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The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing re-

mains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for de-

tecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded

structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel

positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic

scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV

subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS

halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS

identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score

for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis.

[Supplemental material is available for this article.]

Structural variants (SVs) play a significant role in the development
of cancer and other diseases. While significant progress has been
made on detection of SVs, they remain less well studied than single
nucleotide variation, in part due to challenges in their reliable
identification from short-read sequencing data.

Many methods exist to identify SVs using high-throughput
sequencing data. These all use one or more of three forms of evi-
dence: read depth, split reads, and discordantly aligned read pairs.
Changes in read depth (RD) are associated with copy number var-
iants and imply genomic rearrangements, but when using RD
alone, genomic fusion partners cannot be resolved and breakpoint
positions are imprecise. Rather, resolution is dependent on the
overall sequencing depth and the selected window size used in
the analysis. Using paired-end sequencing, clusters of discordantly
aligned read pairs (DPs)—i.e., read pairs that alignwith unexpected
orientation or separation, or to different chromosomes—can be
used to infer the presence of a breakpoint. Since these are in the
unsequenced part of the DNA fragments, DPmethods do not iden-
tify exact breakpoint locations. Single nucleotide resolution of SVs
is important for predicting possible fusion gene products or the im-
pact of a promoter translocation, identifying disrupted tumor sup-

pressors, determining the DNA repair mechanism responsible for
the SV, and investigating motifs associated with the breakpoint.
This is obtained using split reads (SR), where the sequenced reads
span the breakpoint. SR methods find breakpoints by identifying
split alignments in which part of the read aligns to either side of
a genomic rearrangement, either through direct split read map-
ping by read aligner, realignment of soft clipped (SC) bases (un-
aligned bases in partially mapped reads), or split alignment of
the unmapped (UM) read in one-ended anchored (OEA) read pairs
(read pairs with only one read mapped) (Kidd et al. 2008). These
three forms of evidence can be combined in different ways; for
example, DELLY combines DP and SR evidence (Rausch et al.
2012), while LUMPY (Layer et al. 2014) uses all three types.

To improve SV calls, short read assembly has also been incor-
porated into methods in a variety of ways. Assembly of reads ob-
tained from clusters of SC reads (e.g., CREST [Wang et al. 2011])
or OEA read pairs (e.g., NovelSeq [Hajirasouliha et al. 2010]) has
been used to form break-end contigs, which extend out and span
the breakpoint from each side. In contrast, breakpoint contigs
are generated by local assembly of all reads supporting a rearrange-
ment, generating a single contig supporting the variant. Some
methods apply targeted assembly to validate the breakpoint calls
(e.g., Manta [Chen et al. 2016], SVMerge [Wong et al. 2010],
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TIGRA [Chen et al. 2014]). Windowed breakpoint assembly
has been used (e.g., SOAPindel [Li et al. 2013], DISCOVAR
[Weisenfeld et al. 2014]), but detection is limited to events smaller
than the window size. Whole-genome de novo assembly has also
been used for variant calling (e.g., Cortex [Iqbal et al. 2012]), but
its use has been limited, in part due to the computational expense
compared to alignment-based approaches.

Here, we present a novel approach to predicting genomic re-
arrangements from DNA sequencing data, GRIDSS (Genome
Rearrangement IDentification Software Suite), which provides
multithreaded variant calling from a combination of assembly,
split read, and read pair support. The philosophy underpinning
GRIDSS is to maximize sensitivity and prioritize calls into high
or low confidence, thereby maintaining specificity in the high-
confidence call set. To achieve this, we take a three-step approach.
First, we filter out reads that align properly; i.e., we extract all reads
that might provide any evidence for underlying genomic rear-
rangements. Second, we perform assembly of all remaining reads
using a novel algorithm that utilizes information from the align-
ment to constrain the assembly. We term this genome-wide
break-end assembly, as each contig corresponds to a break-end
and only after assembly is the underlying breakpoint and partner
break-end identified. Unlike existing break-end assemblers that
perform targeted assembly of soft clipped or one-end anchored
reads, our approach performs genome-wide assembly of all SC,
SR, DP, OEA and indel-containing reads. Similar to split read iden-
tification from soft clipped reads, breakpoints are identified by re-
alignment of break-end contigs. Finally, we apply a probabilistic
model that combines break-end contigs from each side of the rear-
rangement with SR and DP evidence to score and call variants.

To perform the genome-wide break-end assembly, we devel-
oped a novel assembly approach specifically for the task by extend-
ing a positional de Bruijn graph data structure. Originally
developed for small indel and base calling error correction of de
novo assembly contigs (Ronen et al. 2012), positional de Bruijn
graphs add positional information to each node, transforming
them into a directed acyclic graph and making use of valuable in-
formation generated by the aligner. With appropriate optimiza-
tion, this is computationally efficient at the genome scale and
reduces depth of coverage needed and memory requirements for
accurate assembly. To make the best use of data from related sam-
ples, sequencing libraries are tracked in the de Bruijn graph using
color (Iqbal et al. 2012), and evidence supporting rearrangements
is shared between libraries during assembly and variant calling.
Since the assembled contigs are longer than the read length, this
improves performance in regions of poor mappability. Meaning-
fully scored variants and a set of useful default filters make GRIDSS
easy to use but also a powerful tool for advanced users, who, armed
with prior knowledge about expected rearrangements, can identify
relevant calls with low support.

Results

The GRIDSS pipeline comprises three distinct stages: (a) Extrac-
tion; (b) Assembly; and (c) Variant Calling (Fig. 1).

In the Extraction stage, GRIDSS takes as input any number of
SAM/BAM alignment files and calculates a number of summary
statistics for each sequencing library. SRs are identified by realign-
ment of the unaligned 3′ or 5′ “soft clipped” read bases back to the
reference genome. DPs consist of read pairs aligned with inferred
fragment sizes shorter or longer than 99.5% of read pairs, in the
wrong orientation, or to different chromosomes. All SC, DP, OEA

and indel-containing reads are then extracted. At this stage, no
breakpoint calling has been undertaken. Reads are scored accord-
ing to the likelihood of originating from the reference allele based
on the read mapping quality, the empirical distributions of the
read alignment and library fragment size, and read mapping rate.
Extracted reads are passed to the assembly stage, with split reads
and discordant read pairs also passed to the variant calling stage.

In the assembly stage, reads are decomposed into a sequence
k-mer of k consecutive bases. These k-mers and their genomic loca-
tions are incorporated into a positional de Bruijn graph. K-mers are
considered anchored if the originating read aligns to the reference
for all k bases and these anchoring k-mers are used to constrain the
positions in which a read can be assembled. Unanchored k-mers
from soft clipped reads are placed as if the read were fully mapped.
Split and indel-containing reads are treated as two independent
soft clipped reads—one for each alignment location. OEA read k-
mers are placed at all positions compatible with the alignment of
the mapped read and the DNA fragment size distribution, with
DPs treated as two independent OEA read pairs. Each read k-mer
is weighted according to the constituent base quality scores and
variant support score, with graph nodes weighted by the cumula-
tive supporting weights. Error correction is performed to remove
spurious paths caused by sequencing errors. Break-end contigs
are iteratively identified by finding the highest weighted unan-
chored path and extending into anchoring k-mers if present. To
ensure each read supports only a single contig, reads supporting
each break-end contig are removed from the graph when the con-
tig is assembled. Unaligned contig bases are iteratively aligned to
the reference genome to identify all genomic rearrangements
spanned by the assembly. Data streaming and graph compression
is used extensively to keep the assemblymemory footprint below 2
GB per thread.

Variant calling occurs in the final stage of GRIDSS. Variants
are identified from the overlap in predicted breakpoint positions
of assemblies, SRs, and DPs. After identifying and scoring all over-
lapping support sets, each SR, DP, and assembly is then assigned to
the highest scoring variant it supports. High-scoring variants with
assembly support fromboth break-ends are considered high-confi-
dence calls. Nontemplate sequence insertions as well as exact
microhomologies and large imperfect homologies are automatical-
ly identified in the variant calls.

Performance on simulated data

To assess the performance of GRIDSS, we simulated heterozygous
structural variants with a range of event types (deletion, insertion,
inversion, tandem duplication, translocation) and sizes (1 base
pair [bp] to 65 kilobase pairs) on human Chromosome 12
(hg19). We compared the GRIDSS results to eight other tools
(BreakDancer [Chen et al. 2009], Pindel [Ye et al. 2009], DELLY
[Rausch et al. 2012], Hydra-Multi [Lindberg et al. 2015], LUMPY
[Layer et al. 2014], Socrates [Schröder et al. 2014], Cortex [Iqbal
et al. 2012], and Manta [Chen et al. 2016]) (Supplemental Figs.
S1, S2; see Supplemental Material for details).

For parameters typical of tumor genome sequencing (60×
coverage of 100-bp paired-end reads with a mean fragment size
of 300 bp), GRIDSS obtained near-perfect sensitivity across the
widest range of event types and sizes (Fig. 2), albeit with Pindel
having greater sensitivity on small (<50-bp) events and only the
de novo assembly-based caller Cortex able to detect large inser-
tions. For both random breakpoints and breakpoints in SINE/Alu
elements, GRIDSS obtained the highest F-scores (Supplemental
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Table S1). BreakDancer, DELLY, and Pindel all incorrectly classified
breakpoint events as inversion events. When considering caller-
reported microhomologies, Cortex, Manta, and GRIDSS identified
breakpoints exactly (Supplemental Fig. S14). Except for the
detection of insertion events using Cortex, GRIDSS obtained a
higher precision than other callers with comparable sensitivity
(Supplemental Fig. S2). Analysis against hg38 does not negatively
impact GRIDSS performance.

To explore the impact of read length (36–250 bp), DNA frag-
ment size (100–500 bp), sequencing depth (4–100×), and aligner
(BWA, NovoAlign, Bowtie 2), GRIDSSwas applied to a comprehen-
sive simulation (see Supplemental Material for further details). For
reads 50 bp or longer, GRIDSS is able to reliably call and assemble
heterozygous genomic fusions at 30× coverage regardless of align-
er or fragment size, although some libraries (such as 100-bp
paired-end reads with 500-bp fragment size) require as little as
8× coverage. Overall, the F1-scores of GRIDSS show improved
call quality for increasing read length, read depth, and fragment
size (Supplemental Figs. S3, S4). For reads 50 bp and shorter,
long fragment sizes result in fragmented assembly when using
the k-mer of 25 (Supplemental Fig. S6). While the precision of calls
supported by single-sided or no assembly decreased with coverage

as expected, precision of calls supported by reciprocal breakpoint
assembly remained near 100% regardless of sequencing depth,
read length, library fragment size, or aligner (Supplemental Fig.
S5). This demonstrates that requiring reciprocal break-end assem-
bly support, as used by GRIDSS and some other callers (e.g., Wang
et al. 2011), is a simple yet powerful false-positive filter. Although
frequently overlooked or uncontrolled in experimental designs,
our simulation results confirm the significant impact library frag-
ment size has on structural variant calling. Unlike single nucleo-
tide and indel calling, which are relatively independent of
library fragment size, the impact of library fragment size on struc-
tural variant calling can be the equivalent of up to a twofold
change in coverage.

Performance on cell line data

We next tested GRIDSS on several real sequencing data sets. First,
GRIDSS was applied to short-read sequencing data from the
NA12878 Illumina Platinum Genomes cell line (50× coverage
PCR-free 2×100 bp, accession ERA172924), along with several oth-
er structural variant callers. Callers were evaluated against both cu-
rated validated call sets (Mills et al. 2011; Layer et al. 2014) and

Figure 1. Outline of the GRIDSS pipeline. (A) Soft clipped and indel-containing reads as well as discordant and one-ended anchored read pairs are ex-
tracted from input BAM files. Split reads are identified through realignment of soft clipped read bases. (B) Extracted reads are added to a positional de
Bruijn graph in all positions consistent with an anchoring alignment. Break-end contigs are identified by iterative identification of the highest weighted un-
anchored graph path followed by removal of supporting reads. Unanchored contig bases are aligned to the reference genome to identify all breakpoints
spanned by the assembly. (C ) Variants are called fromassembly, split read, and readpair evidence using a probabilisticmodel to score and prioritize variants.
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against PacBio and Illumina TruSeq Synthetic Long-Read technol-
ogy (Moleculo) (Sudmant et al. 2015). As previously (Mills et al.
2011), only deletions longer than 50 bp were considered. So as
to not unfairly penalize imprecise callers such as BreakDancer, calls
were considered true positives if the breakpoint position error was
less than the library fragment size and the event length differed by

at most 50% from the validated call set. For the long reads, variant
calls required at least three split reads (with each split alignment
mapping at least 25% of the long read), or seven reads containing
a corresponding indel, to support the event. ROC curves for other
callers were obtained by varying the required number of support-
ing reads as reported by the caller.

Figure 2. Variant caller performance on simulated heterozygous genomic rearrangements. Different classes of genomic rearrangement were randomly
generated against humanChr 12 (hg19), and 60× coverage of 2×100-bp sequencing datawas simulated. (A) The sensitivity of eachmethod (rows) for each
event type (columns) is plotted against event size. (B) Receiver operating characteristic (ROC) curves for all breakpoints (left) and breakpoints located in
SINE/Alus (right).
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For both validated call sets, GRIDSS exhibits considerably bet-
ter performance characteristics than other callers (Fig. 3). When
compared to the Mills et al. (2011) call set, GRIDSS was able to
identify the first 1000 true positives with a false discovery rate of
7% (3% using long-read validation data), compared to the next
closest method, LUMPY, at 11% (7%).

To determine the relative contributions of split read, read
pair, and assembly support, GRIDSS was run on read pair and split
read subsets with and without assembly. As expected, using more
of the available evidence results in better variant calls (Fig. 4).
Assembly improves variant calling for DP and DP+SR evidence
but does not improve SR alone, as the assembly contig lengths
are limited to the length of the longest soft clip.

To understand the contribution of the positional de Bruijn
graph assembly, we tested a windowed break-end assembler using
a traditional de Bruijn graph (see the Windowed de Bruijn graph
assembly section of the Supplemental Methods) in the GRIDSS
framework. By restricting variant scoring to consider only assem-
bly-based support, we compared windowed and positional assem-
bly across a range of k-mer sizes against the long-read orthogonal
validation data set. Positional de Bruijn graph assembly exhibited
a minimal drop in performance from k-mers 31 bp to 22 bp, while
windowed assembly performance was highly sensitive to k-mer

size, and sensitivity and specificitywerewell below those of the po-
sitional assembly for all k-mers tested (Fig. 4). The poor perfor-
mance of windowed assembly was traced to the incorrect
assembly of k-mers occurring in multiple positions within the as-
sembly window (Supplemental Figs. S9, S10). As expected, this
phenomenon was especially pronounced in simple repeats and re-
gions of low complexity (Supplemental Figs. S7, S8). As this mode
of misassembly does not occur in positional de Bruijn graph as-
sembly, GRIDSS is able to perform assembly with shorter k-mers
and therefore at lower coverage than either windowed or de
novo assembly.

Application to complex genomic rearrangements

To evaluate the performance of GRIDSS on complex genomic rear-
rangements, SVs were predicted in three published cancer-associ-
ated neochromosome data sets (accession ERP004006) (Garsed
et al. 2014; see Supplemental Materials for further details). Each
neochromosome contains hundreds of genomic rearrangements
identified from the integration of copy number and discordantly
aligned read pairs, followed by extensive manual curation. A
high concordance with the 1010 curated SVs was obtained, with
GRIDSS detecting 98% of the curated calls, 92% with high confi-

dence (Supplemental Fig. S12). GRIDSS
obtained a higher concordance with the
previously published curated results than
other tested methods (BreakDancer, Cor-
tex, DELLY, LUMPY, Hydra-Multi, Pindel,
and Socrates) (Supplemental Table S2).

GRIDSS also refined the original call
set in three ways. First, GRIDSS calls were
made to single-nucleotide resolution.
Second, GRIDSS was able to identify
414 additional high-confidence break-
points; the majority (66%) of these were
missing from the curated call set because
they were supported by fewer read pairs
than the fixed threshold applied in the
original analysis or were within 1000 bp
of another SV (potentially an issue due
to the use of DP evidence alone). Finally,
in 5% (64) of the SVs, GRIDSS was able
to refine events classified as simple geno-
mic fusions between two locations (A
and B) that were in fact compound geno-
mic fusions (from locations A to C to B),
where the fragment C was short. In these
events, GRIDSS was able to assemble a
breakpoint contig at A, fully spanning
the C fragment, with the remainder of
the contig unambiguously aligning to
B. A further 31 compound genomic fu-
sions were identified in which the
spanned fragment could not be unam-
biguously placed. While pure split read
methods should also detect these com-
pound rearrangements, the order in
which DP and other evidence is applied
and how it is applied will impact
whether other methods can detect
these features. This further refines the
picture of complex rearrangements in

Figure 3. Performance of different SV callers on deletion detection in NA12878 at 50× coverage.
Multiple variant calls were compared to both the Mills et al. (2011) validation call set (A,B) and
PacBio/Illumina Tru-Seq Synthetic Long-Read (Moleculo) orthogonal validation data (C,D). Plots show
the number of true positives versus false positives (A,C ) and the precision versus true positives (B,D).
Long-read validation required three split, or seven spanning long reads supporting the call.

Cameron et al.

2054 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222109.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222109.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222109.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222109.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222109.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222109.117/-/DC1


neochromosomes and provides single-nucleotide resolution of
DNA breaks.

Application to cancer samples

The ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge
was an international effort to improve methods for identifying
cancer-associated mutations and rearrangements in whole-ge-
nome sequencing (WGS) data (Boutros et al. 2014). GRIDSS com-
peted in and won subchallenge #5 (https://www.synapse.org/#!
Synapse:syn312572/wiki/61498). GRIDSS also performed well as
a late entry in historical subchallenge #4, where it was among
the best performing tools and detected the highest number of
true positive SVs (2950 of 3336 SVs, 0.8843 sensitivity, 0.9749
precision).

To demonstrate the clinical utility of the low false-discovery
rate of the GRIDSS high-confidence call set, GRIDSS was used to
identify patient-specific DNA biomarkers from tumor biopsies
for monitoring of cell-free DNA (Do et al. 2016). Somatic rear-
rangements were predicted from 40× coverage WGS of primary
lung cancers from two patients without matched germline data
(see Supplemental Materials for details). Primers were designed
for eight candidate SVs from the GRIDSS high-confidence call set
(four from each patient), and all eight SVs were validated by real-
time PCR (only six were somatic, the remaining two were found
to be real germline SVs).

Next, GRIDSS was compared to results from two previously
published cancer data sets. First, SVs were identified from sequenc-
ing data from a melanomametastasis and matched germline sam-
ples (60× coverage tumor; 30× coverage normal) (Schröder et al.
2014). GRIDSS detected 492 SVs with high confidence and
1,050,525 with low confidence. Of these, 851,981 were supported
by three or fewer reads/read pairs. Of the eight somatic events pre-
viously predicted by Socrates and validated by PCR (Schröder et al.
2014), all eight (100%) were identified by GRIDSS with high
confidence.

Finally, GRIDSS was run onDNA-seq data from the HCC1395
breast cancer cell line and results compared to the published geno-
mic breakpoints, which were predicted to be associated with “vali-

dated” fusion genes (Zhang et al. 2016).
GRIDSS showed strong concordance
with the published results (Supplemental
Table S3). Using a 21× coverage subset of
the HCC1395 WGS data (only 21× of
the 63× is publicly available), GRIDSS
identified 23 of the 26 published geno-
mic breakpoints (22 with high confi-
dence, one with low confidence) and
failed to identify one breakpoint (manual
inspection showed no supporting reads
werepresent in theavailabledata). The re-
maining two calls not identified by
GRIDSS appear to be false positives
caused by read-through transcription
(see Supplemental Materials for details).
Additionally, GRIDSS identified genomic
breakpoints associated with a further
three of the validated fusion genes.

Application to Plasmodium falciparum
genome data

To test the behavior of GRIDSS on a chal-
lenging AT-rich nonmammalian genome, it was applied to a labo-
ratory strain of Plasmodium falciparum that was genetically
modified for use as a live, attenuated malaria vaccine (C5) and to
the parental 3D7population (accession PRJE12838). In the vaccine
candidate, a Plasmodium gene KAHRP was knocked out by inser-
tion of a construct containing a processed copy of the human
DHFR transcript. In addition to identifying the insertion of the
construct into the KAHRP locus, GRIDSS detected eight of the
nine exon-splicing events associated with the processed DHFR
transcript with high confidence, while the ninth splicing event
was found in the low-confidence call set. This demonstrates the
value of GRIDSS’ sensitivity and prioritization of calls. Finally, a
tandem duplication was also identified by GRIDSS in one of the
var gene regions and supported by a copy number change (Fig.
5). Var genes are a large and complex gene family, and the var
gene regions are prone to recombination. The duplication was
clonal in the C5 candidate and present at low frequency in the pa-
rental population (supported by one read), which was utilized in
the positional de Bruijn graph to identify the rearrangement.

Discussion

We have developed the GRIDSS software package, which performs
genome-wide break-end assembly and combines assembly, split
read, and discordant read pair evidence using a probabilisticmodel
to identify and score structural variants. It automatically detects
nontemplate sequence insertions and both exact microhomolo-
gies and large imperfect homologies. Through comparison with
existing split read, read pair, assembly-as-validation, and de novo
assembly approaches on both simulated and real data, we have
shown that our approach significantly improves both sensitivity
and specificity of variant calling and that this improvement is
achieved by performing break-end assembly of SR, DP, OEA, and
SC reads prior to variant calling. We also demonstrated that
GRIDSS is effective on real data fromhuman tumors as well as non-
mammalian organisms.

GRIDSS is designed to make the most of available evidence.
The break-end assembly algorithm is able to make use of SR, DP,

Figure 4. Performance of GRIDSS variant calling and assembly on NA12878 deletions events using
long-read orthogonal validation data. Precision versus the number of true positives for different types
of support (A) and for different k-mer sizes (B). Assembly of both split reads and read pairs improves
both sensitivity and specificity to levels not achievable by either evidence source. Scoring only assem-
bly-supported variants and varying the type of assembly and k-mer size demonstrates that robust small
k-mer break-end assembly can be achieved with positional de Bruijn graph assembly but not windowed
de Bruijn assembly.
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OEA, SC, and indel-containing reads and utilizes information gen-
erated by the aligner via a positional de Bruijn graph. By combin-
ing SR, DP, and assemblies into a unified probabilistic model,
GRIDSS is able to call variants even in the absence of any two of
these signals. Such an approach is a distinct advantage over callers
such as DELLY that require a threshold signal strength in one sig-
nal before considering any others. Fundamentally, GRIDSS detects
SV breakpoints and has been designed to handle complex rear-
rangement scenarios where assumptions regarding ploidy cannot
be made. Both genotyping and incorporation of read depth is
left to downstream programs such as SVTyper (Chiang et al.
2015) and CONSERTING (Chen et al. 2015).

GRIDSS is designed to be highly sensitive and not miss any
putative genomic rearrangements. GRIDSS uses variant score and
the presence of assembly support from both sides of the rearrange-
ment to classify variants as high- or low-confidence. The high-con-
fidence set provides an immediately usable call set with high
specificity, which is particularly important in clinical applications.
The retention of low-confidence calls enables analysis requiring
high sensitivity.

Our novel genome-wide break-end assembly approach is
made possible through the utilization of a positional de Bruijn
graph to incorporate read alignment constraints into the graph
structure itself. This allows us to perform genome-wide assembly
without targeting or windowing and use a k-mer size half that re-
quired for de novo de Bruijn graph assembly. This small k-mer in
turn results in improved assembly at lower levels of coverage.
Although our approach results in a graph two orders of magnitude
larger than the equivalent de novo assembly de Bruijn graph, we
are able to perform genome-wide break-end assembly faster than
a number of existing targeted breakpoint assembly implementa-
tions through graph compression, data streaming,multithreading,
reference-supporting read exclusion, and extensive use of dynamic
programming and memoization. By demonstrating that GRIDSS
performance is comparable to existing callers when only discord-

ant read pairs or split reads are considered, we show that it is the
novel incorporation of positional de Bruijn graph-based whole-ge-
nome break-end assembly into the variant calling process that is
the key to the superior performance of GRIDSS.

Methods

GRIDSShas been designed for 36- to 300-bp Illuminapaired-end or
single-end DNA sequencing data and accepts any number of coor-
dinate sorted SAM, BAM, or CRAM input files, with no require-
ment for matching read lengths between input files. Mate-pair
libraries are currently not supported. User-supplied categories for
each input file allow for somatic andmultisample callingwith sup-
port and variant scoring broken down per category. Variant calls
are output to VCF using the break-end notation (VCFv4.2).

Extraction of supporting reads

An initial parse of the read alignments is performed to collect li-
brary metrics. Metrics are calculated independently for each input
file, thus allowing libraries frommultiple related samples (or unre-
lated samples from a population) to be processed together. The fol-
lowing metrics are gathered in the initial pass for each input file:
read alignment CIGAR element length distribution, fragment size
distribution, and counts of total reads, mapped reads, unmapped
reads, total read pairs, read pairs with both reads unmapped, read
pairs with one read unmapped, read pairs with both readsmapped,
maximum read length, and maximum mapped read length. The
fragment size distribution is calculated using Picard (http://
broadinstitute.github.io/picard) CollectInsertSizeMetrics.

Next, reads partially aligning to the reference (reads contain-
ing indels or soft clipped bases) and read pairs in which the in-
ferred fragment size falls outside the expected fragment size
distribution (default shorter or longer than 99.5% of read pairs)
of the library, with incorrect orientation, or with only one read
mapped are extracted to intermediate files. GRIDSS does not utilize

Figure 5. A tandemduplication identified in a var gene region of the AT-rich Plasmodium falciparum. Coverage is shown for two samples of P. falciparum—

a genetically modified line (C5), which was derived from the parental laboratory strain (3D7). The AT-rich genome shows high coverage in genes, which
drops to very low levels in the AT-rich nonexonic regions. A change in copy number is apparent in the C5 coverage. GRIDSS detected the underlying tan-
dem duplication in the C5 vaccine candidate (indicated). The supporting discordant read pair (DP) evidence is shown for both strains. Weak evidence (one
read pair) for this rearrangement was also detected in the parental population, indicating that the SV was subclonal in this population. This evidence con-
tributed to the positional de Bruijn graph assembly.
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read pairs in which both reads are unmapped. To reduce false pos-
itives, a number of optional filters are applied to the extracted
reads (see Supplemental Material for details).

Identification of split reads

Split reads are identified by aligning the soft clipped bases of par-
tially aligned reads back to the reference using BWA (default) or an-
other aligner that is compliant with the SAM file format
specifications (such as Bowtie 2). Reads for which the soft clipped
bases are uniquely aligned to the reference (defaultMAPQ≥10) are
considered to provide split read support. Reads containing inser-
tions or deletions in the read alignment are treated as split reads
aligning to either side of the indel.

Positional de Bruijn graph assembly

A positional de Bruijn graph is a graphwhere each node contains a
sequence of k bases and the position at which those k bases are ex-
pected to occur. The positional de Bruijn graph G = (V, E) consists
of the vertex set V and the edge set E⊆ V ×V. Let (Sn, pn)∈V be the
tuple nwhere Sn = (bn,1, bn,2,…, bn,k) is a k-mer of k bases, and pn∈Z
is the expected genomic position of the k-mer. By definition,
nodes x, y∈V are connected if they have adjacent k-mers and po-
sitions:

(x, y) [ E ; px + 1 = py ^ ∀k−1
i=1 bx,i = by,i+1.

Unlike a traditional de Bruijn graph, G is a directed acyclic
graph since ∀i,j(ni,nj) [ E � pi , pj; any cycle would contain an
edge inwhich pi≥ pj. That is, all paths through the graph are simple
(not self-intersecting) paths since traversal of every edge must ad-
vance the position by a single base. This allows algorithms such as
the longest path problem thatwould require exponential time on a
de Bruijn graph to be completed in polynomial timewhen applied
to a positional de Bruijn graph. In addition to the k-mer and posi-
tion, the following node attributes are used:

• w(n) is the node weight corresponding to the Phred-scaled prob-
ability of the supporting read k-mers. The probability of the ith k-
mer of read r is given as the joint probability of every k-mer base
being correctly called by the sequencer and the aligner mapping
the read to the correct location. That is,

w(r,i)=−10log10 1− 1−10
−mapq(r)

10
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where baseqj(r) is the Phred-scale base quality score of the jth
base, and mapq(r) is the mapping quality score of read r. As
w(n)=∑

w(r,i).
• anchored(n) is a Boolean flag indicating whether the node bases
are fully aligned to the reference genome in any supporting
read. Note that this definition does not require the read bases
to actually match the reference and both matched and mis-
matched base alignments are considered to be anchored if
aligned.

• support(n) is the set of reads providing support for the given k-
mer at the given position.

Assembly graph construction

All extracted reads are added to one of two positional de Bruijn
graphs based on the expected break-end orientation. Reads sup-
porting a rearrangement after the anchored position are added to
the forward graph, whereas reads supporting a rearrangement be-
fore the anchored positions are added to the backward graph.
Each read k-mer is added to the graph at all expected mapping po-

sitions. For a soft clipped read, each read k-mer is added to G at the
position the k-mer would start at if the entire read were mapped to
the reference. Split reads are treated as two independent soft
clipped reads. For read pairs, read k-mers are added at all positions
in which the read pair would be considered concordantly mapped
based on the mapping location of the partner. For discordant read
pairs, each read is added based on the anchoring location of the
mate irrespective of the actual mapping location of the read,
whereas one-end anchors are only added at one location, as the un-
mapped read can provide no positional constraints on its partner.

Using thismethod of graph construction, correctly assembled
unanchored paths are limited in length to less than the read length
if supported by only soft clipped or split read evidence and by the
maximum concordant fragment size if supported by read pair
evidence.

Assembly graph error correction

Base-calling error correction is performed by collapsing similar
paths. Paths are scored according to the sum of the node weights.
A path A is collapsed into an alternate path B if both the total path
weight of A is less than B, A and B differ by less than a fixed number
of bases (default 2), and either both paths are same length and
share the same start and end node (bubble popping), or A shares
a start or end node with B and contains a single terminal leaf
node (leaf collapse). By default, error correction is only performed
on paths of length less than twice the read length that are either
simple bubbles or terminal leaves.

For each node, all leaf and branch paths under the maximum
length originating from the node are identified by traversal of
branchless descendants. For each path identified, breadth first
graph traversal is performed to identify candidate paths to merge.
Memoization is used to track the optimal paths to each node thus
reducingworst-case traversal complexity from exponential time to
quadratic.

Break-end contig assembly

A break-end contig path consists of a sequence of adjacent unan-
chored nodes, optionally flanked by a sequence of anchored
nodes. Paths flanked by anchoring nodes are called before
unflanked paths. Maximally weighted paths are calculated in the
same manner as error correction traversal with breadth-first tra-
versal with memoization of the highest-weighted partial path at
each node.

Once themaximally weighted path has been determined, the
path is extended into flanking anchored nodes until the anchored
path length exceeds both themaximum read length and the unan-
chored path length. Once the maximally weighted path contig is
called, all reads supporting any unanchored k-mer on the contig
path are removed from the graph. The removal of supporting reads
from all graph nodes ensures that each read contributes to a single
assembly only. Contigs are iteratively called until no nonreference
k-mers remain in the graph.

Assembly contigs supported by less than the minimum re-
quired support (by default, three reads) and unanchored contigs
shorter than the read length are filtered.

Contig error correction

While positional information at nodes significantly reduces the
rate of misassembly compared to windowed assembly, branch tra-
versal introduces new modes of misassembly. When a read pair is
self-intersecting or contains repeated k-mers, the resultant contig
will loop for as long as the fragment size window will allow. This
misassembly can occur even with a single read. For example, with
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k = 4, the single read TAAAAC expected to start at one of the posi-
tions in the interval [10, 15] will result in the highest weighted
path of TAAAAAAAAC starting at position10. To prevent suchmis-
assemblies, k-mer chaining of the supporting reads is used to trun-
cate the called path at the first k-mer transition not supported by
any constituent read. Truncation is performed starting from both
the start and the end of the contig with the highest weighted trun-
cated path called, preferentially calling anchored paths. Each sup-
porting read is aligned to the contig position with the greatest
number of matching k-mers (breaking ties toward the truncation
start k-mer) and all k-mer transitions supporting by the read are
marked. Once all supporting reads have been processed, the contig
is truncated at the first k-mer transitionnot supportedbyany reads.

Contig realignment

Once an assembly contig has been called, amultistage realignment
process is used to identify the breakpoint supported by the contig.
Assemblies containing at least one anchored base undergo Smith-
Waterman (local) realignment around the expected contig posi-
tion. Assemblies that fully align to the reference are treated as a ful-
ly aligned indel-spanning assembly if an indel is present in the
alignment or filtered out as a false positive if the full alignment
contains no indels. For unanchored assemblies with no soft clip
or split read support, a breakpoint position interval is calculated
based on the breakpoint interval consistent with the greatest num-
ber of supporting read pairs.

The contig bases not anchored to the reference are aligned us-
ing an external aligner (by default, Bowtie 2) in local alignment
mode using the same alignment thresholds used for identifying
split reads. For assembly alignment, if the external aligner identi-
fies the best alignment to be a soft clipped alignment, these soft
clipped bases are again aligned, with such recursive alignment lim-
ited to a depth of four. This compound realignment results in as-
sembly support not only for the breakpoint site identified by the
initial realignment but also for any additional breakpoints
spanned by the assembly. This approach allows accurate classifica-
tion of complex rearrangements such as those present in neochro-
mosomes formed through chromothripsis and the breakage-
fusion-bridge process.

Graph compression

To reduce the graph size, a compressed representation of the posi-
tional de Bruijn graph is used. Nodes with a single successor con-
nected to nodes with a single ancestor correspond to a
branchless path and are compressed into a single path node.
Similarly, nodes with adjacent positions and matching k-mers,
weights, and reference status are compressed using a position in-
terval. The resultant path nodes are of the form (start, end, (kmer1,
weight1,…, kmern,weightn), anchored), representing the set of nodes⋃end

p=start
⋃n

i=1 ( p, kmeri,weighti, anchored).

Streaming assembly

Since all nodes are associated with a genomic position and only
have edges to adjacent genomic positions, all graph operations
only affect the local subgraph near the genomic position.
Exploiting this, positional de Bruijn graph assembly is performed
in a single streaming pass over the input reads. Coordinate sorted
records are streamed through the following five internal processes,
each processing records within a genomic position window size
determined by the maximum read length and fragment size:

1. Extraction: Each read is converted into constituent positional
de Bruijn graph nodes. To reduce the graph size, positional in-

tervals are stored implicitly with each extracted node defined
over a positional interval.

2. Positional aggregation: Overlapping nodes frommultiple reads
are split into disjoint aggregated nodes and graph edges calcu-
lated and cached.

3. Path compression: Nonbranching aggregate node paths are
compressed into path nodes.

4. Error correction: Bubble popping and leaf collapse error correc-
tion is performed to remove base-calling artifacts.

5. Assembly: Maximal path contig calling is performed such that
whenever a maximal path is encountered, the streamed assem-
bly graph loads and traverses all alternate pathswhich any reads
supporting the maximal path could also support. Since each
read can contribute to graph node positions over an interval
no wider than the concordant fragment size plus the read
length, the globally maximal path containing any given read
must overlap this interval and is thus a local graph operation.
A contig is called whenever the subgraph has loaded all poten-
tial alternate paths for the highest weighted maximal path en-
countered. Since all reads contributing to the called path
must have been fully loaded for all such potential alternate
paths to have been traversed, all reads contributing to the con-
tig are fully removed from the subgraph immediately. This ap-
proach ensures that any contig called is the globally maximal
contig containing the given reads.

This assembly algorithm is implemented by memoization of
all maximal paths of the streaming subgraph. The starting posi-
tion of paths for which a potential successor node has not yet
been loaded are tracked in a frontier and when the end position
of the maximal path plus the concordant fragment size is earlier
than both the earliest start position of the frontier path and the
start position of the next node to be loaded, the maximal contig
is called.

As a full recalculation of all maximal paths in the subgraph af-
ter supporting reads have been deleted is unnecessary, only paths
affected by node removal are recalculated. For sufficiently high-
coverage data, there will be enough concordant fragments with
unexpectedly long or short fragment size that a background signal
supporting small indels everywhere across the entire genome will
be present. When these reads are assembled, this signal results in
long unanchored paths up to multiple megabases in size. To sup-
press this background noise, contigs and paths longer than the
maximum expected size are filtered and thresholds are placed on
both the size and the genomic width of the loaded subgraph (see
Supplemental Materials).

Probabilistic variant scoring model

To estimate the quality of predicted structural variants, we
score variants according to the Phred-scaled probability of
originating from the mapped locations without any underlying
structural variations. The Phred score Q of a probability P is
given by Q =−10log10(P). Given a read pair or split read r map-
ping to genomic locations a and b, and the event M that the
mapping is correct, the score assigned to r is given by
Pr(r) = Pr(r >M) + Pr(r > �M) = Pr(M) · Pr(r|M) + Pr( �M) · Pr(r| �M).
The probability of correct mapping Pr(M) is determined directly
from the Phred-scaled mapping quality scores mapqa(r), mapqb(r)
defining the probability of incorrect read alignment:
Pr(M) = (1− 10mapqa(r)/10)(1− 10mapqb(r)/10) = 1− Pr( �M) since Pr(M)
requires bothmapping locations to be correct. In the case of incorrect
mapping, r is uninformative and Pr(r| �M) = 1. In the case of correct
mapping, Pr(r|M) is determined empirically from the relevant library
distribution.
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For split reads, correct mapping with no SV implies the align-
ment is artifactual. We model the artifactual alignment rate from
the empirical soft clip length distribution of the library; thus,
Pr(r|M) = Psc(lsc(r)) where lsc(r) is the length of the soft clip of r be-
fore split read identification, and Psc is the library soft clip length
distribution.

For read pairs, correctmapping can be caused either by a chime-
ric fragmentCF, or anunexpectedly large/small originating fragment:
Pr(r|M) = Pr(r > CF|M) + Pr(r > CF|M) = Pr(CF|M) · Pr(r|M > CF)
+Pr(CF|M) · Pr(r|M > CF) Pr(r|M > CF) is given as Prp(ifs(r)) where
ifs(r) is the fragment size of r inferred from the read mapping loca-
tions, and Prp is determined from the library fragment size distribu-
tion inferred from all mapped read pairs. Chimeric fragment
alignments are considered uninformative and Pr(CF|M) is taken
to be pd, the rate of read pair mapping in which the inferred frag-
ment size exceeds more than 10 mean absolute deviations
from the median library fragment size. Thus, for read pairs
Pr(r|M) = pd + (1− pd) · Prp(ifs(r)).

Split reads originating from indels use the corresponding dis-
tribution of insertion or deletion alignment operations instead of
the soft clip distribution. Assemblies are modeled as a set of con-
stituent reads, with the anchored mapping quality defined as the
greatest mapping quality of the constituent reads and unanchored
mapping quality determined by the assembly alignment mapping
quality. Constituent soft clipped reads and reads with unmapped
mates are treated as split reads and discordant read pairs for the
purpose of determining assembly quality, with the caveat that
reads with unmapped mates use pu in place of pd. This assembly
scoringmodel improves variant calling by rescuing poorlymapped
reads, increasing the score of variants supported by assembly, and
promoting SC andUM reads to SR andDP reads within the context
of the assembly, thus allowing these reads to be used as input to
the variant calling. For computational efficiency, scoring calcula-
tions are approximated using the maximum Phred score of the
constituent terms.

Variant calling using maximal cliques

Variants are scored according to the level of support provided by
SR, DP, and assembly evidence combined. Supporting evidence
can be summarized as the tuple (sl, el, sh, eh, dl, dh, w) where
the intervals [sl, el] and [sh, eh] are the genome intervals between
which a breakpoint is supported, dl and dh, the direction of the
supported breakpoint, and w the weight of the evidence as de-
fined by the evidence scoring model. Since each piece of support-
ing evidence is considered to be independent, and evidence
scores are expressed as Phred scores, the score for any given var-
iant is equal the sum of the scores of evidence supporting the var-
iant breakpoint.

Calculating the total support weight for all putative break-
points is equivalent to finding all maximum evidence cliques,
that is, all sets of evidence providing consistent support for a break-
point such that nomore evidence can be added and the set remain
consistent. Since both direction dl and dhmustmatch if evidence is
to mutually support a breakpoint, the evidence set can be divided
into the four ++, +−, −+, −− directional subsets, which reduces the
problem to weighted maximum clique enumeration of a rectangle
graph (Lee 1983). Maximal clique enumeration is performed in a
single in-order pass over evidence in polynomial time.

Unfortunately, this approach can result in reads providing
support to multiple independent breakpoints. Since each read
will have originated from, at most, one of the competing explana-
tory variants, a second pass ismade and a greedy assignment is per-
formed in which each piece of evidence is assigned to only the
highest scoring variant it supports.

Detection of microhomology and nontemplate

sequence insertions

Depending on the pathway involved in DNA repair resulting in a
structural variant, there may exist either sequence homology at
the breakpoints or nontemplate sequence inserted during the re-
pair. Microhomology at the breakpoints introduces uncertainty
into the breakpoint position call, which is resolved if nontemplate
sequence is also present. As a consequence of aligner behavior,
unhandled sequence homology can result in two separate variant
calls (one at each edge of the homology) for a single event, as align-
ers are able to map read to the homologous sequence at both sides
of the breakpoint. Unhandled nontemplate sequence insertions
result in incorrect breakpoint sequence and event size calculation
and, for coding variants, result in incorrect gene fusion transcript
prediction.

GRIDSS factors in both breakpoint sequence microhomology
and nontemplate sequence insertions when performing variant
calling. For microhomologies, the breakpoint location for split
reads and assemblies is expanded from a single base to an interval
of the length of sequence homology between the read/assembly
and the reference sequence at either side of the predicted genomic
rearrangement. The nominal position of the called breakpoint is
considered to be the center of the homology and is reported using
the standard HOMSEQ, HOMLEN, and CIPOS fields in the VCF
output. Nontemplate sequence insertions are included as an addi-
tional component of the variant call in a similar fashion to
Socrates (Schröder et al. 2014).

In addition to the standard VCF homology fields, GRIDSS re-
ports the inexact homology in the nonstandard IHOMPOS field.
The inexact homology length is calculated for each break-end by
performing local Smith-Waterman alignment of the breakpoint se-
quence to the reference sequence up to 300 bp on either side of the
break-end.

Detection of nontemplate sequence insertions is limited by
the assembly contig length. Since each read contributing to a
break-end assembly requires an anchoring alignment, the maxi-
mum contig length is limited by the library fragment size distribu-
tion. Microhomology detection requires unambiguous alignment
of supporting read pairs spanning the microhomology; thus, the
length is similarly limited by the library fragment size distribution.

Software development methodology

GRIDSSwas developed as professional quality software using a test-
driven development methodology. To develop new functionality,
test cases were first written describing the expected behavior under
normal and error conditions. Once such failing test cases have
been written, code implementing the feature is written, thus en-
suring that the feature is functioning as expected. Bug fixing is per-
formed by first creating a failing test case reproducing the error,
then updating the implementation to correct the error. As a result,
an extensive test suite composed of over 1200 test cases has been
developed. Git is used as a version control system. All tests are re-
run prior to each release, ensuring regression faults in existing
functionality are not introduced when new features are added.

Bug fixes and enhancement in libraries used by GRIDSS have
been contributed back to these upstream libraries. Maven3 (https
://maven.apache.org/) is used for build packaging, and a single pre-
compiled binary including all dependencies (except the external
aligner) is produced for each release. All parameters used by
GRIDSS (including the choice of external aligner used) have
been externalized into a configuration file able to be modified by
advanced users. Semantic versioning is used for release versioning.

GRIDSS

Genome Research 2059
www.genome.org

https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://maven.apache.org/


GRIDSS is implemented in Java 1.8. GRIDSS has been de-
signed as a modular software suite. Although an all-in-one entry
point is included, each stage of the GRIDSS pipeline, including
the break-end assembler, can be run as an independent program
or replaced with an equivalent implementation. Example scripts
for single sample, somatic, and multisample pipelines are provid-
ed. Java utility programs and R (R Core Team 2017) scripts to con-
vert GRIDSS VCF break-end format to more user-friendly formats
for downstream filtering and analysis are also provided.

Software availability

GRIDSS has been released as free and open source software under a
GNU General Public License (GPL version 3). Source code is
included in the Supplemental Materials. The latest source code
and precompiled binaries are available at https://github.com/
PapenfussLab/gridss. All scripts required for independent replica-
tion of results presented in this paper are available as part of the
Supplemental Materials source code and can also be found at
https://github.com/PapenfussLab/sv_benchmark.
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