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Naive Bayes classifiers (NBC) have dominated the field of taxonomic classification of
amplicon sequences for over a decade. Apart from having runtime requirements that
allow them to be trained and used on modest laptops, they have persistently provided
class-topping classification accuracy. In this work we compare NBC with random forest
classifiers, neural network classifiers, and a perfect classifier that can only fail when
different species have identical sequences, and find that in some practical scenarios
there is little scope for improving on NBC for taxonomic classification of 16S rRNA gene
sequences. Further improvements in taxonomy classification are unlikely to come from
novel algorithms alone, and will need to leverage other technological innovations, such
as ecological frequency information.

Keywords: microbiome, metagenomics, marker-gene sequencing, taxonomic classification, machine learning,
neural networks

INTRODUCTION

Microbial communities are integral components of diverse ecosystems on planet Earth, supporting
both environmental and human health (The Human Microbiome Project Consortium, 2012;
Thompson et al., 2017). Investigating the role of microorganisms in these environments
often involves characterizing the composition of these communities using high-throughput
DNA sequencing methods, most commonly of universal marker genes, such as small subunit
rRNA genes (Thompson et al., 2017). Even short sequences (e.g., as obtained from “second-
generation” sequencing instruments) of 16S rRNA gene hypervariable domains can differentiate
bacterial families and genera (Liu et al., 2008), making these marker genes popular targets for
microbial census studies.

A critical step in any microbial census study is the taxonomic classification of observed DNA
sequences, to infer the relative abundance of different taxonomic groups. This is performed by
comparison of observed sequences to a reference database of sequences from known taxa, using an
appropriate taxonomic classifier (Robeson et al., 2020). A large number of taxonomic classification
methods have been developed and benchmarked for classification of marker gene sequences
(Bokulich et al., 2018b; Gardner et al., 2019), but among the most successful and ubiquitous in
microbiome studies have been naive Bayes classifiers (NBC). The primacy of NBC was established
by the Ribosomal Database Project (RDP) classifier (Wang et al., 2007), which utilized an NBC and
demonstrated that genus-level accuracy could be achieved from short 16S rRNA gene sequences.
The superiority of NBC for marker-gene sequence classification has proven robust over time,
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as we have shown more recently with the various classifiers
implemented in q2-feature-classifier (Bokulich et al., 2018b),
a taxonomic classification plugin for the popular QIIME
2 microbiomics software platform (Bolyen et al., 2019).
Furthermore, we demonstrated that the accuracy of NBC could
be significantly enhanced by providing ecological information
about the expected frequency of different taxonomic groups in
specific natural environments (Kaehler et al., 2019) to enable
more reliable species-level classification of 16S rRNA gene
sequences. This improves upon the assumptions of earlier NBC
for marker-gene sequences (e.g., RDP classifier), which assume
uniform class weights, i.e., that microbial species are equally
likely to be observed.

Newer methods for taxonomic classification have been
developed and tested, but have failed to reliably exceed the
accuracy of NBC for marker-gene taxonomic classification,
both in individual benchmarks (Lu and Salzberg, 2020) and
in independent benchmarks (Almeida et al., 2018; Gardner
et al., 2019). Notably, all benchmarks to date (except those in
Kaehler et al., 2019) have tested NBC with uniform class weights,
underlining that naive Bayes remains most accurate even without
full optimization for specific sample types. This led us to consider
three questions in the current study:

1. Could taxonomic frequency information benefit other
taxonomic classifiers?

2. Could newer supervised learning algorithms exceed the
accuracy of NBC?

3. Do decreasing performance advances in the microbiome
taxonomy classification literature indicate that we are
reaching an upper limit of performance for classification
of short marker-gene sequences?

Class weight information can be utilized by a variety of
supervised classification methods, so we hypothesized that
using class weights could provide these methods with a much-
needed performance boost. We chose two newer machine
learning classification algorithms that have been successfully
applied to other problems in bioinformatics (e.g., sample
classification, e.g., Bokulich et al., 2016, 2018a; Roguet et al.,
2018), but little-explored for DNA sequence annotation: Random
Forests (RF) (Breiman, 2001) and convolutional neural networks
(CNN) (Lecun et al., 1998). These algorithms have shown
favorable performance against the RDP classifier in isolated tests
(Chaudhary et al., 2015; Fiannaca et al., 2018; Busia et al.,
2019; Zhao et al., 2020) but have not been independently
benchmarked, nor compared against NBC with ecologically
informed class weights.

We demonstrate that RF and CNN come close to but fail
to exceed the accuracy of NBC when utilizing class weight
information. Additionally, we use a “perfect” classifier to establish
an upper bound for classification accuracy. We discover that,
at least for short reads of 150 nt, there can be almost no
improvement over an NBC if class weights are used. If longer
reads are used (all of the V4 region) then there is limited scope
for improvement, but again only if class weights are used. Finally,

NBCs remain easier and faster to train than RF and CNN
classifiers with fewer hardware requirements.

RESULTS

We selected RF and CNN classifiers as promising methods
for DNA sequence taxonomy classification, due to promising
performance of various implementations in recent isolated
reports (Chaudhary et al., 2015; Fiannaca et al., 2018; Busia
et al., 2019; Zhao et al., 2020). In particular, the use of ensemble
classification by RF is a potentially attractive means of efficiently
calculating class probabilities via random selection of sequence
data in each decision tree. The ability of CNNs to learn complex
patterns, and in particular to model spatial organization in
sequence data (Busia et al., 2019), make CNNs promising for
DNA sequence annotation tasks. We utilized a kmer bagging
approach for feature extraction prior to both RF and NBC
classification, as has been commonly implemented in NBC
including the RDP classifier (Wang et al., 2007; Bokulich et al.,
2018b). However, kmer bagging fails to leverage the mid- to
long-range spatial organization of DNA sequences. Hence, we
used a Word2Vec (Mikolov et al., 2013) encoding for feature
extraction prior to CNN classification, similar to the spatial
encoding schemes implemented for other CNN classifiers (Busia
et al., 2019; Zhao et al., 2020).

Random Forest Classifiers
We performed hyperparameter tuning of the RF classifiers
following a two-tiered approach. Cross validation was performed
on sequences in the Greengenes reference data set (McDonald
et al., 2012) and on sample compositions derived from
real samples downloaded from the Qiita database (Gonzalez
et al., 2018). All of the tests of the NBC and RF classifiers
that we performed used taxonomic weighting information
(Kaehler et al., 2019).

First, a grid search was performed on a comparatively smaller
data set to select hyperparameters with primary performance
effects (all samples of 150 nt length labeled as sediment (non-
saline) in Qiita on 20 March 2019 (Thompson et al., 2017), 188
samples, downloaded using q2-clawback (Kaehler et al., 2019)
see Supplementary Material and Supplementary Table 1 for
details). A second grid search was performed on a much larger
animal distal gut data set (downloaded from Qiita on 23 May,
2019 with the same parameters, 22,454 samples). The results
of the initial tests were that max_depth and max_features were
the only classifier parameters that had a meaningful impact on
classification accuracy. Except for confidence, all parameters are
those of the scikit-learn classifier (see section “Materials and
Methods”). Additionally, a confidence parameter of 0.7 was found
to give greater accuracy than a confidence parameter of 0.9.

In all cases, classification accuracy was measured using
F-measure for species-level classification. We also tested final
results using the Matthews correlation coefficient (MCC) (Chicco
and Jurman, 2020). MCC was chosen to reduce the reported
bias in F-measure in the presence of imbalanced classes. In all
cases results were qualitatively the same. For the same confidence

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 644487

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-644487 June 14, 2021 Time: 17:23 # 3

Ziemski et al. Naive Bayes Taxonomic Classification

level, parameter choice also gave the same rankings for MCC as
F-measure (see Supplementary Figure 1).

The parameters selected for the second tier of parameter
tuning are shown in Table 1. A full grid search testing all
combinations of parameters was not performed because of
operational difficulties balancing requests for walltime, number
of CPUs, and memory usage on a shared computational resource
(see Supplementary Table 2 and Supplementary Figure 4) and
negligible impacts on performance (Figure 1). If it is not possible
to train a classifier on a machine with 14 CPUs and 3TB of
memory in under 24 h, it is not useful to the wider community
regardless of accuracy (Bokulich et al., 2020), and hence these
configurations were not pursued further. A max_depth of None
implies that nodes were expanded until all nodes were pure.
max_features of None implies that the maximum number of
features was the number of features.

Results indicate that maximum tree depth (max_depth)
exerted the greatest influence on classification accuracy (Figure 1
and Supplementary Figure 1). Regardless of the confidence level,
increasing the maximum depth leads to an increase in F-measure.
The most significant change can be observed between 16 and 64
nodes (average F-measures of 0.636 ∓ 0.006 and 0.768 ∓ 0.004 at
confidence 0.7, respectively, standard error measured over folds).
Increasing max_depth beyond 64, however, does not lead to an
appreciable increase in accuracy, and using unlimited tree depth
(i.e., max_depth = None; tree nodes are expanded until leaf purity
is achieved) yields marginally higher F-measures at all confidence
levels (F = 0.779 ∓ 0.005 at confidence 0.7) (Figure 1).

Decreasing the number of features (max_features) to be taken
into account while deciding on node splitting resulted in a modest
decrease in classification accuracy [0.636 ∓ 0.006 and 0.608 ∓

0.003 average F-measure for using all of the features as compared
to sqrt (number of features)]. This performance decrease was
least pronounced at lower confidence levels. Similarly, increasing
the number of estimators (n_estimator, i.e., trees in the forest)
had no or very low influence on classification accuracy, regardless
of the confidence level. Increasing the number of estimators from
100 to 1,000 reliably caused memory issues, however, particularly
with a maximum tree depth of 64 (see Supplementary Table 2).

None of the parameter sets tested in our study outperformed
the NBC at any of the confidence levels we tested (Wilcoxon
signed-rank p < 0.05). To test whether reducing the classification
confidence threshold further beyond the level of 0.6 could
help increase RF’s performance, we trained and evaluated an
additional set of classifiers with fixed parameters (max. number
of features, 100 estimators, max. tree depth) while varying
confidence in the range 0.3–0.5. Decreasing the confidence

TABLE 1 | Parameter values used for computationally intensive grid search on
animal-distal-gut samples.

Parameter Values

n_estimators 100 1,000 –

max_depth 16 64 None

max_features sqrt None –

Confidence 0.6 0.7 0.8

marginally increased the test set’s recall and F-measures at
the cost of precision (Figure 1 and Supplementary Figure 1),
however the accuracy achieved by the NBC could still not be
obtained (Figure 1).

Interestingly, precision of the RF classifier tested with most
of the parameter sets could in many cases outperform the NB
model and it was rather insensitive to parameter changes given
a confidence level (Supplementary Figure 1, top panel). It
was the recall, however, that not only varied greatly between
parameter sets, but also could never come close to that of the NB
(Supplementary Figure 1, bottom panel).

Convolutional Neural Networks
Following our tests of RF classifiers, we were interested in
evaluating whether we could leverage recent advances in neural
network-based models for superior taxonomic classification.
Cross validation was performed as described for RF. To reduce
run time, we used a relatively small data set that consisted of all
5,632 of the animal distal gut 150 nt samples that were available
from Qiita on 1 June, 2018 (downloaded using q2-clawback;
Kaehler et al., 2019).

More specifically, we focused on CNNs as their performance
is favorable in the literature (Chaudhary et al., 2015; Fiannaca
et al., 2018; Busia et al., 2019; Zhao et al., 2020) and for
their relatively parsimonious parameterization and insensitivity
to insertion and deletion events. Before feeding the DNA
sequences to the network, we applied the Word2Vec model in its
Continuous-bag-of-words (CBOW) implementation to convert
genetic information into a series of 300-element vectors. That not
only allowed us to convert the k-mers into numerical values but
also carried additional information about relatedness/similarity
between any two k-mers within a given sequence.

For most of our tests we used a simple neural network with
a single (one-dimensional) convolutional layer followed by a
global max pooling layer and a classification layer (Figure 2A,
architecture I). We varied the number of filters and kernel size of
each filter (see Table 2) to test which of those parameters would
have the greatest influence on the model performance (measured
as Precision, Recall, F-measure, and MCC at the species level,
similarly as was done for the Random Forest models).

Increasing either the number of filters or kernel size resulted
in an increase of classification accuracy with average F-measures
between 0.710 ∓ 0.009 and 0.801 ∓ 0.006 for models with
filters = 64/kernel_size = 3 and filters = 512/kernel_size = 7,
respectively (evaluated at 0.7 confidence level, Figure 2B and
Supplementary Figure 2). Based on these initial findings,
we selected a subset of parameter configurations to test
the effect of confidence settings on CNN classification
performance. Reducing the confidence parameter to 0.5
improved performance (average F-measure of 0.849 ∓ 0.005,
filters = 512/kernel_size = 7), but further improvements were
not observed when we further reduced confidence to 0.25 (see
alternate model specifications in Supplementary Material).

We also attempted to improve performance by then extending
the test range of number of filters and kernel size to
4,096 and 14 at a confidence level of 0.5 and found that
doubling the number of filters or kernel size had little to
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FIGURE 1 | F-measure accuracy performance of RF and NB classifiers. Box-and-whisker plots indicate the median and quartile distributions of F-measures for each
classifier and configuration, across 5-fold of CV. RF classifier configurations were tested via a grid search across the hyperparameters listed in the subset table. NB
classifiers do not have equivalent parameters, and hence only NB is listed in the table beneath bars representing NB classifiers. Both RF and NB classifiers were
tested at multiple confidence levels. None of the tested parameter sets outperformed the NBC at any of the confidence levels (Wilcoxon signed-rank test p < 0.05).

FIGURE 2 | F-measure accuracy performance of CNN and NB classifiers. (A) CNN architectures implemented in this benchmark. (B) Box-and-whisker plots indicate
the median and quartile distributions of F-measures for each classifier and configuration, across 5-fold of CV. CNN classifier configurations were tested via a grid
search across the hyperparameters listed in the subset table. NB classifiers do not have equivalent parameters, and hence only NB is listed in the table beneath bars
representing NB classifiers. Both CNN and NB classifiers were tested at multiple confidence levels. None of the tested networks outperformed the NBC at a given
confidence level (Wilcoxon test p < 0.05).

no effect on the classifier accuracy (average F-measure of
0.843 ∓ 0.004, filters = 2,048/kernel_size = 7, 0.827 ∓ 0.009,
filters = 2,048/kernel_size = 14). Finally, we tested a variety

of different network architectures and two feature-extraction
methods other than Word2Vec (see Supplementary Materials
for details). One of the better results is represented by
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TABLE 2 | Parameter values used for grid search using the convolutional neural
network.

Parameter Values

Filters 64 128 256 512

Kernel size 3 5 7 –

Confidence 0.5 0.7 0.95 –

Architecture II in Figure 2B, which also used one-hot-encoding
of individual nucleotides to build a sequence of vectors for input
to the neural network.

While exhaustively testing all of the possible neural network
architectures is not practical, a pattern emerged in our testing.
That is that with tuning, it was possible to approach an average
F-measure of around 0.85, but none of the models that we
tested outperformed the NBC, which on the same data set with
reads of the same length had an average F-measure of 0.866
∓ 0.002 (all differences between CNN and NB results were
statistically significant at p < 0.05 when evaluated at the same
confidence level).

Comparing accuracy reported between F-measure and
MCC, again the differences were qualitatively the same and
different configurations were ranked almost identically within
confidence levels.

Moreover, also in the case of CNN classifiers it is recall
that plays a major role in differentiating between different
parameter configurations (Supplementary Figure 2). While
classification precision remained on an approximately similar
level for most of the configurations tested, the recall increased
as model complexity increased (in terms of model parameters).
Regardless of the parameters used, however, CNN recall was
always lower than that of NBC at a given confidence level
(Supplementary Figure 2).

Finally, we were interested in checking whether the networks
described above were prone to overfitting. Large model capacity
(expressed as number of model parameters) with respect to
the amount of training data can lead to the network learning
features of the training set that are not universally relevant, thus
reducing the accuracy when evaluating the model on the test
set. We compared training histories of the architecture I with
512 filters and kernel size of 7 and architecture II with 1,024
filters and kernel size of 7 (Supplementary Figure 5). For all of
the results that we report we trained for either 5 or 10 epochs
(Supplementary Table 3), and overfitting was not evident at that
stage in either of these examples.

The Perfect Classifier
The underwhelming performance exhibited by RF and CNN
classifiers led us to hypothesize that NBCs may already be
approaching the upper limit of classification accuracy for this
problem and hence alternative algorithms alone cannot exceed
this performance. To test this hypothesis, we constructed a
perfect classifier to measure the upper bound of classification
accuracy for a given classification task. This classifier performs
in-sample testing where the classifier can only fail if two or
more species share exactly the same sequence. Where they do

share the same sequence, one matching classification is chosen
at random as the label for that sequence. The performance
of such a classifier represents the upper limit of possible
classification accuracy (Busia et al., 2019; Robeson et al.,
2020).

We trained perfect classifiers with and without taxonomic
class weighting to assess the upper bound of accuracy when
using sequence information alone (uniform weights) or when
leveraging ecological information. We also tested a range
of confidences and for 150 nt amplicons or sequences that
captured all of V4. See section “Materials and Methods” for
implementation details of how confidence affected the perfect
classifiers. We used the same data set that we had used for testing
CNNs for this purpose.

It is an implementation detail of the CNN classifiers that
variable length amplicons are difficult to handle, so our above
tests truncated sequences at 150 nt. So comparing the 150 nt
perfect classifiers first, average F-measures for perfect classifiers
that used class weight information varied between 0.887 and
0.903. The best NBC with the same constraints achieved an
average F-measure of 0.865 ∓ 0.002 (significantly different from
the perfect classifier; Wilcoxon rank test p < 0.05). Note that the
NBCs were performing out-of-sample cross validation whereas
the perfect classifier is in-sample and therefore naturally inflated.
While there is a small gap between these two figures, it certainly
strongly limits scope for improvement over NBCs.

The story is slightly different if the perfect classifier was
allowed to use all of the V4. In that case, where class weight
information is utilized, the perfect classifier scored average
F-measure between 0.934 and 0.943 whereas the similarly
constrained NBC achieved 0.866 ∓ 0.002 (differences statistically
significant at p < 0.05; Wilcoxon rank test). In other words, it
performed roughly identically to where V4 was constrained to its
first 150 nt. This is consistent with other empirical results (Liu
et al., 2008; Bokulich et al., 2018b).

Interestingly, MCC gave slightly different results to F-measure
for the perfect classifier for classifiers with high confidence
levels (0.75 and 0.95). At these confidence levels, MCC was
penalized with respect to the lower confidence levels. At lower
confidence levels all differences were statistically significant when
comparing the top-performing classifiers to “perfect” classifiers
evaluated with similar parameters (Wilcoxon rank sum test,
p < 0.05). As the purpose of the perfect classifier is to provide an
upper bound on classification accuracy, however, the significant
result indicates that additional optimization can only yield
diminishingly small performance improvements.

Finally, it is interesting to note the effect of incorporating
class weight information on the NBC and perfect classifiers.
For the NBC, the uniform classifiers (that did not use that
information) performed almost the same for truncated and
untruncated V4 sequences but were around 0.06 worse than
when class weight information was used (average F-measure
0.812 ∓ 0.002 and 0.805 ∓ 0.002 respectively). For the perfect
classifiers there was a clear progression where using all of
V4 always improved accuracy and incorporating class weight
information also increased accuracy. Class weight information
did not improve classification accuracy for 150 nt sequences to
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FIGURE 3 | “Perfect” classifiers demonstrate the upper bound of classifier performance for V4 and full 16S rRNA gene sequences. These classifiers only fail when
two species share an identical sequence, assuming uniform weights. Taxonomic weighting slightly increases classification accuracy both for V4 and full-length
sequences. Box-and-whisker plots indicate the median and quartile distributions of F-measures for each classifier, across 5-fold of CV. The top-performing NB, RF,
and CNN classifiers (trained and tested on V4 sequences) are compared to the “perfect” classifiers to demonstrate that the upper bound of performance is already
being approached. All differences were statistically significant when comparing the top-performing classifiers to “perfect” classifiers evaluated with similar parameters
(Wilcoxon rank sum test, p < 0.05). (Weights: w, weighted; u, uniform; 16S V4, 150–150 nt fragment of 16S rRNA V4 region; FL, all of the V4 region).

match that of uniform classification on full V4 for the perfect
classifier (Figure 3).

DISCUSSION

The goal of this study was to evaluate the utility of newer
supervised learning techniques for taxonomic classification
of 16S rRNA gene sequences, and in particular whether
models based on convolutional neural networks could leverage
ecological distribution information to match classification
performance as shown previously for NBC (Kaehler et al., 2019).
The implementations tested here managed to approach
the classification accuracy of NBC, but even optimized
CNNs could not match or exceed the performance of NBC,
corroborating the recent findings of others (Zhao et al.,
2020). Importantly, the goal of this study was not to test the
exact implementations of RF or CNN classifiers developed
by others (which have shown promising results but to our
knowledge were not designed to leverage taxonomic weight
information), but rather to evaluate the potential promise
of advances in extracting taxonomic weight information
(Kaehler et al., 2019) combined with spatial embedding of
sequence information (Mikolov et al., 2013) for exceeding
the taxonomic classification performance of NBC. Further
independent benchmarks by others, and evaluation in more
diverse test scenarios (e.g., non-16S rRNA gene targets) are
warranted to further assess and optimize the performance
of deep learning algorithms for taxonomic classification
(Bokulich et al., 2020).

Following optimization of the hyperparameters evaluated in
this study, RF was able to approach the accuracy performance
delivered by NBC. Computational resources required to train
this classifier, however, are substantially greater and could
prohibit its practical application. Particularly large memory and
computation time (<20 CPU hours vs. hundreds of CPU hours

for NBC and RF, respectively) needed for training seemed to
be a problem for some of the better-performing parameter sets
due to a requirement to train many large trees (i.e., comprising
many split nodes).

Given the best set of parameters and an optimized model
architecture, CNN classifiers could approach, but not match,
NBC accuracy performance. Moreover, training CNNs required
a significant amount of computational resources and specific
hardware, particularly in the case of more complex networks
with many parameters. Our testing was only made feasible by
employing modern graphics processing units (GPUs). GPUs are
widely used to train neural networks, and this capacity has
been suggested as an attractive feature of CNNs for taxonomic
classification versus conventional methods (Busia et al., 2019).
Even though training networks presented in this study required
only a couple of hours (∼3 h) on a single GPU (NVIDIA GeForce
RTX 2080) compared to ∼20 CPU hours for a typical NBC, GPUs
can be considerably more expensive and difficult to configure
and maintain, and hence are out of reach or less attractive to
many researchers.

Our “perfect” classifier tests underline the fact that
evolutionary conservation in most genetic targets for microbiome
profiling limits the degree of taxonomic resolution that is
possible, particularly when sequencing short marker-gene
reads. Hence, mature, existing methods for classification (NBC
and some alignment-based classifiers) have already neared
the upper limits of classification accuracy. The relationship
between read length, primer selection, marker-gene target,
sequence entropy, and taxonomic resolution has been well
documented for 16S rRNA genes and other common targets,
and even with long sequence reads (e.g., full-length 16S rRNA
genes) species-level resolution can be challenging for many
clades (Wang et al., 2007; Liu et al., 2008; Bokulich et al.,
2018b; Johnson et al., 2019; Robeson et al., 2020). This is in
part complicated by muddled microbial taxonomies (Oren
and Garrity, 2014; Yarza et al., 2014) and misannotations
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and other issues with reference databases used for taxonomic
classification (Kozlov et al., 2016). Further improvements
in taxonomy classification are unlikely to come from novel
algorithms alone, and will require some combination of the
following:

1. Use of spatial dependency in DNA sequences or other
latent information. In spite of the current disappointing
results, others have demonstrated the promise of spatially
aware feature extraction prior to CNN classification for
taxonomy or sample predictions (Busia et al., 2019; Zhao
et al., 2020).

2. Use of ecological information from prior studies to hone
classification accuracy (Kaehler et al., 2019).

3. Improvement of reference sequence and taxonomy
databases (Parks et al., 2018; Robeson et al., 2020).

4. Longer read lengths and/or marker-gene targets (Johnson
et al., 2019; Milani et al., 2020)

5. Improvements are not limited to accuracy, and could
include more efficient classifiers with less runtime,
memory, or other resource requirements (Bokulich et al.,
2020).

We note that none of the methods compared in this
work incorporated a feature selection step. It is possible
that a feature selection step might increase performance of
these methods (except for the perfect classifier), and warrants
future investigation.

CONCLUSION

Naive Bayes classifiers have demonstrated robust performance
for taxonomic classification of DNA sequences for more than
a decade (Wang et al., 2007), and recent improvements have
further increased their accuracy (Bokulich et al., 2018b; Kaehler
et al., 2019). Newer supervised learning methods such as
neural networks offer exciting features with potential to further
improve pattern recognition in microbiome data but so far have
only demonstrated small or no improvements for taxonomic
classification specifically (Zhao et al., 2020). In the current
study, we find further evidence that NBCs remain supreme
for taxonomic classification, even when applying taxonomic
weighting and spatial encoding of sequence information, as well
as hyperparameter tuning to optimize RF and CNN classifiers for
16S rRNA gene classification. It is worth noting that both RF
and CNN classifiers comfortably outperform NBCs when they
use taxonomic weighting information but the NBC does not.
We demonstrate that NBCs are already nearing the performance
limit of taxonomic classification of short 16S rRNA gene reads,
indicating that further improvements will require technological
and biological improvements or by leveraging other information
(e.g., ecological observations) beyond sequence information
alone. CNNs and other methods remain promising, however,
and further optimization and benchmarking is warranted to
fully assess the opportunities of deep learning techniques for
microbial classification.

MATERIALS AND METHODS

Random Forests
Cross validation of RF classifiers was performed using the
methodology described in Kaehler et al. (2019). The RF classifier
was tested using the standard q2-feature-classifier (Bokulich
et al., 2018b) using a custom scikit-learn classifier specification
to implement the scikit-learn random forest classifier (Pedregosa
et al., 2011). Feature extraction was performed using the standard
bag of overlapping 7-mers approach, also using scikit-learn.
The code for the q2-feature classifier is available at https://
github.com/qiime2/q2-feature-classifier. Cross validation code
and classifier specifications are available at https://github.com/
BenKaehler/paycheck.

Greengenes release 13_8 (McDonald et al., 2012) was used
for the reference database and sample data was downloaded
from Qiita (Gonzalez et al., 2018) using q2-clawback (Kaehler
et al., 2019). 188 samples labeled as sediment (non-saline) were
downloaded on 20 March 2019 and 22,454 samples labeled as
animal distal gut were downloaded on 23 March 2019. These
samples have been uploaded to Zenodo1.

Convolutional Neural Networks
Cross validation of CNN classifiers was again performed using
the methodology described in Kaehler et al. (2019). Neural
networks were implemented using the Tensorflow library2

via the Keras interface3. Feature extraction was performed
using the Word2Vec algorithm (Rehurek and Sojka, 2010).
A fork of the standard q2-feature-classifier was necessary
to accommodate Keras models and is available at https:
//github.com/BenKaehler/q2-feature-classifier. Cross validation
code and classifier specifications are available at https://github.
com/BenKaehler/paycheck.

Greengenes release 13.8 (McDonald et al., 2012) was used for
the reference database and sample data was downloaded from
Zenodo4. That data was the Qiita animal distal gut data originally
used in Kaehler et al. (2019).

In the embedding step, sequences were trimmed to 150 nt.
Each sequence was converted into a “sentence” of overlapping
7-mers, which were then used as input to the Word2Vec
algorithm as implemented in Gensim (Rehurek and Sojka, 2010)
to transform each sequence into a sequence of 144 length-300
vectors. A window of 5 words was used for training and the
Common Bag of Words (CBOW) algorithm (Rehurek and Sojka,
2010) was selected. Those images were then presented to the
various neural network models as described in “Results” section.

Perfect Classifier
The perfect classifier used the same data set as the CNN
experiments and tests were entirely in-sample. The perfect
classifier tests were “cross validation” tests only in the sense
that they used the same frozen, randomized test sets as the

1https://zenodo.org/record/4361424#.X90hI1MzaV4
2https://www.tensorflow.org/
3https://keras.io/
4https://zenodo.org/record/2548899#.X9rPG1MzaV4
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CNN experiments to reduce random variation between the two.
Code for the perfect classifier is available at https://github.com/
BenKaehler/paycheck.

“Perfect” classification was made possible by in-sample testing
because every sequence that was used for testing had already been
seen by the classifier. Sample weight cross validation was also in-
sample, in that the same aggregate weights were used for every
test, although we found that performing weight-wise out-of-
sample testing did not make a qualitative difference to the results.

For each sequence, a list of taxa that matched that exact
sequence was compiled. Weights for each taxon in the list were
calculated using the taxonomic weighting information or by
equally weighting taxa for uniform weights. In both cases the
weights were normalized for each sequence. If one of the taxa’s
weight was greater than the chosen confidence level, the taxon
with the maximum weight was chosen. If two or more taxa had
equal maximum weight (as most often happened in the uniform
case), one was chosen at random. If the confidence level was not
exceeded by any weights, weights were aggregated at the second
lowest taxonomic level and the procedure was repeated until a
potentially truncated taxon was assigned.

Statistical Analysis
To assess whether the classification performance (expressed as
F-measure) differs significantly between various models (i.e.,
random forest and convolutional neural network variations) and
the Naive Bayes classifier, we employed a two-tailed Wilcoxon
rank sum test (when comparing CNN to NB results where sample
sets differed) and a two-tailed Wilcoxon signed rank test (for
all other comparisons). The analysis was performed at α = 0.05
using all of the test samples available for a given model (combined
across all the folds) followed by Hommel correction for multiple
testing (Hommel, 1988).

Additionally, to account for the potential bias resulting
from highly imbalanced classes we evaluated all the models
using the Matthews correlation coefficient (MCC) (Chicco
and Jurman, 2020). MCC metric was shown to be a more

reliable metric as it assesses the entire confusion matrix
(i.e., true positive and negative, false positives and negatives),
proportionally to class size.
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