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Background: Currently available prognostic tools and focused therapeutic

methods result in unsatisfactory treatment of gastric cancer (GC). A deeper

understanding of human epidermal growth factor receptor 2 (HER2)-

coexpressed metabolic pathways may offer novel insights into tumour-

intrinsic precision medicine.

Methods: The integrated multi-omics strategies (including transcriptomics,

proteomics and metabolomics) were applied to develop a novel metabolic

classifier for gastric cancer. We integrated TCGA-STAD cohort (375 GC

samples and 56753 genes) and TCPA-STAD cohort (392 GC samples and 218

proteins), and rated them as transcriptomics and proteomics data,

resepectively. 224 matched blood samples of GC patients and healthy

individuals were collected to carry out untargeted metabolomics analysis.

Results: In this study, pan-cancer analysis highlighted the crucial role of ERBB2

in the immune microenvironment and metabolic remodelling. In addition, the

metabolic landscape of GC indicated that alanine, aspartate and glutamate

(AAG) metabolism was significantly associated with the prevalence and

progression of GC. Weighted metabolite correlation network analysis

revealed that glycolysis/gluconeogenesis (GG) and AAG metabolism served

as HER2-coexpressed metabolic pathways. Consensus clustering was used to
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stratify patients with GC into four subtypes with different metabolic

characteristics (i.e. quiescent, GG, AAG and mixed subtypes). The GG subtype

was characterised by a lower level of ERBB2 expression, a higher proportion of

the inflammatory phenotype and the worst prognosis. However, contradictory

features were found in the mixed subtype with the best prognosis. The GG and

mixed subtypes were found to be highly sensitive to chemotherapy, whereas

the quiescent and AAG subtypes were more likely to benefit from

immunotherapy.

Conclusions: Transcriptomic and proteomic analyses highlighted the close

association of HER-2 level with the immune status and metabolic features of

patients with GC. Metabolomics analysis highlighted the co-expressed

relationship between alanine, aspartate and glutamate and glycolysis/

gluconeogenesis metabolisms and HER2 level in GC. The novel integrated

multi-omics strategy used in this study may facilitate the development of a

more tailored approach to GC therapy.
KEYWORDS

gastric cancer, HER2, multi-omics analysis , metabolic classification,
precision medicine
1. Introduction
Metabolic reprogramming is a characteristic shared by

various solid tumours, which changes the availability of

nutrients and the method of their utilisation by cells to meet

the energy and material requirements of cancer (1–3).

Oncogene-driven metabolic adaptations allow cancer cells to

survive and thrive in the tumour microenvironment (4).

Studies have shown that tumours have distinct substrate

preferences for metabolites, which determines their

metabolic heterogeneity (5, 6). The response of patients to

chemotherapy and immunotherapy and their prognosis are

intimately associated with tumour heterogeneity (7, 8).

However, a method for distinguishing clinically relevant

subtypes based on metabolic heterogeneity has not

been established.

Gastric cancer (GC) is one of the most life-threatening

malignancies, which is the third most common cause of

cancer-related mortality worldwide (9). A majority of patients

with GC have locally progressed or advanced disease at

diagnosis. Systemic chemotherapy, radiotherapy, surgery,

immunotherapy and targeted therapy are effective for the

treatment of GC (10). However, GC is a highly diverse cancer

with a complex genomic landscape of molecular changes,

resulting in a wide range of treatment responses (11). Based

on The Cancer Genome Atlas (TCGA) project, GC is divided

into four subtypes, and promising therapeutic targets, such as
02
human epidermal growth factor receptor 2 (HER2), have been

identified (12, 13). HER2, commonly referred to as ERBB2, is a

ligand-independent receptor tyrosine kinase, which is expressed

in various epithelial cells and is involved in cell differentiation

(14). Since its identification, HER2 has been reported to be

amplified and overexpressed in various human malignancies,

which is associated with a poorer prognosis, higher recurrence

rates and shorter overall survival (15, 16). Trastuzumab, which

targets HER2, is a first-line treatment for GC, and its

combination with chemotherapeutic agents has significantly

improved patient outcomes (17). In addition, trastuzumab is

used to improve the efficacy of immunotherapy by inducing

robust lymphocyte tumour infiltration (16). However, primary

and acquired drug resistance remain major factors limiting its

widespread use. Therefore, it is necessary to develop novel

molecular subtypes based on HER2-associated molecular

traits to facilitate clinical decision-making and improve

precision medicine.

Previous studies have demonstrated that significant

metabolic reprogramming occurs in patients with GC (18, 19).

However, to the best of our knowledge, molecular typing of GC

based on metabolic characteristics has not been reported.

Metabolites are the ultimate functional products exhibiting

genetic, protein and environmental changes (20). Metabolic

subtypes facilitate clinical translation and provide novel

insights into patient stratification for frontline therapies. In

this study, we stratified GC into four metabolic subtypes with

different metabolic traits based on novel multi-omics integration
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strategies and examined the pivotal role of the identified

metabolic subtypes in the individualised treatment of GC.
2. Materials and methods

2.1. Study design and participants

A total of 112 patients with GC and 112 healthy volunteers

were identified and enrolled from June 2021 to December 2021

at the First Affiliated Hospital of Dalian Medical University. This

study was approved by the institutional ethics committee of The

First Affiliated Hospital of Dalian Medical University (No. PJ-

KS-KY-2021-93). All registered patients and healthy volunteers

signed a written consent form authorising the use of their blood

specimens for research purposes. The diagnosis of GC was

confirmed in patients via gastroscopy or postoperative

pathological analysis, and no indication of tumours was found

in healthy individuals. All blood samples were collected

preoperatively and after a 12-hour fast. Clinicopathological

data were also collected, including age, sex, site of onset, TNM

stage, metastatic location and histological differentiation. The

following criteria were used to exclude participants from this

study: (I) co-morbidity with other malignancies or a personal

history of malignant tumours; (II) metabolic illnesses such as

diabetes or hyperthyroidism; (III) recent persistent diarrhoea or

vomiting and (IV) pregnant women, youngsters or substance

abusers. Table 1 summarises the clinical characteristics of

the participants.

The immunohistochemical data of the 112 patients were also

collected and curated postoperatively. The results were assessed

by two experienced pathologists from the First Affiliated

Hospital of Dalian Medical University who were blinded to

the clinical outcomes. Because only some patients underwent

immunohistochemical analysis postoperatively, we filtered the

complete postoperative immunohistochemical information of

only 51 patients with GC. The expression of HER2, P53, GST-p,
Ki-67, MHL-1, MSH-2, MSH-6 and PMS-2 was evaluated based

on the staining intensity and proportion of positive cells.

Transcriptomic (including >10,000 pan-cancer samples) and

proteomic (including 392 GC samples) data were collected from

TCGA, Genotype-Tissue Expression (GTEx) and The Cancer

Proteome Atlas (TCPA) projects (21–23). The detailed

processing of transcriptomic and proteomic data is shown in

Supplementary Material A.
2.2. Processing of clinical samples and
untargeted metabolomic strategies

To extract polar metabolites, 600 mL of methanol was mixed

with 150 mL of serum sample to precipitate protein. The mixture

was vortexed for 5 minutes and centrifuged at 5300 rpm for 20
Frontiers in Immunology 03
minutes. Vacuum centrifugation was used to transfer and dry

two replicates of 200 mL of supernatant. Polar metabolite

samples were redissolved before their detection in positive and

negative ion modes.

To extract lipids from serum, 120 mL of methanol was mixed

with 20 mL of serum sample and vortexed for 3 minutes. The

solution was then mixed with 360 mL of methyl tert-butyl ether

and 100 mL of ultra-pure water. The solution was vortexed for 10

minutes and centrifuged at 13000 × g for 15 minutes. Similar to

the abovementioned method of polar metabolite extraction, 200

mL of supernatant was transferred, dried and redissolved before

lipidomic analysis.

Untargeted metabolomic analysis was performed on an

UltiMate 3000 ultra-high-performance liquid chromatography

system and a Q Exactive Quadrupole-Orbitrap High-Resolution

Mass Spectrometer (Thermo Fisher Scientific, USA). The

findings were used to annotate polar metabolites by searching

the local database, mzCloud Library (Thermo Fisher Scientific,

USA), Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Human Metabolic Group Database. In addition, the untargeted

lipidomic data were analysed using the LipidSearch software

(Thermo Fisher Scientific, USA). The accuracy of precursor

mass was within 10 ppm for metabolite identification and

structural annotation. The AUC values were extracted as the

relative quantitative information of polar metabolites and lipids

using the TraceFinder software (Thermo Fisher Scientific, USA).
3. Bioinformatic and
statistical analyses

3.1 Pan-cancer analysis of ERBB2
highlighted its crucial role in the
occurrence and progression of
multiple human cancers

3.1.1 ERBB2 expression analysis in pan-cancer
ERBB2 expression data were extracted from TCGA pan-

cancer cohort and integrated using the Perl language. The

wilcoxon test was performed to determine the differential

expression of ERBB2 in various cancer types. A box plot was

created using the R package ‘ggpubr’. A false discovery rate

(FDR) of 0.05 was selected as the cut-off. The symbols ‘*’, ‘**’ and

‘***’ denote FDR values of <0.05, <0.01 and <0.001, respectively.

Additionally, TCGA and GTEx datasets were also integrated to

investigate and verify differences in ERBB2 expression between

healthy and malignant tissues.

3.1.2 Correlation of ERBB2 expression with
clinical phenotype and prognosis

The association between clinical outcomes and ERBB2

expression was analysed across various cancer types using
frontiersin.org
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Table 1. Clinical characteristics of the GC patients used for untargeted metabolomics.

GC (n = 112) Healthy individuals (n = 112) p-value

Gender (n,%) 0.092

Male 78 (69.6%) 89 (79.5%)

Female 34 (30.4%) 23 (20.5%)

Age (years, mean ± SD) 63.32 ± 10.66 61.61 ± 11.79 0.255

Hemoglobin (g/L, mean ± SD) 123.01 ± 24.62 139.84 ± 35.19 <0.001

Creatinine (mmol/L, mean ± SD) 69.86 ± 19.45 72.62 ± 11.42 0.202

Urea (mmol/L, mean ± SD) 5.70 ± 1.64 5.47 ± 1.32 0.243

Blood glucose (mmol/L, mean ± SD) 5.41 ± 1.80 5.55 ± 1.34 0.526

CEA

≤5 80 (71.4%) –

>5 23 (20.5%) –

NA 9 (8.0%) –

CA19-9

≤27 84 (75.0%) –

>27 19 (17.0%) –

NA 9 (8.0%) –

Grade

Low-grade intraepithelial neoplasia 2 (1.8%) –

High-grade intraepithelial neoplasia 3 (2.7%) –

Severe dysplasia 1 (0.9%) –

Early GC 9 (8%) –

Poorly differentiated 20 (17.9%) –

Moderately/poorly-differentiated 18 (16.1%) –

Moderately-differentiated 15 (13.4%) –

Well/moderately-differentiated 10 (8.9%) –

Well-differentiated 2 (1.8%) –

Signet ring cell carcinoma 6 (5.4%) –

NA 26 (23.2%) –

Stage

Tis 1 (0.9%) –

I 44 (39.3%) –

II 10 (8.9%) –

III 31 (27.7%) –

IV 22 (19.6%) –

NA 4 (3.6%) –

Type

Early GC 43 (38.4%) –

Adanced GC 69 (61.6%) –

Immunohistochemistry

GST-p

1 48 (42.9%) –

NA 64 (57.1%) –

Her-2

0 30 (26.8%) –

1 11 (10.0%) –

2 5 (4.5%) –

3 5 (4.5%) –

NA 61 (54.5%) –

Ki-67

≤25% 8 (7.1%) –

≤50% 10 (8.9%) –

(Continued)
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TCGA data. Disease-free interval (DFI), disease-specific survival

(DSS), overall survival (OS) and progression-free interval (PFI)

were used to evaluate the correlation between mRNA expression

levels and survival rates using the ‘survival’ and ‘forestplot’

packages in R. Subsequently, the correlation between ERBB2

and clinicopathological parameters such as tumour grade, stage

and status was analysed using the ‘limma’ and ‘ggpubr’ packages

in R.

3.1.3 Relationship between immunity and
ERBB2 expression in pan-cancer

To elucidate the critical involvement of ERBB2 in the

immunological milieu of different human malignancies, the

association between ERBB2 expression and immunocyte

infiltration was comprehensively analysed. Tumour IMmune

Estimation Resource 2.0 (TIMER2.0; http://timer. cistrome.

org / ) , ba sed on the CIBERSORT, XCELL , EPIC ,

MCPCOUNTER and QUANTISEQ algorithms, was used to

generate a detailed immune signature of tumour-infiltrating

cells in various tumour samples from TCGA database.

Subsequently, the association between ERBB2 expression and

the abundance of tumour-infiltrating immune cells, such as

CD4+ T cells, CD8+ T cells, B cells, neutrophils, dendritic

cells (DCs) and macrophages, was analysed.
Frontiers in Immunology 05
3.1.4 Gene set enrichment analysis
n pan-cancer

In view of the relationship between ERBB2 and tumour

immunity and metabolism remains unclear, metabolism-related

and immune-related pathways were identified using the

‘c2.cp.kegg.v7.4.symbols.gmt’ file from MsigDB (http://www.gsea-

msigdb.org/). The activities of these pathways were evaluated using

single-sample gene set enrichment analysis (ssGSEA) in R using the

transcriptomic data of individual samples.

The samples of each tumour type were classified into two

groups based on ERBB2 expression, with the top 30% and lowest

30% comprising the pathways related to ERBB2. GSEA was

subsequently performed to examine the crucial role of ERBB2 in

the immune and metabolic microenvironment of multiple

human cancers.

3.2 Transcriptomic and proteomic
analyses revealed the close association
of ERBB2/HER2 with the immune
microenvironment and metabolic
remodelling of GC

To compute the immune score of each GC sample, the

‘GSVA’ package in R was used to perform ssGSEA using 29
Continued

GC (n = 112) Healthy individuals (n = 112) p-value

≤75% 21 (18.8%) –

>75% 19 (17.0%) –

NA 54 (48.2%) –

MHL-1

0 6 (5.4%) –

1 43 (38.4%) –

NA 63 (56.3%) –

MSH-2

0 1 (0.9%) –

1 49 (43.8%) –

NA 62 (55.4%) –

MSH-6

1 50 (44.6%) –

NA 62 (55.4%) –

P53

Negative 10 (8.9%) –

Wild 27 (24.1%) –

Mutant 18 (16.1%) –

NA 57 (50.9%) –

PMS-2

0 5 (4.5%) –

1 43 (38.4%) –

NA 64 (57.1%) –
frontier
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immune gene sets reflecting diverse immune activities (24).

Subsequently, Spearman correlation analysis was performed to

examine the immunoregulatory role of ERBB2, GSTP1, MKI67,

MLH1, MSH2, MSH6, PMS2 and TP53 in GC based on RNA-

sequencing and protein chip data from TCGA and TCPA

databases. The ssGSEA algorithm was used to compute the

scores of immune- and metabolism-related pathways of each

GC sample, which were further used to investigate the close

association of ERBB2 with immune and metabolic pathways

in GC.
3.3 Characterisation of metabolic
landscape shifts during the
tumourigenesis of GC

After the acquisition of metabolomic data, differentially

expressed metabolites (DEMs) were determined between 224

matched blood samples collected from patients with GC and

healthy individuals using the screening criteria of FDR < 0.05

and fold change > 1.2 or < 5/6. Subsequently, MetaboAnalyst5.0

(https://www.metaboanalyst.ca/) and MBROLE 2.0 (http://csbg.

cnb.csic.es/mbrole2/) platforms were used to identify DEM-

enriched metabolic pathways, which might play crucial roles

in the tumourigenesis of GC (25, 26).
3.4 Weighted metabolite co-expression
network analysis (WMCNA) identified hub
metabolic pathways closely associated
with HER-2 expression

Given the important role of ERBB2/HER2 in the immune

microenvironment and metabolic remodelling of GC, HER2-

coexpressed metabolites and their enriched metabolic pathways

may be crucial for the pathophysiological processes of GC. The

metabolomic and immunohistochemical (IHC) data of 51

patients with GC were integrated and subjected to WMCNA

to determine HER2-coexpressed metabolites. The detailed

process of WMCNA is described in Supplementary Material B.

To understand the possible significance of these HER2-

coexpressed metabolites, their expression was examined in

distinct HER2 subgroups and associated with clinical

parameters (such as age, sex and tumour stage) and

pathological markers (such as P53 and Kiki 67). Subsequently,

the differential expression of these HER2-coexpressed

metabolites was analysed in different tumour stages, grades

and types. Metabolites related to clinical indicators were

considered candidate metabolites. Furthermore, the differential

expression of these candidate metabolites was analysed by

integrating the metabonomic data derived from the blood

samples of 112 patients with GC and 112 healthy volunteers.

Differentially expressed metabolites closely associated with
Frontiers in Immunology 06
tumour stage, grade and type were eventually identified as the

hub metabolites intimately related to the incidence and

progression of GC.

Because the number of HER2-coexpressed metabolites was

limited and the function of many metabolites remains unclear,

pathway enrichment analysis performed using these metabolites

alone may not yield accurate results. Therefore, we constructed a

metabolite–metabolite interaction (MMI) network using

Pearson correlation analysis and subsequently subjected it to

pathway enrichment analysis using the MetaboAnalyst5.0 and

MBROLE 2.0 platforms (25, 26).
3.5 Identification of the metabolic
subgroups of GC based on the
expression of alanine–aspartate–
glutamate and glycolysis/
gluconeogenesis metabolism-
related genes

3.5.1 Metabolic subgrouping and survival
analysis

Genes belonging to the Molecular Signatures Database

(MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/search.jsp)

g ene s e t s ‘KEGG_ALANINE_ASPARTATE_AND

_G LUTAMAT E _ME TA BO L I SM ’ a n d ‘K EGG _

GLYCOLYSIS_GLUCONEOGENESIS’ were used as alanine–

aspartate–glutamate (AAG) and glycolysis/gluconeogenesis (GG)

metabolism-related genes, respectively. Consensus clustering was

performed on AAG and GG metabolism-related genes using the

‘ConsensusClusterPlus’ package in R (parameters: reps = 100, pItem

= 0.8, pFeature = 1). Ward.D2 and Pearson distances were used as

the clustering algorithm and distance metrics, respectively (with k =

3). The median expression levels of coexpressed AAG and GG

metabolism-related genes were used to divide samples into the

quiescent (AAG ≤ 0, GG ≤ 0), AAG (AAG > 0, GG ≤ 0), GG (AAG

≤ 0, GG > 0) and mixed (AAG > 0, GG > 0) metabolic subgroups.

Subsequently, Kaplan–Meier plots were generated to examine

differences in survival (overall survival [OS] and disease-specific

survival [DSS]) among different metabolic subgroups using the

‘survival’ and ‘survminer’ packages in R. Samples without follow-up

information were excluded from survival analyses. In addition,

ERBB2 expression was analysed across different metabolic subtypes.

3.5.2 Integration of metabolic subtypes,
immune subtypes and clinical traits

Consensus clustering was used to classify samples according

to the immune subtypes identified by Thorsson et al. (27),who

used immunogenomic techniques to assess the immunological

tumour microenvironment and discovered six immune

subgroups (wound healing [C1], IFN-g dominant [C2],

inflammatory phenotype [C3], lymphocyte depleted [C4],

immunologically quiet [C5] and TGF-b dominant [C6]) using
frontiersin.org

https://www.metaboanalyst.ca/
http://csbg.cnb.csic.es/mbrole2/
http://csbg.cnb.csic.es/mbrole2/
http://www.gsea-msigdb.org/gsea/msigdb/search.jsp
https://doi.org/10.3389/fimmu.2022.951137
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2022.951137
>10,000 tumour samples across 33 TCGA cancer types. The

‘circlize’, ‘gridBase’, ‘grid’, ‘ComplexHeatmap’ and ‘SimDesign’

packages in R were used to integrate metabolic subtypes,

immune subtypes, tumour stage and tumour grade of GC

samples, thus revealing the important association between

tumour immunity and metabolism.
3.5.3 Mechanism exploration
To examine the potential causes of prognostic differences

among patients with different metabolic subtypes of GC, their

mutation profiles, expression profiles (including mRNAs,

miRNAs and lncRNAs) and immune microenvironment were

intensively investigated. First, the metabolic typing data of each

patient were integrated with the single nucleotide variant (SNV)

and copy number variation (CNV) data retrieved from TCGA

database, and TBtools was used to characterise the potential

differences in mutation profiles among different metabolic

subtypes (28). Subsequently, the expression profiles and

clinical information of each patient, were filtered, and specific

molecules among different metabolic subtypes were identified

using the ‘limma’ package in R. Specific molecules were defined

as follows: Molecules that were significantly upregulated in one

subtype, when compared with the other three subtypes, were

considered specific molecules of the subtype. The Cytoscape

plug-ins ClueGO and CluePedia and yFiles Layout Algorithms

were used to identify pathways enriched by these characteristic

molecules to examine potential pathway disorders among

different metabolic subtypes (29–31).

To examine differences in the immune microenvironment

across different metabolic subtypes, various immune evaluation

strategies were used. First, we assessed the proportion of

immune components in the tumour microenvironment of

different metabolic subtypes from a macroscopic perspective.

The immunological score of each GC sample was calculated

using the ‘estimate’ R package. Immune Cell Abundance

Identifier (ImmuneCellAI, http://bioinfo.life.hust.edu.cn/

ImmuCellAI#!/) is a technique that may be used to evaluate

the level of immune cell infiltration (ICI) in diverse groups and

predict the response of patients to immune checkpoint

inhibitors (32). In addition to the ‘estimate’ algorithm,

ImmuneCellAI was used to verify the abundance of ICI. The

higher the immune score, the higher the level of ICI.

Furthermore, the infiltration abundance of each immune cell

type was intensively investigated using various algorithms

i n c l u d i n g T IMER , C IBERSORT , XCELL , EP IC ,

MCPCOUNTER and QUANTISEQ (33, 34). The ‘pheatmap’

R package was implemented to analyse the infiltration of diverse

immune cells in each sample across different metabolic subtypes.

Subsequently, the ‘kruskal.test’ function in R was used to

compute statistical differences in ICI across different metabolic

subtypes, and only immune cells with statistically significant

changes (p < 0.05) were retained in the heatmap. In addition, the
Frontiers in Immunology 07
differential expression of common immune checkpoint genes

was analysed across different metabolic subtypes, and only

statistically significant results were visualised.

3.5.4 Targeted drug sensitivity analysis and
immunotherapy prediction

Given the prevalence of molecularly focused therapy for GC,

the ‘pRRophetic’ package in R was used to estimate the

medication sensitivity of each patient with GC based on their

gene expression profiles (35). Subsequently, the ‘kruskal.test’ and

‘wilcox.test’ functions in R were used to screen potentially

sensitive drugs among the four metabolic subtypes, with lower

IC50 values indicating greater drug sensitivity.

The immunotherapeutic outcomes of each GC sample in

different metabolic subtypes were predicted using the

ImmuneCellAI algorithm. The ‘chisq.test’ function in R was

used to investigate differences in immunotherapeutic responses

among patients with GC with different metabolic characteristics.

Subsequently, the Tumour Immune Dysfunction and Exclusion

(TIDE, http://tide.dfci.harvard.edu/) and The Cancer

Immunome Atlas (TCIA, https://tcia.at/home) platforms were

used to evaluate immune escape potential and response to PD-1

and CTLA4 blockade therapy for each GC samples with different

metabolic characteristics (36–38). The immunophenoscore (IPS)

and exclusion scores of patients with GC were obtained from

TCIA and TIDE platforms, respectively. The IPS of patients was

determined by analysing the gene expression of four cell types

that determine immunogenicity (immunosuppressive cells,

MHC molecules, effector cells and immunomodulators). A

higher IPS and a lower exclusion score predicted a better

immunotherapeutic response.
3.6 Pan-cancer analysis reflected the
overview of alanine–aspartate–
glutamate and glycolysis/
gluconeogenesis metabolism and their
relationship with ERBB2 expression

In view of the crucial role of ERBB2 in pan-cancer, a

systematic analysis of the potential role of metabolic pathways

enriched by HER2-coexpressed metabolites in pan-cancer is also

an important undertaking. To examine variations in AAG and

GG metabolism-related genes in pan-cancer, the CNV and SNV

data derived from TCGA database were analysed and visualised

in heatmaps. Additionally, differential mRNA expression and

methylation level were evaluated in pan-cancer. Furthermore,

univariate Cox regression analysis was conducted to examine the

prognostic significance of AAG and GG metabolism-related

genes in various cancers. All of the abovementioned analyses

were conducted using R and TBtools.

To examine the differential role of pathways influenced by

AAG and GG metabolism in multiple human cancers, single-
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sample gene set enrichment analysis (ssGSEA) was used to

compute the metabolic scores of each sample of each tumour.

Based on the transcriptomic data of two tumour groups with the

top and bottom 30% of metabolic scores, GSEA was used to

examine differences in pathway activities.

Based on the metabonomic data, AAG and GG metabolic

pathways were found to be closely associated with HER2

expression. In addition, the coexpression relationship between

the ERBB2 gene and AAG and GG metabolism was validated at

the transcriptomic level. The ‘cor.test’ function in R was used to

analyse the correlation between AAG and GG metabolism

pathway-related genes and the ERBB2 gene, and the ‘reshape2’

and ‘RcolorBrewer’ packages in R were used to visualise

the results.
4. Results

4.1 Comprehensive characterisation of
ERBB2 in pan-cancer highlights its
pivotal role in the tumour
microenvironment

The workflow of this study is displayed in Figure 1. A

detailed description of the role of ERBB2 in multiple human

cancers is shown in Supplementary Material C. We mainly

emphasised the close association between ERBB2 expression

and GC, especially for immune and metabolic traits. The mRNA

level of ERBB2 was considerably elevated in most malignancies

including GC (Figure S1A, B). In addition, a longer disease-free

interval was substantially associated with increased ERBB2

expression (Figure S1C-F). Similarly, ERBB2 expression was

lower in patients with G3 and G4 GC than in patients with G1

and G2 GC, which indicated that lower ERBB2 expression is

associated with poor outcomes in patients with GC (Figure S2).

Although there was no significant association between

ERBB2 expression and the stage and recurrence of GC

(Figures S2), ERBB2 was identified as a crucial regulator in the

immune microenvironment and for the metabolic remodelling

of GC (Figures 2A, B). As depicted in Figure S3, ERBB2

expression was negatively correlated with the infiltration levels

of monocytes, M1 macrophages, M2 macrophages, myeloid

dendritic cells, cancer-associated fibroblasts, naïve CD4+ T

cells, CD8+ T cells, gdT cells, T helper 2 (Th2) cells and B

cells but positively correlated with the infiltration levels of M0

macrophages, neutrophils, memory CD4+ T cells and T

follicular helper (Tfh) cells in GC. In addition, ERBB2

expression was negatively correlated with many typical

immune pathways in GC (e.g. antigen processing and

presentation, cytokine receptor interaction, chemokine

signalling pathway, natural killer (NK) cell-mediated

cytotoxicity and Toll-like receptor signalling pathway)

(Figure 2A). However, ERBB2 expression was positively
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associated with many typical metabolic pathways in GC (e.g.

sulfur metabolism; sphingolipid metabolism; histidine

metabolism; glycolysis/gluconeogenesis (GG) metabolism;

glycerophospholipid metabolism and alanine, aspartate and

glutamate (AAG) metabolism) (Figure 2B).
4.2 Transcriptomic and proteomic
analyses reveal that ERBB2 and HER-2
are significantly associated with the
immune status and metabolic features of
patients with GC

In view of the crucial role of ERBB2 in the immune

microenvironment and metabolic reprogramming of pan-

cancer, the important relationship of the ERBB2 gene and its

protein product HER2 with the immune and metabolic

regulation of GC was extensively investigated. Based on

TCGA-STAD and TCPA-STAD cohorts, we integrated the

transcriptional and proteomic expression profiles of patients

with GC and used the ssGSEA algorithm to calculate the

immune cell infiltration (ICI) abundance and immune

function score of each patient. Spearman correlation analysis

revealed a substantial negative regulatory relationship between

the ERBB2 gene and its protein product HER2 and the

immunological state of patients with GC (Figures 2C, D). In

addition, classical immune and metabolic pathways were

identified using MsigDB. The complex relationship between

ERBB2 and the regulation of these immune and metabolic

pathways in GC was systematically analysed (Figures 2E, F).

ERBB2 was found to be involved in the regulation of many

immune pathways in GC, including antigen presentation, T- and

B-cell receptor signalling pathways, cell cycle, chemokine

signalling pathway, cytokine interaction, NK cell-mediated

cytotoxicity, transforming growth factor beta signalling

pathway and Toll-like receptor signalling pathway (Figure 2E).

In addition, ERBB2 was found to play a pivotal role in the

metabolic pathways of GC, including AAG, alpha linolenic acid,

arginine and proline, glutathione, glycerolipid, histidine,

pyrimidine and GG metabolism (Figure 2F).
4.3 Metabolic landscape shifts during the
tumourigenesis of GC

A human GC sample set was developed with sufficient fresh

serum samples for complete metabolomic profiling of GC. This

cohort included 112 patients with GC with different clinical

stages and grades and 112 healthy volunteers. Mass spectrometry

identified 1284 metabolites (1165 designated and 119

undesignated) using the blood samples. The ‘limma’ package

in R identified 859 metabolites (129 upregulated and 730

downregulated) exhibiting distinct abundance between patients
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with GC and healthy individuals (FDR < 0.05, FC > 1.2 or <5/6)

(Figure S4A, Table S1). In addition, numerous amino acids were

highly represented and were abundant in tumours, including L-

cystine, N-acetylglutamic acid, N-acetyl-L-alanine and L-

aspartic acid (Figure 3A). These findings were consistent with

those of a previous metabolomic study of 28 pairs of GC and

healthy control samples (39). Moreover, many lipid metabolites

were found to have a decreased level in GC (e.g. LPCs, PCs and

Cers), which has been rarely reported previously.

To extensively analyse metabolic abnormalities associated

with the pathogenesis of GC, KEGG pathway-based analysis was

performed on DEMs among 224 matched peripheral blood

samples. Both MetaboAnalyst 5.0 and MBROLE 2.0 platforms
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revealed that these DEMs were mainly enriched in AAG,

arginine, glyoxylate and dicarboxylate metabolism (Figure S4B

and Table S2).
4.4 Weighted metabolite co-expression
network analysis identified hub
metabolic pathways closely associated
with HER2 expression

The average linkage strategy and Pearson correlation

analysis were used to cluster 51 GC samples using the

metabolomic data and IHC findings (Figure S5A). Pearson
FIGURE 1

The workflow of this study.
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FIGURE 2

Association of ERBB2/HER2 with the immune microenvironment and metabolic remodelling in pan-cancer (especially in GC). Enrichment
analysis for immune (A) and metabolic (B) pathways between tumour tissues with high and low ERBB2 expression; NES is the normalised
enrichment score in the GSEA algorithm. ssGSEA highlights the regulatory role of ERBB2 (C) and HER2 (D) in the immune microenvironment
of GC based on TCGA-STAD and TCPA-STAD cohorts. The correlation between ERBB2 and immune (E) and metabolic (F) pathways in GC
was analysed.
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FIGURE 3

Characterisation of the metabolic landscape of GC and identification of HER2-coexpressed metabolites. (A) Differential expression heatmap of
the top 40 metabolites. (B) The correlation of 34 HER2-coexpressed metabolites and clinicopathological characteristics in different clusters. (C)
Development of a metabolite–metabolite interaction network. MetaboAnalyst5.0 (D) and MBROLE 2.0 (E) platforms were used to determine
HER2-associated metabolic pathways. (F) Crosstalk between alanine–aspartate–glutamate and glycolysis/gluconeogenesis metabolism.
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2022.951137
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2022.951137
correlation analysis revealed no outliers. To ascertain whether

the network was scale-free, we adopted the power of 4 (scale-free

R2 = 0.88) as a soft-thresholding criterion (Figure S5B-5D). A

total of 24 metabolite modules were preserved after average

linkage hierarchical clustering (Figures S5E, F). The light cyan,

midnight blue and black modules were significantly associated

with HER2 expression, and 34 high-connection metabolites in

these three modules were identified according to the

requirements (i.e. MM > 0.7 and MES > 0.15) and preserved

for further analysis (Figure S5G).

The distribution of the expression of these 34 metabolites

and clinical traits of 51 GC samples across different HER2-

expression subgroups is displayed in Figure 3B. Metabolites are

substantially associated with clinical parameters such as tumour

stage and grade and play an indispensable role in the

pathophysiological process of disease. Therefore, we examined

the potential relationship between these 34 metabolites and the

stage, grade and type of tumour in 112 patients with GC and

found that dimethylthiophosphate, glycosylated Leu, L-aspartic

acid, LPC (0:0/19:0), N-acetylglucosamine-6-sulfate and N-

acetyl-L-alanine were significantly associated with GC stage

(Figure S6A). In addit ion, L-aspartic acid and N-

acetylglucosamine-6-sulfate were significantly associated with

GC grade (Figure S6B), whereas L-aspartic acid, N-

acetylglucosamine-6-sulfate, O-acetylserine, and trans-aconitic

acid were significantly associated with GC type (Figure S6C).

Moreover, the serum levels of L-aspartic acid, N-acetyl-L-

alanine and trans-aconitic acid were considerably higher,

whereas those of glycosylated Leu and LPC (0:0/19:0) were

dramatically lower in GC (Figure S6D).

Furthermore, Pearson correlation analysis was used to

establish a MMI network (|Pearson’s correlation coefficient|>0.4)

to highlight the important role of the abovementioned 34 HER2-

coexpressed metabolites (Figure 3C). These metabolites were

further submitted to the MetaboAnalyst 5.0 and MBROLE 2.0

platforms to identify the potential metabolic pathways closely

associated with HER2 expression, and the results revealed that

AAG and GG metabolism were strongly correlated with HER2

expression (Figures 3D, E, Table S3). The detailed association of

GG metabolism with AAG metabolism is shown in Figure 3F.
4.5 Dual analysis of glycolysis/
gluconeogenesis and alanine–aspartate–
glutamate metabolism-related gene
expression identified four distinct
metabolic subgroups of GC

4.5.1 Clustering and survival analyses
RNA sequencing (RNA-seq) data from TCGA-STAD cohort

were used to stratify GC depending on the expression profiles of

GG and AAG metabolism-related genes. A previous study

indicated that metabolic gene expression, including
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isoenzymes within particular pathways, differs among cancer

types (40). Therefore, we used consensus clustering to recognise

two groups of strongly coexpressed GG and AAG metabolism

pathway-associated genes for metabolic subtyping and selecting

genes coregulated within each pathway and related to GC

biology. The median expression levels of coexpressed GG and

AAG metabolism-related genes were computed for each sample

and used to designate one of the following four metabolic

profiles specifically relevant to these two pathways: quiescent,

GG, AAG and mixed subtypes (Figure 4A). The expression

profiles of GG and AAG metabolism-related genes across the

metabolic subgroups are demonstrated in Figure 4B. Analysis of

overall survival and disease-specific survival revealed that the

prognosis of the four metabolic subgroups differed significantly

(p = 0.016; p = 0.047), which indicated that the classification of

the metabolic subtypes was clinically significant (Figures 4C, D).

ERBB2 expression was lower in the GG metabolic subtype than

in the other three subtypes (Figure 4E). To determine whether

the expression patterns of the newly established metabolic

subtypes could underlie differences among previously well-

known immune subtypes, we investigated various GC immune

subtypes for each sample in the study cohorts. As shown in

Figure 4F, the circle diagram describes the distribution of

tumour stage and grade across different metabolic subtypes.

The GG subtype had a significant prevalence of the

inflammatory phenotype, which may contribute to its

poor prognosis.
4.5.2 Mechanism exploration
Significant differences were found in survival outcomes

among patients with different metabolic subtypes. Mutation

profile analysis indicated some differences in SNV and CNV

mutations among the four subtypes (Figures S7A-C). Although

these differences were not significant, they may play a role in the

prognosis of patients with different metabolic subtypes. In

addition, we identified 673 specific molecules (involving 643

mRNAs, 16 miRNAs and 14 lncRNAs) for the quiescent

subtype, 1627 specific molecules (involving 1478 mRNAs, 121

miRNAs and 28 lncRNAs) for the GG subtype, 1936 specific

molecules (involving 1899 mRNAs, 1 miRNA and 36 lncRNAs)

for the AAG subtype and 1655 specific molecules (involving

1627 mRNAs, 13 miRNAs and 15 lncRNAs) for the mixed

subtype (Figure S8, Table S4–S7). Furthermore, the functional

annotation of specific molecules of different metabolic subtypes

was significantly different. The quiescent subtype was

characterised by the regulation of leukocyte migration,

epithelial cell development and differentiation, mitochondrial

respirasome and endoplasmic reticulum–Golgi intermediate

compartment (Figure 5A). The GG subtype was characterised

by enhanced cell adhesion, integrin binding, glycosaminoglycan

binding and regulation of cellular responses to growth factor

stimuli (Figure 5A). The AAG subtype was mainly enriched in
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the regulation of cellular amide metabolism, mitochondrial

protein-containing complex, nuclear DNA replication, mitotic

nuclear division and proteasome core complex (Figure 5A). The

mixed subtype was mainly enriched in the regulation of

chromosome segregation, mitotic cell cycle process,

spliceosomal complex and ubiquitin ligase complex (Figure 5A).

To further examine the abundance of immunocyte

infiltration in the tumour microenvironment, various

algorithms were used to estimate the levels of ICI across

different metabolic subtypes. Both ESTIMATE and Immune

Cell Abundance Identifier (ImmuneCellAI) algorithms
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revealed that a higher ICI score was detected in the GG

subtype (Figures 5B, C). Similarly, other ICI evaluation

algorithms (e.g. TIMER, CIBERSORT, QUANTISEQ,

MCPCOUNTER, XCEL, and EPIC) indicated that the

infiltration of cells involved in both innate and adaptive

immune responses including macrophages, CD8+ T cells, CD4

+ T cells and B cells was significantly higher in the GG subtype

(Figure 5D). In addition, the GG subtype exhibited relatively

higher expression levels of immune checkpoint genes

(Figure 5E). The high infiltration of immune cells in the GG

subtype may be a compensatory phenomenon in which the local
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FIGURE 4

Classification of the metabolic subtypes of GC based on the expression of alanine–aspartate–glutamate and glycolysis/gluconeogenesis
metabolism-related genes. (A) Scatter plot showing the median expression levels of coexpressed glycolysis/gluconeogenesis (X-axis) and
alanine–aspartate–glutamate (Y-axis) metabolism-related genes in each GC sample. Metabolic subgroups were assigned based on the relative
expression of glycolysis/gluconeogenesis and alanine–aspartate–glutamate metabolism-related genes. (B) Heatmap depicting the expression
levels of coexpressed glycolysis/gluconeogenesis and alanine–aspartate–glutamate metabolism-related genes in each subgroup. (C, D) Kaplan–
Meier survival analyses (OS and DSS) of patients with GC stratified based on metabolic subgroups. (E) Violin plot demonstrating ERBB2
expression in the four metabolic subtypes. (F) Overlay of metabolic subtypes (outer ring) with well-recognised immune subtypes of GC, tumour
stage and tumour grade (inner rings).
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FIGURE 5

Systematic analysis of the specific molecule functions and tumour immune microenvironment across different metabolic subtypes. (A)
Functional annotation of specific molecules of the alanine–aspartate–glutamate, glycolysis/gluconeogenesis, quiescent, and mixed subtypes. (B)
Violin plot demonstrating immune scores of the four metabolic subtypes evaluated using the ESTIMATE algorithm. (C) Violin plot demonstrating
the abundance of immune cell infiltration among the four metabolic subtypes evaluated using the ImmuneCellAI algorithm. (D) The distribution
of immune cell infiltration among the four metabolic subtypes based on the TIMER, CIBERSOFT, QUANTISEQ, MCPCOUNTER, XCELL and EPIC
algorithms (Note: Only immune cells with p < 0.05 were displayed in the heatmap). (E) Expression of immune checkpoint genes among the four
metabolic subtypes. * indicates p <0.05; ** indicates p < 0.01; *** indicates p < 0.001.
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immune function is suppressed by checkpoints, which may be

responsible for the poor prognosis of the GG subtype.
4.6 Targeted drug sensitivity analysis and
immunotherapy prediction

Metabolic remodelling has profound implications for the

prediction of chemotherapy response. The IC50 values of

popular chemotherapeutics and targeted drugs were

determined for each sample using the ‘pRRophetic’ R package.

As shown in Figure 6A, the GG subtype had lower IC50 values

for ponatinib (p < 2.2e−16), bexarotene (p = 6.3e−15),

dimethyloxalylglycine (p < 2.2e−16), pictilisib (p < 2.2e−16),

imatinib (p = 1e−09), pazopanib (p = 2.4e−13), PD173074 (p =

1.4e−13), crizotinib (p = 4.5e−10) and sunitinib (p = 1.6e−09),

indicating that patients with this subtype may be extremely

sensitive to these chemotherapeutic drugs. However, patients

with the mixed subtype were more sensitive to cisplatin (p =

0.015), doxorubicin (p = 1.6e−12), epothilone B (p = 3.1e−07),

gemcitabine (p = 1.7e−12), obatoclax mesylate (p = 1.2e−10) and

tipifarnib (p = 3.5e−06) (Figure 6B).

As depicted in Figure 6C, analysis performed using

ImmuneCellAI indicated that the quiescent and AAG subtypes

had a more favourable immunotherapy response, suggesting that

patients with GC with these subtypes might benefit from

immune checkpoint blockade treatment. Similarly, analysis

performed using TIDE demonstrated that the quiescent and

AAG subtypes had a lower exclusion score, indicating that

patients with GC with these subtypes were less likely to resist

immunotherapy (Figure 6D). In addition, analysis performed

using TCIA revealed that PD-1 blockage, CTLA4 blockage and

joint blockage might be more beneficial for patients with the

quiescent subtype (Figures 6E–G).
4.7 Pan-cancer characterisation of
glycolysis/gluconeogenesis and alanine–
aspartate–glutamate metabolism-related
genes and their relationship with
ERBB2 expression

Glucose and amino acid metabolism are important

mechanisms of energy uptake by tumour cells. The results of

previous analyses in this study validated that AAGmetabolism is

closely associated with the occurrence of GC, whereas AAG and

GG metabolism are closely related to HER2 expression in GC.

Moreover, patients with GC with different metabolic subtypes

have different clinical outcomes and require different treatment

strategies. Although many GG and AAG metabolism-related

genes have been explored in tumours, the pan-cancer

characterisation of GG and AAG metabolism-related genes is

not well summarised. Therefore, we examined the genomic and
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transcriptomic data, including mRNA expression, SNV, CNV,

prognostic values and DNA methylation levels of tumour and

healthy tissues across 20 cancer types (Figure S9, S10). GSEA

was used to investigate the related cell signalling of AAG and GG

metabolism in each cancer type based on the transcriptome of

two tumour groups with the top and bottom 30% of metabolism

scores. AAG and GG metabolism were found to be closely

associated with the hallmarks of classical oncogenic and

metabolic pathways (Figure S9, S10). Previous metabonomic

data revealed a close relationship between GG and AAG

metabolism and HER2 expression. In addition, pan-cancer

transcriptomic data validated the close relationship between

GG and AAG metabolism-related genes and ERBB2

expression (Figure S11).
5. Discussion

GC is distinguished by tumour heterogeneity at the genetic,

histological and phenotypic levels (41). Precise molecular

characterisation and customised therapies are critical for the

treatment of GC. Biomarkers, particularly HER2, are

increasingly used to guide systemic therapeutic methods and

help in the identification of patients with GC who may respond

to immunotherapy and targeted therapy (42). Although the

Lauren and the World Health Organisation classification are

two of the most widely used classification systems for GC, they

remain inadequate for individualised therapy (43). Recent

advancements in multi-omics technologies have facilitated the

investigation of GC at high resolution and at the molecular level.

Multi-omics data integration strategies across multiple cellular

function levels provide unprecedented insights into the

underlying pathophysiological mechanisms of cancers and

facilitate tumour classification, diagnosis and prognosis (44–

47). In the present study, based on HER2-related metabolic

pathways, we developed a novel multi-omics integration strategy

to reveal the metabolic heterogeneity of GC and its clinical

application value.

HER2 serves as a routine immunohistochemical indicator

for GC postoperatively and is critical in the assessment of

prognosis and targeted pharmacological intervention. In a

post-hoc study of patients with HER2 immunohistochemical

scores of 3+ or 2+ and fluorescence in situ hybridisation-

positive tumours, trastuzumab in combination with

chemotherapy improved the median overall survival compared

with chemotherapy alone (16.0 versus 11.8 months, respectively)

(48). Given the crucial role of HER2 in individualised tumour

intervention, we first characterised ERBB2 in multiple human

cancers in a multifaceted manner. The findings revealed that

ERBB2 expression was significantly upregulated in most tumour

types and was closely associated with tumour stage, grade,

recurrence, prognosis, immune microenvironment and

metabolic reprogramming. In addition, increased ERBB2
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expression was closely associated with a longer disease-free

period in patients with GC. More importantly, ERBB2

expression negatively regulated various innate and adaptive

immune responses but was positively correlated with the

activation of GG, AAG, sulfur and glycerophospholipid

metabolism in GC.

To examine the overall metabolic landscape of GC, we

performed metabolic profiling of 112 patients with GC and

112 healthy individuals using their serum samples. The results

revealed metabolic shifts during the pathogenesis of GC and
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identified a network of metabolic shifts associated with the

emergence and development of GC, including AAG, arginine,

glyoxylate and dicarboxylate metabolism. WMCNA was used to

determine three metabolic modules involving 34 candidate

metabolites that were significantly associated with HER2

expression. Among these coexpressed HER2 metabolites, L-

aspartic acid, a component of the AAG metabolic pathway,

was suggested to be the central metabolite in the

pathophysiological process of GC. Significant upregulation of

L−aspartic acid in GC was found to be closely associated with the
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FIGURE 6

Chemotherapy prediction and immunotherapy response evaluation. (A) Identification of nine targeted drugs beneficial for the glycolysis/
gluconeogenesis subtype. (B) Identification of six targeted drugs beneficial for the mixed subtype. (C) Prediction of immunotherapy outcomes
of each metabolic subtype using the ImmuneCellAI algorithm. (D) Violin plot demonstrating the immune escape capacity of each metabolic
subtype evaluated using the TIDE platform. (E) Distribution of IPS for PD1/PDL1/PDL2 inhibitors. (F) Distribution of IPS for CTLA4 inhibitors. (G)
Distribution of IPS for CTLA4 and PD1/PDL1/PDL2 inhibitors.
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stage, grade and type of tumour and HER2 expression. In

addition, these HER2-coexpressed metabolites were

predominantly enriched in AAG and GG metabolism, which

was consistent with the results of the transcriptomic analysis.

Tumours are both proliferative and metabolic. The

uncontrolled development of a tumour necessitates the

requirement of a vast amount of nutritious components (49).

In this study, HER2-related metabolic subtypes were clustered

based on multi-omics data and were found to be mainly related

to energy metabolism and anabolism. GC has distinct metabolic

profiles based on the expression of genes involved in GG and

AAG metabolism, which affects clinical outcomes and supports

the concept of targeting tumour metabolic plasticity as a method

of reprogramming an aggressive tumour type.

The Warburg effect refers to the increase in the rate of

glycolysis and anabolism, which is a typical metabolic feature of

tumours. In most tumours, high glycolysis is accompanied by

upregulation of oxidative phosphorylation, ensuring the

production of energy required for rapid tumour proliferation

(50, 51). At present, inhibition of oxidative phosphorylation is a

promising strategy for targeting cancer. Excess glycolytic

intermediates are converted to amino acids, nucleotides and

lipids, which are necessary to support cell growth, accompanied

by high lactic acid accumulation. Metastasis is the main cause of

the failure of cancer treatment. High concentrations of lactic acid

in the tumour microenvironment can contribute to tumour

metastasis. Malignant melanomas with high expression of

MCT1 can resist oxidative stress through excessive intake of

lactic acid, thus gaining invasion and metastasis abilities (52). In

addition, lactic acid generated during glycolysis in cancer cells

phosphorylates the transcription factor TFEB by activating

mToR1 and inhibits the degradation of HIF-2a lysosomes,

thus promoting the reprogramming of tumour-associated

macrophages and optimising the microenvironment for

tumour growth (53). Moreover, lactate acts as an intrinsic

inflammatory mediator, promoting the synthesis of interleukin

(IL)-17A by T cells and macrophages, thus promoting chronic

inflammation in the tumour microenvironment (54). The

interaction between tumour metabolites and immune cells

shows that lactate may contribute to immunological escape

(55). Extracellular lactate can block the development of

monocytes to dendritic cells (DCs) and inactivate the

production of cytokines by DCs and cytotoxic T cells, which

are critical for the antitumoural response (56, 57). Similarly, the

findings of this study revealed that GC with a glycolytic

phenotype had higher inflammation and a lower ERBB2

expression level, which was consistent with the role of

glycolysis in tumour aggressiveness and the inflammatory

milieu in GC.

Many non-essential amino acids are essential for cell growth

and serve as major carbon sources for tumour metabolism.

There are significant differences in glutamine uptake between

the tumour microenvironment and normal tissues. Studies have
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shown that g lu tamine metabol i sm in the tumour

microenvironment promotes tumour growth but impairs the

antitumour activity of immune cells (58). Glutamine not only

provides ATP for cells but also acts as an important carbon

source for the synthesis of lipids and non-essential amino acids.

Glutamine-derived carbon is the major substrate for de novo

lipid synthesis, whereas excess carbon and ammonia are safely

removed from cells to avoid the accumulation of ammonia (58).

Glucose and glutamine are both prominent substrates for the

intracellular hexosamine biosynthetic pathway (HBP), which is a

key pathway for the generation of glycosyl-based donors. SRPK2

is glycosylated to regulate de novo lipid synthesis in tumours

(59). The prognosis of GC subtypes dependent on AAG

metabolism is also poor. In this study, the mixed subtype had

the best outcome of all four subtypes. The possible reasons for

this phenomenon are as follows: Glutamine and aspartic acid

can be metabolised to alanine, which inhibits pyruvate kinase

activity and glycolysis in many different cells (60). In this study,

the glucose and amino acid metabolism of patients with GC with

the mixed subtype appeared to be exuberant. These two

metabolic pathways antagonise each other and maintain the

metabolic balance within the tumour. Therefore, patients with

the mixed subtype had better prognostic characteristics.

Furthermore, we examined the potential causes of

prognostic differences among different metabolic subtypes at

the transcriptomic level. First, we examined CNVs and SNVs in

the four metabolic subtypes and found slight differences in the

mutational spectrum of patients with GC with different

metabolic characteristics. Subsequently, functional enrichment

analysis of the specific molecules of each metabolic subtype

revealed that the GG subtype was closely related to cell adhesion,

integrin binding, glycosaminoglycan binding and growth factor

response, suggesting its association with a poor prognosis. In

add i t ion , the find ings revea l ed tha t the tumour

microenvironment of different metabolic subtypes showed

evident heterogeneity, and the GG subtype showed higher

levels of immune cell infiltration and expression of immune

checkpoint genes. One of the reasons for the worst prognosis of

patients with the GG subtype is that the overactivity of immune

checkpoints weakens the anti-tumour immune response in the

tumour microenvironment. In addition, the high infiltration of

immune cells is a compensatory phenomenon of local

immune incompetence.

Based on targeted drug analysis and prediction of

immunotherapy response in patients with GC with different

metabolic subtypes, we found that chemotherapy or targeted

therapy was more likely to be beneficial for the mixed and GG

subtypes, whereas immunotherapy might improve clinical

outcomes in patients with the AAG and quiescent subtypes.

Specifically, the glycolysis subtype was more sensitive to

ponatinib, bexarotene, dimethyloxalylglycine, pictilisib,

imatinib, pazopanib, PD173074, crizotinib and sunitinib;

however, the mixed subtype was more sensitive to cisplatin,
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epothilone B, gemcitabine, obatoclax mesylate and tipifarnib.

The quiescent subtype might benefit more from PD-1 and

CTLA4 inhibitors.

Finally, we examined genes regulating glycolysis and

alanine–aspartic acid–glutamate metabolism. The identified

metabol ic regulatory genes had evident mutat ion

characteristics in pan-cancer, especially GC; had differential

expression in many tumour types and were closely associated

with the clinical outcomes of tumours. In addition, the close

relationship between GG and AAG metabolism-related genes

and ERBB2 expression was validated at the pan-cancer

transcriptomic level. These findings may provide valuable data

for further study of glucose and amino acid metabolism in other

tumour types.
6. Conclusions

Transcriptomic and proteomic analyses highlight the close

association of HER2 level with the immune status and metabolic

features of patients with GC. Metabolomics analysis highlights

the co-expressed relationship between alanine, aspartate and

glutamate and glycolysis/gluconeogenesis metabolisms and

HER2 level in GC. The novel multi-omics integration strategy

used in this study successfully identified four types of GC

populations with different metabolic characteristics based on

HER2-associated metabolic pathways. The GG subtype was

characterised by lower ERBB2 expression, higher inflammation

and a poor prognosis. Contradictory features were determined

for the mixed subtype with the best prognosis. The GG and

mixed subtypes were highly sensitive to chemotherapy, whereas

the quiescent and AAG subtypes were more likely to benefit

from immune checkpoint inhibitors.
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SUPPLEMENTARY FIGURE 1

The mRNA expression profiles and prognostic performance of ERBB2 in
pan-cancer. (A) The mRNA expression of ERBB2 between tumour and

healthy tissues was assessed using tissues from TCGA database. (B)
Comparison of ERBB2 expression levels between tumour tissues from

TCGA database and healthy tissues from the GTEx database. Relationship
between ERBB2 expression and overall survival (C), disease-free interval

(D), disease-specific survival (E) and progression-free interval (F) in
pan-cancer.

SUPPLEMENTARY FIGURE 2

Correlation between ERBB2 expression and tumour stage, tumour grade

and tumour status.

SUPPLEMENTARY FIGURE 3

Correlation between ERBB2 expression and immune infiltration in
pan-cancer.

SUPPLEMENTARY FIGURE 4

Identification of differentially expressed metabolites and their related
metabolic pathways. (A) Volcano plot demonstrating the expression

profile of 1165 metabolites; a total of 859 metabolites exhibited

significant differential abundance (FDR < 0.05, fold change > 1.2 or < 5/
6) in the peripheral blood samples of patients with GC and healthy

volunteers. (B) Topology analysis of dysregulated metabolic pathways
associated with the occurrence of GC. The size of the bubble area

denotes the impact of each pathway, with a colour representing
significance from the highest in red to the lowest in white.
SUPPLEMENTARY FIGURE 5

Detailed processes of weighted metabolite co-expression network

analysis. (A) Clustering dendrogram of 51 samples to detect outliers
(white-to-red linear gradient colour associated with corresponding

HER2 expression). (B) The scale-free fit index for soft-thresholding
powers (b). (C) Mean connectivity calculation. (D) Evaluation of scale-

free topology with a b of 4. (E) Hierarchical clustering dendrograms of the

identified coexpressed metabolites in specific modules of GC. (F)
Distribution of average metabolite significance and errors in modules

associated with HER2 expression. (G) Heatmap demonstrating the
correlation between module eigenmetabolites and HER2 expression.
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SUPPLEMENTARY FIGURE 6

Identification of differentially expressed hub metabolites significantly
associated with GC stage, grade and type. Correlation between 34 HER2-

coexpressed metabolites and tumour (A) stage, (B) grade and (C) type. (D)
The expression distribution of the HER2-coexpressed metabolites

associated with tumour stage, grade and type in tumour and healthy
samples. Only metabolites with a p-value of <0.05 are demonstrated.

SUPPLEMENTARY FIGURE 7

Panoramic view of the (A) SNV, (B) CNV amplification and (C) CNV

deletion frequencies of the top 20 mutated genes across the four
metabolic subtypes.

SUPPLEMENTARY FIGURE 8

Panoramic view of the specific molecules (A: mRNA, B: miRNA, C:
lncRNA) of each metabolic subtype.

SUPPLEMENTARY FIGURE 9

Panoramic view of glycolysis/gluconeogenesis metabolism-related genes

in pan-cancer. (A) Changes in the mRNA expression of glycolysis/
gluconeogenesis metabolism-related genes across cancer types. The

frequencies of copy number variation (B) and single-nucleotide
variation (C) in diverse types of cancers. (D) Enrichment analysis for

cancer pathway signalling between tumour samples with high and low

enrichment scores of the genes. (E) Survival landscape of the genes across
cancer types. (F) Heatmap demonstrating the methylation levels of the

genes across cancer types.

SUPPLEMENTARY FIGURE 10

Panoramic view of alanine–aspartate–glutamate metabolism-related

genes in pan-cancer. (A) Changes in the mRNA expression of alanine–

aspartate–glutamate metabolism-related genes across cancer types. The
frequencies of copy number variation (B) and single-nucleotide variation

(C) in diverse types of cancers. (D) Enrichment analysis for cancer pathway
signalling between tumour samples with high and low scores of the

genes. (E) Survival landscape of the genes across cancer types. (F)
Heatmap demonstrating the methylation levels of the genes across

cancer types.

SUPPLEMENTARY FIGURE 11

Relationship between ERBB2 expression and glycolysis/gluconeogenesis
(A) and alanine–aspartate–glutamate (B) metabolism.
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