and a pooling step λj) is  
introduced to both K�(i,wj) and V�(i,wj):

K̃�(i,wj) = maxpooling
(
K�(i,wj); κj, λj

)
(6) 

Ṽ�(i,wj) = max pooling
(
V�(i,wj); κj, λj

)
(7) 

This pooling operation reduces the number of parameters 
and the computational complexity, as well as plays a role sim-
ilar to Dropout [18] to improve the generalization ability [19]. 
The computational complexity of DeePhafier is calculated in 
Supplementary S3. To confirm the dimension of the input to 
the later single-layer global self-attention neural network is not 
too large, the pooling kernel is Kj = 5 and the pooling stride is 
λj = 3. 

When training the models of DeePhafier with different length 
sequences, the optimization algorithms were all chosen to be 
the Adam algorithm with default parameters; batch-size is 64; 
learning rate is 0.001; epoch is 300.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae377#supplementary-data
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Figure 1. The construction of DeePhafier. 

Figure 2. Basic multi-layer self-attention network model. 

During the search and comparison process, the maximum 
number of iterations was set to 3, the E-value for each iteration 
was set to 0.001, and the rest of the parameters were selected as 
default. 

Protein feature embedding 
Position Specific Scoring Matrix (PSSM) is commonly used to 
extract features of evolutionary information on protein amino 
acid sequences [20–22], which is widely applied in many fields 
including protein interaction prediction [23], protein subcellular 

localization [24], protein secondary structure prediction [25], and 
so on. All sequences from the training and testing datasets are 
searched and compared by PSI-BLAST [26] against the homolo-
gous sequences from the SWISS-PROT reference database, result-
ing in homology information that is PSSM. For a protein sequence 
with the length of L, the PSSM matrix obtained by PSI-BLAST can 
be expressed as a two-dimensional vector of L × 20. The  first  
dimension represents the position of each amino acid on the pro-
tein sequence and the second dimension represents 20 standard 
amino acids. Each element value in this matrix represents the
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Figure 3. The combination of protein features with codon embedding vectors. 

magnitude of the possibility that each amino acid occurs at each 
position in the sequence (detailed in Supplementary S4). 

PHACTS [7] only uses the protein information of the phage 
genome to distinguish virulent or temperate phages, indicating 
that protein features extracted from phages play a positive role 
in classifying phage lifestyles [16]. Therefore, DeePhafier uses 
FragGeneScan [27] to identify gene sequences as well as their posi-
tions from phage sequences. Then these detected gene sequences 
are searched and compared by PSI-BLAST against the SWISS-
PROT reference database to obtain a PSSM matrix. According 
to the position of genes detected in the phage sequence, the 
normalized PSSM matrix is added to the original sequence that 
is firstly embedded by Seq2Vec [12] (shown in  Fig. 3). Finally, the 
codon embedded sequence combined with protein features is fed 
into a BMSNM for further feature extraction and classification. 

Results 
Datasets 
Phage datasets 
Since there is no public dataset with reliable virulence annotation 
for each phage sequence, contigs extracted from complete 
phage genomes with accurate annotations are used to train and 
test DeePhafier. A total of 77 virulent phage genomes and 148 
temperate phage genomes with quality annotations [7] used by  
DeePhage [16] were built as dataset MD (McNair’s Dataset). A 
total of 1299 virulent phage genomes and 535 temperate phage 
genomes constructed by Song [1] were chosen as dataset SD 
(Song’s Dataset). Phages in MD dataset were manually labeled. 
Their annotations are extremely reliable. The phage RefSeq 
genomes on NCBI (https://www.ncbi.nlm.nih.gov/refseq/) were  
labeled by bioinformatic softwares [11], building the SD dataset, 
existing some theoretical errors. Therefore, all SD datasets as 

well as 70% of the MD dataset (containing 54 randomly selected 
virulent phage genomes and 104 temperate phage genomes) were 
selected as training data (1353 virulent phage genomes and 639 
temperate phage genomes totally). The remaining 30% of the MD 
dataset (containing the remaining 23 virulent phage genomes and 
44 temperate phage genomes) were chosen as testing data. The 
details can be found in Supplementary S5.1. 

Five-fold cross-validation is used to test DeePhafier. During 
each cross-validation, the training set and validation set were 
divided according to the complete phage genomes in order to test 
whether DeePhafier has the ability to identify new phage. Specif-
ically, the 1353 virulent phage genomes and 639 temperate phage 
genomes from the training data were divided equally into five sets. 
Each of the first four sets contains 271 virulent phage genomes 
and 128 temperate phage genomes, and the last set contains 
269 virulent phage genomes and 127 temperate phage genomes 
(shown in Table 1.). A total of 20 000 sequences (containing 10 000 
virulent phage sequences and 10 000 temperate phage sequences) 
with lengths of 100–300bp (GA), 300–500bp (GB), 500–1000bp (GC), 
1000–2000bp (GD), and >2000bp (GE) were randomly subsampled 
from each genome set. For each fold at each length, four sets were 
selected as the training dataset (80 000 sequences in total) and 
the remaining one set were selected as the validation dataset (20 
000 sequences in total). The 23 virulent phage genomes and 44 
temperate phage genomes in the testing data were randomly cut 
off according to five lengths above (GA, GB, GC, GD, GE) to form the 
testing dataset (containing 10 000 virulent phage sequences and 
10 000 temperate phage sequences). 

Real metagenome datasets 
A CAMI_high dataset [13], a CAMI Marine dataset [12], and a 
human gut metagenome dataset [14] were selected as the real 
metagenome datasets to test the performance of DeePhafier.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae377#supplementary-data
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/refseq/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae377#supplementary-data
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Table 1. Composition of the phage dataset 

Groups Group 1 Group 2 Group 3 Group 4 Group 5 

Number of virulent phage genomes 271 271 271 271 269 
Number of temperate phage genomes 128 128 128 128 127 

GA 10 000 10 000 10 000 10 000 10 000 
GB 10 000 10 000 10 000 10 000 10 000 

Number of virulent phage sequences GC 10 000 10 000 10 000 10 000 10 000 
GD 10 000 10 000 10 000 10 000 10 000 
GE 10 000 10 000 10 000 10 000 10 000 
GA 10 000 10 000 10 000 10 000 10 000 
GB 10 000 10 000 10 000 10 000 10 000 

Number of temperate phage sequences GC 10 000 10 000 10 000 10 000 10 000 
GD 10 000 10 000 10 000 10 000 10 000 
GE 10 000 10 000 10 000 10 000 10 000 

Table 2. Five-fold cross-validation results for the three methods 

Length Criteria First fold Second fold Third fold Fourth fold Fifth fold 

Accuracy 0.7921 0.7948 0.7883 0.7890 0.7851 
Recall 0.8055 0.8075 0.8037 0.7959 0.7881 

<300bp Precision 0.7845 0.7875 0.7797 0.7851 0.7834 
Specificity 0.7787 0.7821 0.7729 0.7821 0.7821 
F1 SCORE 0.7948 0.7974 0.7915 0.7904 0.7857 
Accuracy 0.8298 0.8326 0.8221 0.8335 0.8236 
Recall 0.8210 0.8271 0.8162 0.8262 0.8173 

300–500bp Precision 0.8357 0.8362 0.8259 0.8384 0.8277 
Specificity 0.8386 0.8380 0.8279 0.8407 0.8299 
F1 SCORE 0.8283 0.8316 0.8210 0.8322 0.8225 
Accuracy 0.8473 0.8478 0.8370 0.8451 0.8306 
Recall 0.8403 0.8492 0.8311 0.8382 0.8286 

500–1000bp Precision 0.8522 0.8467 0.8409 0.8498 0.8318 
Specificity 0.8543 0.8463 0.8428 0.8519 0.8325 
F1 SCORE 0.8462 0.8480 0.8360 0.8440 0.8302 
Accuracy 0.8621 0.8648 0.8566 0.8559 0.8522 
Recall 0.8711 0.8751 0.8625 0.8689 0.8581 

1000–2000bp Precision 0.8557 0.8574 0.8524 0.8469 0.8481 
Specificity 0.8531 0.8544 0.8507 0.8429 0.8463 
F1 SCORE 0.8633 0.8661 0.8574 0.8577 0.8531 
Accuracy 0.8687 0.8750 0.8621 0.8754 0.8593 
Recall 0.8725 0.8782 0.8639 0.8781 0.8596 

>2000bp Precision 0.8659 0.8725 0.8607 0.8734 0.8590 
Specificity 0.8649 0.8717 0.8602 0.8727 0.8589 
F1 SCORE 0.8692 0.8754 0.8623 0.8757 0.8593 

All sequences in each dataset were aligned by BLAST (default 
parameters) [ 28] with 1376 virulent phage genomes and 683 tem-
perate phage genomes in the phage genome dataset (MD+SD), 
respectively. Results with E-value <10-5 is considered as virulent 
or temperate phages. As a result, 1866 virulent phage sequences 
and 1463 temperate phage sequences were obtained from the 
CAMI_high dataset. A total of 8721 virulent phage sequences and 
6905 temperate phage sequences were obtained from the CAMI 
Marine dataset. A total of 775 virulent phage sequences and 940 
temperate phage sequences were obtained from the human gut 
metagenome dataset. 

Performance comparison on the Phage datasets 
Two tools, DeePhage [16] and PhagePred [1], were chosen as 
benchmark methods for comparison. When training DeePhafier 
with different length sequences, the optimization algorithms 
were all chosen as Adam algorithm with default parameters. 
The batch size is set as 64, learning rate is set as 0.001, and 
epoch is 300. Five-fold cross-validation experiments using the 
datasets in Section Phage datasets were conducted to test the 

performance of DeePhafier and benchmark methods. Virulent 
phages were considered as positive samples and temperate 
phages were considered as negative samples. The simple 
results were shown in Table 2 (detailed results are shown 
in Supplementary Table S2). In each fold of cross-validation, 
DeePhafier outperformed DeePhage and PhagePred on all criteria 
(detailed in Supplementary S6). Based on the testing results of 
the five-fold cross-validation, five boxplots of each criterion 
for sequences of different lengths were plotted in Fig. 4. The  
performance of PhagePred is much lower than DeePhafier 
and DeePhage. For short sequences <500bp, the performance 
of DeePhafier is greater than DeePhage. And for sequences 
>500bp, the identification results of DeePhafier and DeePhage 
are similar, but DeePhafier still achieves a better performance 
than DeePhage. 

Performance on the CAMI high dataset 
DeePhage and the other two method were used to classify phage 
lifestyles in the CAMI_high dataset, and the ROC curves were 
plotted in Fig. 5. Although some parts of the DeePhafier’s ROC

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae377#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae377#supplementary-data
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Figure 4. Boxplots of each criterion for sequences of different lengths. 

curve were under that of DeePhage, DeePhafier still achieved 
the highest AUC value of 0.8110, which is 0.0092 and 0.1316 
higher than DeePhage and PhagePred, respectively. The accura-
cies, recalls, precisions, specificities, and F1 scores of the three 
methods are shown in Table 3 (bold represents the optimal data). 
The five criteria of DeePhafier were 0.7918, 0.8038, 0.8210, 0.7765, 
0.8123, which were 0.0177, 0.0074, 0.0212, 0.0308, 0.0142 and 

0.1183, 0.1334, 0.0949, 0.0991, 0.1152 higher than DeePhage and 
PhagePred, respectively. 

Performance comparison on the CAMI Marine 
dataset 
The ROC curves of the three methods for phage lifestyle classifi-
cation on the CAMI marine dataset are shown in Fig. 6. When  FPR
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Figure 5. ROC curves and AUC values of the three methods on the 
CAMI_high dataset. 

Table 3. Criteria for phage lifestyle classification on CAMI_high 
dataset 

Criteria PhagePred DeePhage DeePhafier 

Accuracy 0.6735 0.7741 0.7918 
Recall 0.6704 0.7964 0.8038 
Precision 0.7261 0.7998 0.8210 
Specificity 0.6774 0.7457 0.7765 
F1 SCORE 0.6971 0.7981 0.8123 

Figure 6. ROC curves and AUC values of classification results on the CAMI 
Marine dataset. 

is around 0.2 and 0.3–0.7, the ROC curve of DeePhafier is below 
that of DeePhage. Even then, DeePhafier still obtains the highest 
AUC value of 0.8207, which is 0.0457 and 0.0638 higher than that 
of DeePhage and PhagePred, respectively. The accuracies, recalls, 
precisions, specificities, and F1 scores are shown in Table 4 (bold 
represents the optimal results). The five criteria of DeePhafier are 
0.7866, 0.8064, 0.8103, 0.7616, 0.8084, which are 0.0309, 0.0368, 
0.0196, 0.0189, 0.0284 and 0.0645, 0.0779, 0.0473, 0.0473, 0.0630 
higher than DeePhage and PhagePred, respectively. 

Performance comparison on the real human gut 
metagenome 
DeePhafier, DeePhage, and PhagePred are tested by classifying 
phage lifestyles in the real human gut metagenome. The identifi-
cation results are shown in Fig. 7. Every part of the DeePhafier’s 
ROC curve is above that of the other two benchmark methods. 
The AUC value of DeePhafier is 0.7727, which is 0.0511 and 0.1474 
higher than DeePhage and PhagePred, respectively. Based on the 

Table 4. Five classification criteria of the three methods on the 
CAMI Marine dataset 

Criteria PhagePred DeePhage DeePhafier 

Accuracy 0.7221 0.7577 0.7866 
Recall 0.7285 0.7696 0.8064 
Precision 0.7630 0.7907 0.8103 
Specificity 0.7143 0.7427 0.7616 
F1 SCORE 0.7454 0.7800 0.8084 

Figure 7. ROC curves and AUC values of classification results on the 
human gut metagenome. 

Table 5. Five classification criteria of the three methods on the 
human gut metagenome 

Criteria PhagePred DeePhage DeePhafier 

Accuracy 0.6394 0.7096 0.7673 
Recall 0.6540 0.6981 0.7626 
Precision 0.5621 0.6720 0.7332 
Specificity 0.6287 0.7191 0.7713 
F1 SCORE 0.6046 0.6848 0.7476 

classification results of the three methods and the real labels of 
the testing dataset, their accuracies, recalls, precisions, specifici-
ties, and F1 scores are shown in Table 5. DeePhafier achieves the 
best results among all five criteria, 0.7673 for accuracy, 0.7626 for 
recall, 0.7332 for precision, 0.7713 for specificity, and 0.7476 for F1 
score, respectively, which are 0.0577, 0.0649, 0.0612, 0.0522, 0.0828 
and 0.1279, 0.1086, 0.1711, 0.1426, 0.1430 higher than DeePhage 
and PhagePred, respectively. 

Significance test of method performance 
In order to prove the significant improvement of DeePhafier over 
the other two methods more comprehensively, Friedman test 
[29, 30] and  Nemenyi [31] test were utilized as statistical mea-
sures, which compared the performance of multiple algorithms 
on multiple datasets (detailed in Supplementary S8). 

A total of 48 criteria, containing AUC values, accuracies, recalls, 
precisions, specificities, and F1 scores generated from the testing 
dataset (five-fold cross-validation), the CAMI_high dataset, the 
CAMI Marine dataset, and the human gut metagenome dataset 
of the three methods, were ranked. The results of Friedman 
test and Nemenyi test are shown in Fig. 8 (the dots indicate the 
average ranking of the three methods and the length of each line 
represents the CD value). There is an intersection region between 
DeePhafier and both DeePhage and PhagePred, which indicates

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae377#supplementary-data
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Figure 8. Results of Friedman test and Nemenyi test for three methods. 

that there is no significant difference between the performance 
of DeePhafier and two benchmark methods in classifying phage 
lifestyles. However, the performance of DeePhafier is still better 
than two benchmark methods. 

Discussion 
DeePhafier is proposed to improve the identification accuracy of 
phage lifestyles. It is built by a multilayer self-attention neural 
network combining protein information. It works because of 
three points. Firstly, self-attention neural network has been 
proved to be effective in learning features from sequences 
[19, 32, 33], especially being good at dealing with these of several 
hundreds of words [12, 13]. So, a set of BMSNMs are established 
to learn features from each part in a sequence. Secondly, the 
single-layer global self-attention neural network is input by the 
features generated from these BMSNMs sequentially to further 
learn higher level features. Moreover, the single-layer global self-
attention neural network could construct relationships among 
short subsequences in BMSNMs without omitting the order of 
their positions in the original long sequences. Thirdly, according 
to the positions of genes detected in the phage sequence, the 
normalized PSSM matrix is added to the codon-embedded 
sequence, which combining sequence features and protein 
features. 

To prove the effectiveness of several constructions in DeeP-
hafier, we made a comparison between DeePhafier and some 
variants. The first variant was established by excluding the single-
layer global self-attention neural network in DeePhafier, namely 
Model_1. The second variant was built by abandoning the residual 
connections in BMSNMs, namely Model_2. The third variant was 
constructed by removing the pooling operations from BMSNMs, 
namely Model_3. The codon embeddings of a query sequence 
were substituted by one-hot vectors (64 dimensions), namely 
Model_4, where the PSSM matrix was zero-padded to 64 dimen-
sions before being added to the one-hot vectors. Finally, the PSSM 
matrix was removed before the BMSNMs, namely Model_5. A total 
of 400 000 sequences from the second fold in the training dataset 
(80 000 sequences for each length) were used to train these five 
variant models, and the 10 000 virulent phage sequences and 10 
000 temperate phage sequences in the testing dataset were used 
for testing. The hyperparameters in the training strategy were all 
the same as DeePhafier (detailed classification results are shown 
in Supplementary Table S4). 

The classification performances of the five variant models 
are not better than DeePhafier, for all lengths. The single-layer 
global self-attention neural network in DeePhafier could learn 
global features [17] from query sequences after several BMSNMs. 

And the positional encoding mechanism could learn the order of 
subsequences from BMSNMs. This is why DeePhafier outperforms 
Model_1 and the gap becomes bigger as the length of query 
sequence is longer. The residual connections in BMSNM could let 
the low-level features pass through directly to the output and 
prevent the whole neural network from overfitting [34]. Thus, 
the performance of Model_2 drops dramatically because of the 
residual connections being absent. The operation of maxpooling 
is mainly designed for generalization and reducing parameters 
[35]. Without maxpooling, Model_3 performs as well as DeePhafier 
for short sequences. For long sequences, the performance of 
Model_3 is a little worse than DeePhafier, which may be caused by 
bad generalization without maxpooling. Before a query sequence 
is being input to a deep learning neural network, it is always 
better if the query sequence is embedded to a vector, which 
has been proved in Virtifier [12], DETIRE [14], CHEER [36], and 
so on. When the codon embedding strategy is substituted by 
one-hot encoding, the performance of Model_4 drops dramat-
ically. Sequence features and protein features describe a DNA 
sequence in two different ways. Sequence features focus on the 
composition of the entire sequence and protein features pay 
more attention on gene expression [7]. Both of the two types 
of features contribute a lot to phage lifestyle classification. As 
a result, Model_5 has a rather bad performance without PSSM 
matrix. 

Above all, the designs containing a single-layer global self-
attention neural network, residual connections, operation of max-
pooling, codon embedding, and PSSM matrix all contribute a lot 
to the outperformance of DeePhafier. Even then, more complex 
protein features and multi-head self-attention mechanism may 
further improve the performance of DeePhafier on classifying 
phage lifestyles. 

Bacteriophages play a very important role in controlling bac-
terial population size and benefit bacterial populations in some 
cases. For example, different bacteriophages in soil metagenome 
can be used to jointly inhibit soil pathogenic bacteria. Thus, the 
accurate classification of phage lifestyle is the first step for under-
standing phage–host interactions and their effects in human gut 
microbiome, which can be used to early diagnosis of colorectal 
cancer (CRC). Furthermore, the accurate identification of virulent 
phages contributes to Phage Therapy and Biocontrol. We hope 
DeePhafier could play an important role in many aspects of virus– 
host analysis. 

Conclusions 
Bacteriophages play a very important role in controlling bacterial 
population size and benefit bacterial populations in some cases. 
For example, different bacteriophages in soil metagenome can be 
used to jointly inhibit soil pathogenic bacteria. Thus, the accurate 
classification of phage lifestyle is the first step for understanding 
the phage–host interactions and their effects in human gut micro-
biome, which can be used in the early diagnosis of CRC. Further-
more, the accurate identification of virulent phages contributes to 
Phage Therapy and Biocontrol. DeePhafier is designed to improve 
the identification accuracy of phage lifestyles. It is built by sev-
eral multilayer self-attention neural networks and a global self-
attention neural network. Combined by protein features of the 
PSSM matrix, DeePhafier improves the identification performance 
and outperforms two benchmark methods. We hope DeePhafier 
could play an important role in many aspects of phage–host 
analysis.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae377#supplementary-data
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Key Points 
• Classifying virulent and temperate phages is crucial 

for further understanding of phage–host interactions. 
DeePhafier improves the classification accuracy and has 
played a crucial role in advancing our understanding of 
phage–host interactions. 

• DeePhafier is the first method that learns sequence 
features by self-attention neural networks for phage 
lifestyle classification. BMSNM is designed to learn high-
level features without too much computational com-
plexity. The single-layer global self-attention neural net-
work can learn the order of subsequences from the 
original query long sequence. 

• Existing methods merely either consider sequence fea-
tures or gene features, leading to low accuracy. DeeP-
hafier combines the codon embedded sequence and 
protein features of the PSSM matrix. This enriches the 
extracted features, and improves the accuracy of DeeP-
hafier in classifying virulent and temperate phages. 
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