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Multifaceted role of SMCR8 as autophagy regulator
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ABSTRACT
Through autophagy intracellular material is engulfed by doublemembrane vesicles and delivered to lysos
omes for degradation. This process requires Rab GTPases, Rab GAPs and Rab GEFs for proper membrane
trafficking, since they control vesicle budding, targeting and fusion. Deregulation of autophagy
contributes to several human diseases including cancer, bacterial or viral infections and neurodegenera
tion. This review focuses on the complex roles of the newly identified protein SMCR8 and its interaction
partners during formation andmaturation of autophagosomes as well as regulation of lysosomal function
and further discusses their implication in neurodegenerative diseases such as ALS and FTD.
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Introduction

Cellular integrity depends on the equilibrium between
protein synthesis and degradation. Macroautophagy,
hereafter autophagy, is an intracellular recycling and
degradation pathway that is initiated at established
organelles and forms closed double membrane vesicles
termed autophagosomes. Enclosed in these vesicles is
captured heterogeneous cytosolic content such as pro-
tein aggregates, organelles and pathogens, which is
intraluminally degraded upon fusion of autophago-
somes with lysosomes. Since autophagy is highly
dependent on membrane trafficking, including mem-
brane fusion, fission and targeting, Rab GTPases as well
as their regulators, the Rab GTPase activating proteins
(GAPs) and guanine nucleotide exchange factors
(GEFs), are important key components for the auto-
phagic process. Among others, several Rab GTPases,
GAPs and GEFs like RAB7, Tre-2/Bub2/Cdc16 (TBC) 1
domain family member 25 (TBC1D25), RAB33B,
TBC1D2A, RAB3 GTPase activating protein catalytic
subunit 1 (RAB3GAP1) and 2, RAB24, RAB1, RAB11,
TBC1D14 and the transport protein particle (TRAPP)
complex have been studied intensively.1-7 Recent work
by several laboratories independently describes the Rab
GEF protein Smith-Magenis syndrome chromosome
region, candidate 8 (SMCR8) as new autophagy
modulator.

Tight association of the potential Rab GEFs SMCR8
and C9ORF72 with WDR41

Until recently, the SMCR8 gene was only known to be
deleted in several but not all patients having Smith-Magenis
syndrome.8,9 Based on predicted structural similarities with
folliculin (FLCN), SMCR8 was assigned as DENN (differ-
entially expressed in normal and neoplastic cells) domain-
containing Rab GEF protein in a bioinformatics analysis.10

The DENN domain conducts GDP-GTP exchange for Rab
GTPases and comprises 3 subdomains with a central
DENN and 2 flanking upstream DENN (uDENN) and
downstream DENN (dDENN) modules separated by long
linker regions.11

Using mass spectrometric (MS) approaches several
different groups simultaneously revealed that SMCR8 is
affiliated in a complex together with chromosome 9
open reading frame 72 (C9ORF72), also a predicted
DENN domain-containing Rab GEF and WD repeat
domain 41 (WDR41).10,12-20 As for SMCR8, the cellular
function of WDR41 and C9ORF72 remains enigmatic.
Insertion of hundreds of GGGGCC hexanucleotide
repeats within the first intron of the C9ORF72 gene is a
common cause of 2 neurodegenerative diseases termed
amyotrophic lateral sclerosis (ALS) and frontotemporal
dementia (FTD).21,22

Following these initial MS experiments, the interac-
tion of the SMCR8-C9ORF72-WDR41 complex subunits
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was confirmed both at exogenous and endogenous levels
in cells as well as with purified components in
vitro.12,16,20 SMCR8 and C9ORF72 were tightly associ-
ated as co-immunoprecipitation of C9ORF72 with
SMCR8 was found to be resistant to high amounts of salt
and detergent.16 In addition, overexpression or depletion
of C9ORF72 increased or reduced SMCR8 protein levels,
respectively and vice versa.15,16,19 Finally, size exclusion
chromatography determined co-migration of SMCR8
with C9ORF72 and WDR41 in a complex of about
600 kDa.18,20 In summary, these results demonstrate sta-
ble formation of an interdependent SMCR8-C9ORF72-
WDR41 complex.

The SMCR8-C9ORF72-WDR41 complex possesses
GEF activity

Two groups separately showed that the SMCR8-
C9ORF72-WDR41 complex provides GEF activity
toward RAB8A and RAB39B but also associates with
other Rab GTPases including RAB6A, RAB12, RAB25,
RAB33A and RAB38.12,18 While the catalytic active sub-
unit of the SMCR8-C9ORF72-WDR41 GEF complex is
not identified yet, experimental evidence does not point
to C9ORF72. First, recombinant C9ORF72 alone did not
enhance nucleotide exchange for RAB8A or RAB39B.10

Second, C9ORF72 interacted with the small GTPases
Arf1 and Arf6 without enhancing GDP exchange.23 In
contrast, lack of C9ORF72 surprisingly stimulated GTP-
bound levels of Arf6.23 Third, C9ORF72 preferentially
associated with GTP-bound RAB1A and therefore likely
is an effector protein and not a GEF of RAB1A.24 Inter-
estingly, C9ORF72 or SMCR8 alone interacted or local-
ized with additional, distinct Rab GTPases namely
RAB7, RAB11 and RAB31 or with RAB24, RAB32 and
RAB7L1/RAB29, respectively.12,18,24,25 The association of
SMCR8, C9ORF72 or both with several different Rab
GTPases give rise to a couple of potential Rab GTPase
cascades, which could ensure directional maturation of
vesicles, as described for RAB5 and RAB7.26 However, it
remains to be determined whether SMCR8 by itself pos-
sesses GEF activity for any of the associated Rab GTPases
or if the whole GEF complex is necessary. Likewise, how
SMCR8 or the GEF complex achieves target specificity
needs further investigation.12,18

Autophagy modulation by the SMCR8-C9ORF72-
WDR41 GEF complex

Intriguingly, numerous Rab GTPases, which associated
with the SMCR8-C9ORF72-WDR41 complex, are
known autophagy modulators.27 Moreover, SMCR8 as
well as C9ORF72 were identified as potential autophagy

regulators in an image-based RNAi screen.20 Further
functional characterization of SMCR8 and C9ORF72
confirmed their role in regulating the autophagic process.
However, their function remains poorly defined, espe-
cially since opposing data on the influence of C9ORF72
depletion on autophagy were reported. While 2 groups
observed increased LC3B lipidation upon knockdown of
C9ORF72,19,25 others demonstrated decreased LC3B lipi-
dation or LC3B-positive puncta.12,18,24 The latter was
especially apparent when autophagy was induced with
the mTOR inhibitor Torin1 or inhibited with Bafilomy-
cinA1.12,18,24 Accordingly, C9ORF72 overexpression
enhanced the number of autophagosomes.24 Since
impaired initiation or maturation of autophagy lead to a
similar LC3B lipidation phenotype, several groups per-
formed autophagy flux assays. This method is based on
fusion of red and green fluorescent proteins to LC3B to
generate a doubly tagged chimera reporter construct. In
immunofluorescence experiments autophagosomes
appear red and green and can be distinguished from
only red autophagolysosomes due to quenching of the
GFP fluorescence as consequence of the acidic pH in
lysosomes. While this assay most accurately assesses
modulation of autophagy, lack of C9ORF72 was found
to simultaneously induce a reduction and an increase in
the ratio between autophagosomes and autophagolyso-
somes.18,19 Intriguingly, loss of C9ORF72 caused accu-
mulation of p62-positive protein aggregates,12,24 and a
decrease in the p62 protein level.19 The protein p62 (also
known as sequestosome 1 (SQSTM1)) is an autophagic
cargo receptor that targets several substrates to autopha-
gosomes by which p62 is subsequently degraded.28 Typi-
cally, p62 aggregation is caused by maturation defects of
autophagosomes while reduced p62 levels are indicative
of enhanced autophagic flux.29 Due to these contrary
effects of C9ORF72 on autophagy, further investigation
is required to unequivocally establish how C9ORF72 reg-
ulates autophagy.

In SMCR8-lacking cells increased levels of lipidated
LC3B and LC3B-positive puncta were observed, which
again might be caused by enhanced autophagosome for-
mation or blocked maturation.18,20 On one hand several
experiments suggested a role of SMCR8 in autophagy
initiation. First, depletion of SMCR8 increased the num-
ber of WIPI2- (WD repeat domain phosphoinositide-
interacting protein), ULK1- (unc-51 like autophagy acti-
vating kinase) and FIP200/RB1CC1- (focal adhesion
kinase interacting protein of 200 kg Dalton (kDa)/RB1
inducible coiled-coil1) positive puncta, which are all
markers of autophagosome initiation sites.20 Second, in
the flux assay RFP-GFP-LC3B-positive puncta were
increased upon SMCR8 knockdown and further accu-
mulated after autophagy block with BafilomycinA1.20
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On the other hand, various experiments likewise sup-
ported an influence of SMCR8 in autophagosome matu-
ration.18,24 In another flux assays series, SMCR8-induced
enhancement of the number of autophagosomes was
unchanged upon treatment with leupeptin and pepstatin,
which block lysosomal degradation.18 Second, SMCR8
increased the protein level of p62 and the number of
p62-positive puncta.12,18 In summary, SMCR8 and
C9ORF72 seem to both have distinct roles in different
phases of autophagy including autophagosome forma-
tion and maturation.

Regulation of the SMCR8-C9ORF72-WDR41 complex
by post-translational modifications

As SMCR8-C9ORF72-WDR41 is a functional GEF com-
plex, the requirement of the GDP exchange capability in
the formation of p62-positive protein aggregates was
examined by expression of mutant variants of target
GTPases. A constitutive active version of RAB39B but not
RAB8A was able to reduce accumulation of p62-positive
puncta caused by depletion of either SMCR8 or
C9ORF72.12 Interestingly, SMCR8 was phosphorylated by
TBK1 at serine 402 and threonine 796.12 These TBK1-
dependent phosphorylations on SMCR8 might enhance
the GDP exchange rate toward RAB39B, since expression
of a TBK1-dependent phospho-mimicking SMCR8 vari-
ant inhibited protein aggregation in SMCR8, C9ORF72 or
TBK1 depleted cells like constitutive active RAB39B.12

Furthermore, RAB39B and the SMCR8-C9ORF72-
WDR41 complex interacted with the substrate adaptors
p62 and optineurin (OPTN), both of which are also phos-
phorylated by TBK1.12 GEF activity regulation via phos-
phorylation events has previously been observed. For
example, upon starvation the ULK1/2 complex phosphor-
ylates DENND3. This enhances the GEF activity of
DENND3 toward RAB12 and promotes autophagosome
trafficking.30 In addition to TBK1, AMPK-, mTORC1-
and ULK1-dependent phosphorylation sites were detected
on SMCR8, whereas C9ORF72 was not found to be post-
translationally modified in these studies.12,31,32 Reconstitu-
tion with an ULK1-dependent phospho-mimicking
SMCR8 variant left the SMCR8-induced p62-positive pro-
tein aggregates unaltered.12 Thus, regulation and function
of these phosphorylations on SMCR8 remain enigmatic.

Interaction partners of the SMCR8-C9ORF72-WDR41
complex function in autophagy

SMCR8 was not only phosphorylated by ULK1 but
the whole SMCR8-C9ORF72-WDR41 complex inter-
acted with the ULK1 complex.12,15,18,20,24,33 The
ULK1 complex is formed by the serine/threonine

kinase ULK1, FIP200, autophagy-related protein 13
(ATG13) as well as ATG101 and upon activation
phosphorylates multiple substrates, which then drive
autophagosome initiation.34-40 C9ORF72 and SMCR8
associated with all subunits of the ULK1 complex as
revealed by co-immunoprecipitation, pulldown and
size exclusion chromatography experiments.12,18,20,24

In contrast to the interaction between the SMCR8-
C9ORF72-WDR41 complex subunits, association of
the GEF and ULK1 complexes was enhanced upon
starvation, which suggests an important role of the
holo-complex in autophagy.18,20,24 Indeed, lack of
C9ORF72 inhibited translocation of the ULK1 com-
plex to the nascent phagophore in a RAB1A-depen-
dent manner upon autophagy induction.24 However,
a potential influence of SMCR8 in this process
remains to be investigated.

Concurrent with a function of SMCR8 and
C9ORF72 in autophagosome formation, their effect
on ULK1 kinase activity was investigated. SMCR8
depletion enhanced phosphorylation of the ULK1
substrates ATG13 and ATG14, while C9ORF72
knockdown surprisingly had the opposite effect on
ATG13 and none on ATG14 even upon autophagy
induction.20 The kinase activity of the ULK1 complex
can be inhibited by disrupting the binding of ATG13
and/or FIP200 to ULK1.38 Yet, neither overexpression
nor lack of SMCR8 impaired association of ULK1
and ATG13 at endogenous levels.20 Moreover, ULK1
kinase activity is modulated through phosphorylation
by upstream kinases such as mTORC1 and AMPK.41

Upon SMCR8 depletion AMPK kinase activity was
unaltered in respect to ULK1 phosphorylation, while
a decrease in phosphorylation of the mTORC1-depen-
dent substrates ULK1 and S6K1 (ribosomal protein S6
kinase B1) were reported.16,18,20 In addition, knock-
down of C9ORF72 repressed mTORC1 activity as
demonstrated via decreased S6K1 phosphorylation
and enhanced TFEB (transcription factor EB) translo-
cation into the nucleus.19 TFEB is a transcription fac-
tor that controls gene expression of numerous
autophagic and lysosomal proteins.41,42 Mechanisti-
cally, amino acid availability causes mTORC1-depen-
dent phosphorylation of TFEB on the lysosomal
surface, which retains TFEB in the cytoplasm via
association with 14–3–3 proteins.42-44 Upon amino
acid starvation mTORC1 is inactivated and addition-
ally TFEB is dephosphorylated by the calcium acti-
vated phosphatase calcineurin.45 In consequence,
unphosphorylated TFEB is released from 14–3–3 pro-
teins and hence can translocate to the nucleus where
TFEB regulates transcription of its target genes.46,47

Taken together, SMCR8 and C9ORF72 depletion both
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inhibit mTORC1 activity whereas substrate phosphor-
ylation of the downstream kinase ULK1 is modulated
antagonistically. This indicates mTORC1-dependent
and –independent regulation mechanisms of SMCR8
and C9ORF72 on the ULK1 complex, which requires
further investigation.

Transcriptional regulation of various autophagic
and lysosomal genes by SMCR8

While studying the modulation of mTORC1 and ULK1
by SMCR8, elevated ULK1 and S6K1 mRNA and protein
levels were observed upon SMCR8 depletion.18,20 A

Figure 1. Multifaceted role of SMCR8 and C9ORF72 in the autophagosomal and lysosomal pathway. SMCR8 and C9ORF72 were recently
implicated in autophagy with various, complex tasks in phagophore formation, autophagosome maturation and lysosomal function.
First, the SMCR8-C9ORF72-WDR41 complex provides GDP exchange for RAB39B, which is accelerated by TBK1-dependent phosphoryla-
tion of SMCR8 and promotes clearance of protein aggregates. SMCR8 is also phosphorylated by mTORC1, AMPK and ULK1 but their
impact remains enigmatic. Second, SMCR8 and C9ORF72 depletion differentially modulate the mTORC1 and ULK1 kinase complexes.
Third, C9ORF72 recruits the ULK1 complex to the nascent phagophore in a RAB1A-dependent manner but the involvement of SMCR8
was not studied. Finally, SMCR8 controls gene expression of several autophagy-related proteins including ULK1 and WIPI2.
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subsequent global mRNA expression analysis in cells lack-
ing SMCR8 identified numerous regulated autophagoso-
mal and lysosomal proteins, among them ULK1 and
WIPI2.20 While the majority of SMCR8 was clearly cyto-
plasmic, a small fraction of SMCR8 was also detected in
the nucleus and on chromatin at the ULK1 and WIPI2
gene loci.20 The SMCR8-induced gene expression regula-
tion seems to be independent of the SMCR8-C9ORF72-
WDR41 GEF complex, given that depletion of C9ORF72
or WDR41 left ULK1 protein levels unaltered.20,24 Since
bioinformatics analysis software fail to predict a clear
nuclear localization sequence or a DNA binding domain,
SMCR8 could be classified as a STRaND (shuttling tran-
scriptional regulators and non-DNA binding) protein.
STRaNDs translocate from the cytoplasm to the nucleus
and control gene expression via association with transcrip-
tion factors.48 Many transcription factors are known gene
expression modulators of ATG genes, any of which could
potentially cooperate with SMCR8.49 For example,
FOXO3 (forkhead box O3), p53 (tumor protein p53),
ATF4 (activating transcription factor 4) or ZKSCAN3
(KRAB and SCAN domains 3) all regulate ULK1 gene
expression.49,50 The latter further modulates WIPI mRNA
just as TFEB.46,51,52 Yet, several questions remain unan-
swered about the gene expression regulation by SMCR8.
First, how does SMCR8 translocate into the nucleus and
which upstream signals are responsible for its nuclear
localization? Potentially, phosphorylation of SMCR8 is
involved in its translocation analogous to TFEB. Second,
is SMCR8-induced transcriptional regulation coupled with
transcription factors and if yes which ones? Also, does
SMCR8 trigger histone or DNA modifications to modu-
late gene expression as shown for several autophagy
genes?49

Involvement of C9ORF72 and SMCR8 in lysosomal
function and disease development

Both, C9ORF72 and SMCR8 are localized in the nucleus,
throughout the cytosol and on lysosomes.12,16,18,20,24,25,53

Concurrent with the latter, swollen lysosomes clustered in
the perinuclear region in C9ORF72 knockout cells.16,54

Moreover, C9ORF72 knockout mice showed lysosomal
defects such as increased protein levels of lysosomal asso-
ciated membrane protein 1 (LAMP1), prosaposin and
progranulin as well as proteolytically processed cathepsin
D and L.15,18,54 Consistent with these observations, several
lysosomal proteins including LAMP2 were found upregu-
lated in their mRNA and protein abundance in SMCR8
knockdown cells.20 Interestingly, lysosomal dysfunction is
connected to ALS and FTD.55-58 These neurodegenerative
diseases are characterized by formation of intracellular
protein aggregates in neurons.59-64 A large cohort of ALS/

FTD patients carry hexanucleotide repeat expansions in
the C9ORF72 intron region that confer cellular toxicity
via several non-exclusive mechanisms.59,60 First, sense and
antisense hexanucleotide transcripts accumulate as nuclear
RNA aggregates, which typically sequester RNA binding
proteins.65-68 Second, the hexanucleotide transcripts are
translated and resulting polypeptides form cytoplasmic
aggregates.69-72 Third, the GGGGCC repeat expansion
interferes with C9ORF72 mRNA expression leading to
reduced C9ORF72 protein levels.22,73,74 However, the con-
tribution of decreased C9ORF72 protein abundance to
ALS/FTD is controversially discussed. In zebrafish
C9ORF72 knockdown induced a motor deficiency,
whereas C9ORF72 knockout mice displayed immunologi-
cal phenotypes and a shortened life-span but no overt
neurodegeneration occurred.15,19,54,55,75-77 However, lack of
C9ORF72 or SMCR8 impaired clearance of p62-positive
aggregates and resulted in reduced survival of cultured
neurons when aggregate prone proteins like Ataxin-2
(ATXN2) were overexpressed.12,24 ATXN2 associates with
RNA to control mRNA stability as well as metabolism, is
prone to aggregate and is frequently mutated in ALS/FTD
patients.60-63,78-80 Other genetic modifications promoting
ALS/FTD include several autophagy cargo receptors,
namely p62 and OPTN as well as regulatory autophagic
proteins such as TBK1 and charged multivesicular body
protein 2b (CHMP2B).81-86 Finally, neuronal cells of ALS
patients carrying mutated C9ORF72 display impaired
autophagy induction after Bafilomycin A1 treatment.24

These findings indicate an important contribution of auto-
phagy in the development of ALS and FTD.

Concluding remarks

Multiple groups recently focused their attention on
SMCR8 and identified overlapping and distinct tasks for
this DENN domain-containing protein in the autopha-
gosomal and lysosomal pathway.12-16,18-20,24 In summary,
SMCR8 controls gene expression and as subunit of the
SMCR8-C9ORF72-WDR41 complex provides proper
lysosomal function and modulates autophagy via
mTORC1, ULK1 and its target Rab GTPase RAB39B
(Fig. 1). All of these regulation mechanisms might con-
tribute to the pathogenesis underlying ALS/FTD.
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