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Abstract: Background: Smoking causes widespread epigenetic changes that have been linked with
an increased risk of smoking-associated diseases and elevated mortality. Of particular interest are
changes in the level of T cells expressing G-protein-coupled receptor 15 (GPR15), a chemokine receptor
linked with multiple autoimmune diseases, including inflammatory bowel disease, multiple sclerosis
and psoriasis. Accordingly, a better understanding of the mechanisms by which smoking influences
variation in the GPR15+ helper T cell subpopulation is of potential interest. Methods: In the current
study, we used flow cytometry and digital PCR assays to measure the GPR15+CD3+CD4+ populations
in peripheral blood from a cohort of n = 62 primarily African American young adults (aged 27–35
years) with a high rate of tobacco and cannabis use. Results: We demonstrated that self-reported
tobacco and cannabis smoking predict GPR15+CD3+CD4+ helper T cell levels using linear regression
models. Further, we demonstrated that methylation of two candidate CpGs, cg19859270, located
in GPR15, and cg05575921, located in the gene Aryl Hydrocarbon Receptor Repressor (AHRR), were
both significant predictors of GPR15+CD3+CD4+ cell levels, mediating the relationship between
smoking habits and increases in GPR15+CD3+CD4+ cells. As hypothesized, the interaction between
cg05575921 and cg19859270 was also significant, indicating that low cg05575921 methylation was
more strongly predictive of GPR15+CD3+CD4+ cell levels for those who also had lower cg19859270
methylation. Conclusions: Smoking leads changes in two CpGs, cg05575921 and cg19859270, that
mediate 38.5% of the relationship between tobacco and cannabis smoking and increased GPR15+ Th

levels in this sample. The impact of cg19859270 in amplifying the association between cg05575921
and increased GPR15+ Th levels is of potential theoretical interest given the possibility that it reflects
a permissive interaction between different parts of the adaptive immune system.
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1. Introduction

Smoking is the leading cause of preventable morbidity and mortality in the United States, and
is responsible for nearly half a million deaths per year [1,2]. Chronic illnesses with inflammatory
components, including cancer [3], chronic obstructive pulmonary disease (COPD), cardiovascular
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disease (CVD), and stroke [4] contribute to the majority of deaths caused by smoking. Smokers
also suffer from elevated rates of autoimmune diseases including Crohn’s disease [5], rheumatoid
arthritis [6], and multiple sclerosis [7], as well as elevated rates of inflammatory skin and gut
disorders [8,9]. Unfortunately, the pathophysiologic mechanisms underlying smoking’s relationships
to these diseases are not yet well understood. One approach to better understanding these mechanisms
is to identify mediators of the effects of smoking on key systemic regulators known to influence disease
outcomes. In particular, effects mediated by smoking’s well-established effects on DNA methylation
are promising.

In the current investigation, we chose to focus on an understudied systemic effect of smoking, i.e.,
its impact on levels of CD3+CD4+ helper T (Th) cells expressing the G-protein-coupled receptor 15
(GPR15), a chemokine receptor encoded by the chromosome 3 gene GPR15. Originally identified as a
coreceptor for simian immunodeficiency virus (SIV), human immunodeficiency virus 2 (HIV-2), and
some human immunodeficiency virus 1 (HIV-1) strains [10–12], GPR15 has been linked to multiple
smoking-associated diseases, including rheumatoid arthritis [13], inflammatory bowel disease [14–16],
and multiple sclerosis [17], and psoriasis [18].

Recently, interest in the relationship between smoking and GPR15+ Th cells has increased as a
result of multiple epigenome-wide studies of studies demonstrating associations between smoking
and hypomethylation of cg19859270, a CpG located in the first exon of GPR15 [19–23]. Bauer and
colleagues [24,25] provided insight into this association by demonstrating two findings. First, smokers
had a highly significant (p = 1.8× 10 −10) increase in the peripheral CD3+ T cells expressing GPR15 (15.5%
in smokers vs. 3.7% in non-smokers), and to a lesser extent B cells, and second, these GPR15+CD3+ T
cells had a markedly lower average methylation of cg19859270 than GPR15−CD3+ T cells, resulting in
the arithmetic difference in mean methylation at cg19859270 observed in whole blood.

Interestingly, smoking-associated hypomethylation of cg19859270 appears to be more pronounced
in individuals of African Ancestry. In one study of 972 African Americans [21], cg19859270 was the
second most highly smoking-associated locus in the epigenome, while in two other African American
cohorts cg19859270 was the first and second most strongly associated probe, respectively [26,27].
In contrast, cg19859270 was not among the top 25 smoking-associated CpGs in a large meta-analysis of
smoking-associated CpG sites in which the majority (76%) of included individuals were of European
Ancestry [28]. One reason for these discrepant results may be cis genetic variants that moderate
methylation status at cg19859270 and whose frequencies are ethnically contextual, such as rs2230344
(minor allele frequency in African Americans is 0.06; in Europeans, 0.23) [27].

A second methylation locus of potential relevance in understanding smoking-associated changes
in GPR15+ Th cell levels is cg05575921, located in the chromosome 6 gene Aryl Hydrocarbon Receptor
Repressor (AHRR). In addition to being perhaps the most well-replicated finding in environmental
epigenetics [23,28–30], smoking-associated hypomethylation of cg05575921 is a highly sensitive and
specific indicator of smoking status, with Receiver Operating Characteristic (ROC) areas under the
curve (AUC) as high as 0.99 reported [22,31,32]. Underlying cg05575921’s strong performance as
a biomarker, as well as the reliability of its association with smoking, is its large “delta beta”, i.e.,
the magnitude of difference in methylation in smokers compared to non-smokers. Whereas most
smoking-associated CpGs demonstrate delta betas of less than 10%, in heavy smokers methylation at
cg05575921 may be 50% or more below the population average of around 85%–90% [30]. This large
dynamic range also facilitates the measurement of dose-response effects [28,33–35] and reversibility of
cg05575921 hypomethylation associated with smoking cessation [36–39].

Smoking-associated changes in methylation at cg05575921 may also provide insight into biological
responses to smoking. Specifically, the methylation status of it is thought to influence expression of
AHRR [22], a key regulator of the xenobiotic pathway responsible for detoxification of polyaromatic
hydrocarbons found in tobacco and cannabis smoke [40] that has also been shown to influence
inflammatory responses and act as a tumor suppressor gene in several types of cancers [41]. Cg05575921
hypomethylation has also been directly linked to elevated systemic inflammation, as indicated by
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serum C-reactive protein (CRP) [42], and an increase in overall mortality risk [43,44]. Lastly, in
contrast to cg19859270, smoking-associated hypomethylation of cg05575921 is not influenced by genetic
background, providing additional utility as a tool for investigating smoking’s biological effects in
populations of mixed ancestry [28]. Lastly, in contrast to cg19859270, hypomethylation of cg05575921
has been shown in multiple studies to primarily occur in granulocytes and monocytes, suggesting a
distinct role for these cell populations in biological responses to smoking [45,46].

Although concern that GPR15+ T cells may be drivers of chronic inflammatory disease processes
in smokers [47], their physiological role and the exact nature of their relationship to smoking remain
unclear. Kim [48] found that mice deficient in GPR15 developed severe large intestinal inflammation,
suggesting a potentially protective role in immune homeostasis, while Bauer and colleagues [49] found
that the level of GPR15-expressing T cells was unrelated to the lung disease status in human smokers
and non-smokers. Bauer and colleagues [45] also found that smoking was associated with increased
GPR15 expression across a broad range of T cell subtypes in adults, suggesting GPR15+ T cells may be
adaptive rather than pathogenic.

In addition to questions as to the therapeutic value of interventions targeting GPR15+ T cells in
human smokers at risk for inflammatory disease, relationships between smoking patterns, GPR15
expression, and other immunological variables remain unclear. In particular, the differential impact
of tobacco vs. cannabis smoking patterns on GPR15 expression in T cells has not been previously
explored but is of potential significance given the anti-inflammatory effects of some cannabinoids [50].
In examining this relationship, other immunological variables of potential impact include psychological
factors influencing the HPA axis [51], adiposity [52], non-steroidal anti-inflammatory drug (NSAID)
use [53], and ancestry. The latter factor may be of particular relevance both because of the strong
link between smoking and hypomethylation of cg19859270 in African Americans, reviewed above,
and from a public health perspective because African Americans bear a disproportionate burden of
smoking-associated illnesses [54,55] and demonstrate higher levels of systemic inflammation than
European American smokers [56].

Lastly, it is unknown whether the net effect of the above factors on variance in T cells expressing
GPR15 is fully accounted for by changes in methylation at cg19859270 and cg05575921, respectively
indicating the transcriptional status of GPR15 and systemic exposure to smoke, and whether interactions
between the methylation status of these two CpGs can account for additional variance in this
cell population.

Here, we examine those relationships using novel digital PCR methods in a cohort of African
Americans young adults with a high rate of smoking, testing the following hypotheses:

1. First, we examine whether the proportion of GPR15-expressing CD3+CD4+ Th cells is associated
with (a) tobacco and cannabis smoking patterns and (b) confounding variables that could impact
immune function such as age, sex, race, perceived stress, depressive symptomatology, and use of
over-the-counter non-steroidal anti-inflammatory drugs (NSAIDs).

2. Second, we examine whether the addition of cg19859270 and cg05575921 can fully account for the
variance in the level of GPR15-expressing CD3+CD4+ Th cells due to smoking patterns and other
immunological variables.

3. Third, we examine whether interaction effects between cg19859270 and cg05575921 influence the
level of GPR15-expressing CD3+CD4+ Th cells.

2. Materials and Methods

2.1. Sample

The Family and Community Health Study (FACHS) is a mulita-site investigation of neighborhood
and family effects on child health and development, consisting of several hundred African American
families living in Georgia and Iowa. Each family who participated in the FACHS study included at
least one child subject between the ages of 10 and 12 years old at the time of recruitment (1995–1997).
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Child subjects have been characterized over seven waves of data collection since the beginning of the
study. Later waves of FACHS have also included subjects’ romantic partners, who along with the
subjects themselves consented to be recontacted for future studies. A more detailed description of the
FAHCS sample and methods for the study is available elsewhere [57–59].

2.2. Subject Procedures

Participants in the current study included FACHS subjects (now adults in their early 30s) and
romantic partners, currently living in Iowa who participated in the last wave of the study (wave seven,
collected 2014–2016), and had agreed to be recontacted for future studies. Study subjects were recruited
by phone by a trained research assistant and provided written consent to participate.

Subjects were administered a brief, structured interview on their use of tobacco products,
cannabis products, and other nicotine-containing products, including e-cigarettes. Next, to allow for
analyses controlling for common factors that may impact immune function, subjects then completed
three structured self-report forms. First, they were asked to report on their average consumption
of over-the-counter NSAIDs. Second, subjects completed a nine-item Patient Health Questionnaire
depression module (PHQ-9) [60], and third, a Perceived Stress Scale [61]. Subjects then provided
self-reported data on their ethnicity (African American or other), age, height, and weight for calculation
of body-mass index (BMI) as a proxy for adiposity, the latter due its potential impact on immune
function [62].

All study protocols and procedures were approved by the Institutional Review Board at the
University of Iowa (Title: Tobacco and Cannabis Smoking Effects on Immune Function in Youth; IRB
ID # 201604748).

2.3. Biomaterials and Assays

Following completion of data collection, subjects were phlebotomized to provide whole blood
for DNA preparation and flow cytometry assays, and sera, according to our previously published
protocols [31,63].

2.3.1. ELISAs

Serum cotinine and tetrahydrocannabinol (THC) levels were assayed by enzyme-linked
immunoassay (ELISA) with kits supplied by Abnova (Taiwan) as previously described [31].

2.3.2. ddPCR Assays

Determination of the methylation status at cg05575921 and cg19859270 was conducted using
ddPCR implementation of the previously described quantitative PCR approach [26]. First, 1 µg of
DNA from each subject was bisulfite converted using an EpiTect Fast 96 DNA Bisulfite kit (Qiagen,
Germany) according to the manufacturer’s direction.

The methylation ratio at cg05575921 (C/(C+T)) in each bisulfite treated sample was then determined
using the Smoke Signature® Assay (IBI Scientific, Peosta, IA, USA) and a QX200 Droplet Digital PCR
System™ (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s protocols. In brief, an aliquot
of the bisulfite-converted DNA was pre-amplified with the Smoke Signature®Pre-Amp Master Mix
under high stringency conditions per the manufacturer’s protocol, and then diluted between 1:1000
and 1:5000. Then, 5 µL of the resulting solution was mixed with 1.1 µL of 20X Smoke Signature Assay,
6.5 µL of water, and 11 µL of BioRad 2X ddPCR Supermix (no dUTP), and vortexed.

The resulting mixture was then processed with a Bio Rad Automated Droplet Generator, which
generated approximately 20,000 micelles, with each containing approximately 1 nanoliter of PCR
mixture, and PCR amplified (95 ◦C × 10′, then 40 cycles of 95 ◦C × 15′′ and 55 ◦C × 60′′, and finally
98 ◦C × 10′). After amplification was complete, the post-amplification allele content status (either C, T,
C+T, or blank) of each micelle was determined by a QX200 Droplet Reader and the percent methylation
status of each sample calculated using BioRad’s QuantaSoft software (v1.7) (BioRad: Hercules, CA,
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USA). The methylation ratio at cg19859270 was similarly determined using a custom-designed primer
and probe ddPCR assay for the sequence surrounding the CpG, following identical procedures to
those described for cg05575921. Primer and probe sequences are available in File S5.

2.3.3. PBMC Isolation and Cryopreservation

Peripheral blood mononuclear cells (PBMCs) were isolated using Vacutainer CPT tubes from
Becton Dickinson (BD; Franklin Lakes, NJ, USA) according to the manufacturer’s protocol. Immediately
following isolation, PBMCs were cryopreserved in liquid nitrogen in a solution of 10% DMSO, 20%
fetal calf serum, 70% RPMI supplemented with HEPES (1M, pH range 7.2–7.5) and L-glutamine via
slow temperature-lowering method with a Mr. Frosty Nalgene polyethylene vial holder (Thermo
Fisher Scientific, San Jose, CA, USA) containing isopropyl alcohol.

Cells were stored in liquid nitrogen for >= 1 week before thawing. Prior to staining, PBMCs were
rapidly thawed in a solution of 10% fetal calf serum, 90% RPMI supplemented with DNAse in a 37 ◦C
water bath. Samples were washed in FACS buffer (1X PBS containing 1% BSA and 0.1% sodium azide).
Viability and recovery were measured using tryptan blue exclusion.

2.3.4. Flow Cytometry

Following washing in FACS buffer, PBMCs were stained with anti-CD3 (clone UCHT1, BD),
anti-CD4 (monoclonal, clone Sk3, BD), and either anti-GPR15 (clone SA302A10, BioLegend, San Diego,
CA, USA)) or a mouse IgG2a kappa isotype control (clone MOPC-2710, BioLegend). Samples were
resuspended in 100 µL of FACS buffer for staining and were stained with 1 µL of each antibody as
per the manufacturer’s recommendations. Samples were acquired on a Becton Dickinson LSR II flow
cytometer using FACS Diva Software. Fully stained PBMCs were compared with unstained samples
and samples stained with IgG2a kappa isotype control. The percent of CD3+CD4+ T cells staining
positive for GPR15 (hereafter “GPR15+ Th cell percent”) for each subject was visualized and calculated
using FlowJo software version 7 (Tree Star, San Carlos, CA, USA).

2.4. Statistical Analysis

Statistical analyses were conducted with the R [64] statistical software. The complete dataset used
for the analyses below is included as Table S6.

2.4.1. Coding

Self-report data on tobacco, cannabis, and nicotine-containing products were coded as follows.
Subjects who endorsed any use of combusted tobacco or cannabis products within a given time frame
(week, month, year, or ever) were coded as positive for a derived variable reflecting any smoke
inhalation over that time period. Similarly, subjects who endorsed any use of nicotine-containing
products, including tobacco products and e-cigarettes, were coded as positive for nicotine use over
that time period, and subjects who endorsed any use of cannabis were coded positive for cannabis use
over the same time period.

Intensity of cannabis use was coded based on subjects’ self-reported use of cannabis over the past
year. Due to high variability in how subjects reported their use of cannabis, units of one “blunt” and
one “joint” were each coded as equal a 0.5 g dose of cannabis. Cumulative consumption of cannabis
in grams over the last year was then coded on a 0 to 2 scale, with 0 reflecting no use in the past year,
1 less than 50 g consume in the past year, and 2 reflecting 50 g or more consumed in the past year.
For tobacco use, due to the infrequency of use of tobacco products other than cigarettes, intensity was
coded as the numeric average cigarettes per day consumed.

Perceived Stress Scale and PHQ-9 total scores were calculated according to published instructions.
Subjects reported their dose and frequency use of three NSAIDs: ibuprofen, aspirin, and naproxen,
which were then converted to equipotent doses of ibuprofen 200 mg [65].
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Serum cotinine levels of 1 ng/mL or greater were coded as positive for the purposes of analysis.
Similarly, serum THC levels of 0.5 ng/mL or greater were coded as positive. An additional variable
was derived reflecting positivity for either cotinine or THC or being negative for both.

2.4.2. Correlational Analyses

Correlational analyses were used to examine the relationship between self-reported smoking of
both tobacco and cannabis, methylation of cg05575921 and cg19859270, and other subject characteristics
using the function rcorr(). The same analyses were then repeated including only subjects concordant
for any self-reported smoking (tobacco and/or cannabis) and any serum positivity (cotinine and/or
THC). Visualization of correlations between study variables was done using the corrplot() function
in R.

2.4.3. ANOVAs

The significance of differences in mean levels of methylation at cg05575921, cg19859270, and
GPR15+ Th cell percent between groups were measured by ANOVA using the aov() function. Post hoc
testing was done by Tukey’s method using the TukeyHSD() function.

2.4.4. Regression Analyses

Multiple regression analyses were used to examine the effect of self-reported smoking intensity
of tobacco and/or cannabis on the GPR15+ Th cell percent, with and without covariates that could
potentially impact immune cell function and proliferation. Of note, we use the term “prediction” in
to refer to linear predictors in the context of multiple regression modeling, rather than to indicate
validation of these models in a second dataset.

To examine methylation at cg05575921 and cg19859270 as potential mediators of the association
between self-reported smoking and GPR15+ Th cell percent, the two CpGs were entered in conjunction
with the other predictors to examine whether these methylation signatures could account for the impact
of smoking on GPR15+ Th cell percent, reducing the observed effect of self-reported smoking and
confounders to non-significance. Then, to explore the potential for interaction between the two CpGs
to account for additional variance in GPR15+ Th cell percent, methylation values for each CpG were
centered and normalized, with the interaction of the resulting variables then entered as an additional
predictor in the regression model.

The above models were then repeated on a subset of subjects demonstrating concordance for
tobacco or cannabis smoking (self-report and serum positivity) or non-use (self-report and serum
negativity) to more stringently examine the above hypotheses.

Next, to examine the specific effects of tobacco and cannabis smoking on GPR15+ Th cell percent,
dummy variables tobacco-only smoke exposure and cannabis-only smoke exposure in the last year
were added to the above models, Subjects were coded as “tobacco-only” if they were positive for
self-reported tobacco smoking (cigarette or cigar) in the last year, or demonstrated serum cotinine
positivity, and were negative for both self-reported cannabis smoking and serum THC. Similarly,
“cannabis-only” subjects had endorsed cannabis smoking or demonstrated serum THC positivity but
could not have self-reported any tobacco smoking in the last year or were positive for serum cotinine.

Lastly, to examine the relative contributions of cg05575921, cg19859270, and their interaction term
as predictors of GPR15+ Th cell percent, the three predictors were entered into a linear regression
model which was then analyzed using the Relative Importance of Regressors in Linear Models package,
relaimpo(), [66] using the method of partitioning R2 by averaging over orders (“lmg”).
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3. Results

3.1. Subject Characteristics and Assay ResuLts

Contact information was available for a total of 169 FACHS young adult subjects living in Iowa
who had agreed to be recontacted for future studies. Of these, 81 were contacted and agreed to
participate in the study.

Subject demographic characteristics, clinical variables, and laboratory results and their correlations
are summarized in Table 1. Consistent with the nature of the cohort, a longitudinal study of subjects
enrolled in 5th grade starting in 1996, there was a tight age distribution around 31 years. The majority
of subjects were African Americans, with a preponderance of females. Notably, subjects had a high rate
of obesity, with the majority of body mass index (BMI) values calculated at over thirty. Most subjects
rated their level of depressive symptomatology between the minimal and moderate ranges [60], while
average stress levels were reported as higher than the population average [61]. Sixty percent of subjects
reported smoking cigarettes at some point in their lives, while 77% reported at least one use of cannabis.
Serum enzyme-linked immunoassays (ELISAs) of cotinine and tetrahydrocannabinol (THC) were
completed for 71 subjects.

Table 1. Means and standard deviations for study variables, all subjects (n = 62).

Variable M SD

1. Age (years) 30.7 1.2
2. Gender (male) 0.37 -
3. Race (African American) 0.86 -
4. Body mass index (BMI) 34.0 8.5
5. Perceived Stress Scale 19.3 4.4
6. PHQ-9 total 4.7 4.1
7. NSAID daily dose 0.43 1.00
8. Any smoking (past year) 0.55 0.50
9. Cannabis use (past month) 0.32 0.47
10. Nicotine use (past week) 0.31 0.47
11. Cotinine positivity 0.31 0.47
12. THC positivity 0.32 0.47
13. cg19859270 methylation 93.4 2.4
14. cg05575921 methylation 70.3 16.7
15. GPR15+ % (CD3+/CD4+) 5.7 5.0

BMI refers to body mass index. Perceived stress scale refers to the Perceived Stress Scale total score. PHQ-9 refers to
the Patient Health Questionnaire depression module total score. Nonsteroidal anti-inflammatory drug (NSAID)
daily dose refers to 200 mg equivalent doses of ibuprofen, naproxen, and aspirin. Any smoking indicates exposure to
tobacco and/or cannabis smoke. Cotinine positivity indicates serum values of > 1 ng/mL, while tetrahydrocannabinol
(THC) positivity indicates > 0.5 ng/mL.

A total of 65 subjects had both cg05575921 and cg19859270 digital droplet PCR (ddPCR) assays
completed. Two subjects failed quality control for the cg19859270 ddPCR assay, defined as greater
than a 5% confidence interval for the methylation value, while no subjects failed the cg05575921 assay,
leaving a total of 63 subjects with both ddPCR assays available for analysis. Lastly, flow cytometry
experiments to measure the percent of CD3+CD4+ T cells staining positive for GPR15 (hereafter
“GPR15+ Th cell percent”) were completed for 62 of those 63 subjects, leaving a total of 62 subjects for
whom all measures were completed.

3.2. Study Variable Correlations

Correlations between study variables are depicted in Figure 1 and are available in Table S1. Results
of serum ELISA assays for cotinine and THC indicated an overall high rate of current cannabis use
(32%) and nicotine-containing products (31%), with 44% of subjects positive for one or both.
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dose refers to 200 mg equivalent doses of ibuprofen, naproxen, and aspirin. Smoke exposure indicates
tobacco and/or cannabis smoking. Serum cotinine positive indicates serum values of > 1 ng/mL, while
serum tetrahydrocannabinol (THC) positive indicates > 0.5 ng/mL. GPR15+ proportion refers to the
proportion of CD3+CD4+ PBMCs. Significance codes: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

Interestingly, subject self-reports of cannabis use were strongly associated with serum THC
positivity (r = 0.631, p = 3.86 × 10 −8), whereas prior-week use of nicotine containing products was
uncorrelated with serum cotinine positivity (r = −0.062, p = 0.630). This may reflect differences in
THC and cotinine persistence, cotinine assay problems, patterns of episodic use in this sample, or
differences in accuracy of self-reporting. To control for the latter possibility, primary linear regression
analyses were rerun using only participants with biochemically confirmed use.

Digital PCR assays for cg19859270 and cg05575921 indicated a range of methylation values similar
to other studies with a mix of smokers and non-smokers [25,37], with cg05575921 demonstrating
the greater dynamic range, as previously reported [30]. Methylation values at the two CpGs were
moderately correlated with each other (R = 0.395, p = 0.00149). Both CpGs were correlated with
self-reported tobacco smoking, cannabis smoking, and serum THC positivity, while serum cotinine
positivity was strongly correlated with cg05575921 methylation but only showed a trend association
with cg19859270, as depicted in Figure 1 and detailed in Table S1.

The distribution of methylation values for cg05575921 and cg19859270, conditioned on (1)
self-reported smoking of either tobacco or cannabis products in the last year and (2) serum positivity
for either cotinine or THC, is depicted in Figure 2.
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Figure 2. Boxplots of cg05575921 (A) and cg19859270 (B) methylation stratified by self-reported smoking
status (tobacco and/or cannabis) and serum positivity (cotinine > 1 ng/mL and/or tetrahydrocannabinol
(THC) > 0.5 ng/mL). Significance codes: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001 (Tukey’s Honest Significant
Difference).

The flow cytometry gating strategy used to measure GPR15+ Th cell percent is depicted in
Figure 3A. Across all subjects, GPR15+ Th cell percent ranged from 0.60 to 31.60, with a mean of 5.71
(SD 5.04). Subjects positive for cotinine or THC had a mean GPR15+ Th cell percent of 8.33 (SD 5.92)
with a range of 2.12 to 31.6, while those negative for both cotinine and THC had a mean of 3.67 (SD 3.00)
and a range of 0.60 to 12.4. GPR15+ Th cell percent was significantly correlated with male gender,
self-reported smoking in the past year, cannabis smoking in the past month, nicotine use in past week,
serum THC status, and both cg05575921 and cg19859270, as shown in Figure 1 and Table S1, but not
with other subject characteristics.

For comparison, a correlation table for the study variables including only the n = 45 subjects
concordant for self-reported smoking (tobacco and/or cannabis) and serum indicators (serum cotinine
and/or THC) was constructed, otherwise including the same variables as in Table S1. As seen in
Table S2, characteristics of subjects who were concordant for self-reported use versus non-use of
cigarettes and cannabis were similar to the group as a whole, with the exception that correlations
between epigenetic and serum biomarkers were strengthened.
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Figure 3. GPR15+ Th cell flow cytometry gating strategy and results stratified by smoking status and
serum positivity. Panel (A) depicts the flow cytometry gating strategy used to visualize GPR15+ Th cell
percent within the CD3+CD4+ population of peripheral lymphocytes. Histograms at bottom depict
GPR15+ Th cell percent data from two subjects, one a “non-smoker”, negative for both self-reported
smoking and serum cotinine and tetrahydrocannabinol (THC) , and the other a “smoker”, positive
for self-reported smoking and both cotinine and THC. The leftmost histogram depicts the results
from the same “non-smoker” using the mouse IgG2a kappa isotype as a negative control. Panel (B)
depicts boxplots of Th cell percent for subjects stratified by self-reported smoking status (tobacco and/or
cannabis) and serum positivity (cotinine > 1 ng/mL and/or THC > 0.5 ng/mL). Significance codes:
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001 (Tukey’s Honest Significant Difference).

3.3. Regression Analysis Results

Multiple linear regression models were used to examine the relationships between smoking
behavior, DNA methylation, changes in GPR15+ Th cell percent, with and without covariates that could
potentially affect immune function and proliferation, and also to examine mediational hypotheses.

First, GPR15+ Th cell percent was regressed against two variables reflecting self-reported intensity
of cigarette and cannabis smoking, respectively, as shown in Table 2. The first model (Model 1A)
demonstrated that both cigarettes per day and scaled cannabis use over the last year were significant
predictors of GPR15+ Th cell percent with an R2 of 0.357 (p = 4.18 × 10−7). The addition of predictors
potentially impacting immune composition and function (Model 1B) did not further improve model fit.
In contrast, the subsequent addition of cg05575921 and cg19859270 (Model 1C) did improve the fit
(R2 = 0.590, p = 1.52 × 10−8). Interestingly, while both CpGs were significant predictors of GPR15+ Th
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cell percent in Model 1C, cigarettes per day, though not average cannabis use, remained a significant
predictor (p < 0.01), indicating that the impact of intensity of self-reported cigarette use was not fully
mediated by the two candidate CpGs. Lastly, the interaction term for cg05575921 and cg19859270 was
introduced (Model 1D), yielding a significant effect (p < 0.001) and improved model fit (R2 = 0.670,
p = 2.21 × 10−10), while cigarettes per day remained a significant predictor (p < 0.01) of GPR15+ Th

cell percent. Although BMI was a significant (p = 0.05) predictor of GPR15+ Th cell percent in models
1C and 1D, a post-hoc linear regression analysis including BMI as a sole predictor did not show a
significant relationship with GPR15+ Th cell percent (p = 0.282). Mediation analysis of Models 1B-1D
using the simple path model equation indicated that the two CpGs mediated 35.51% of the variance in
GPR15+ Th cell percent due to cigarettes per day, and 38.53% with the addition of their interaction term.

Table 2. Multiple linear regression results for GPR15+ Th cell percent regressed against tobacco and
cannabis smoking intensity.

Model Model 1A Model 1B Model 1C Model 1D

Parameters b p-Value b p-Value b p-Value b p-Value

Cigarettes per day 0.588 6.33 × 10−5 0.597 1.48 × 10−4 0.385 2.56 × 10−3 0.367 1.47 × 10−3

Scaled cannabis use 1.80 1.00 × 10−2 1.18 1.38 × 10−1 0.138 8.33 × 10−1 0.198 7.36 × 10−1

Age (years) 0.014 9.76 × 10−1 0.0365 9.20 × 10−1 0.0940 7.74 × 10−1

Gender (male) 2.47 4.51 × 10−2 1.58 1.08 × 10−1 1.38 1.18 × 10−1

Race (African
American) 1.08 4.83 × 10−1 1.31 2.89 × 10−1 1.01 3.62 × 10−1

BMI 0.0766 2.40 × 10−1 0.105 4.57 × 10−2 0.0973 3.99 × 10−2

Perceived Stress Scale 0.0422 7.56 × 10−1 0.0152 8.89 × 10−1 −0.0424 6.68 × 10−1

PHQ-9 total 0.145 3.21 × 10−1 0.0518 6.59 × 10−1 0.165 1.38 × 10−1

NSAID daily dose 0.0939 8.69 × 10−1 0.218 6.31 × 10−1 0.211 6.05 × 10−1

cg19859270 methylation −0.420 3.74 × 10−2 −0.480 9.13 × 10−3

cg05575921 methylation −0.139 4.70 × 10−5 −0.115 2.10 × 10−4

cg19859270*cg05575921 1.44 6.67 × 10−4

Constant 3.65 4.18 × 10−7 −2.42 8.72 × 10−1 46.9 3.23 × 10−2 49.6 1.23 × 10−2

R-square 0.357 0.348 0.590 0.670
p-value 8.21 × 10−7 1.68 × 10−4 1.52 × 10−8 2.21 × 10−10

Cigarettes per day calculated by average consumption over the past month. Scaled cannabis use indicates average
use over the past year. BMI refers to body mass index. Perceived Stress Scale refers to the Perceived Stress
Scale total score. PHQ-9 refers to the Patient Health Questionnaire depression module total score. Nonsteroidal
anti-inflammatory drug (NSAID) daily dose refers to 200 mg equivalent doses of ibuprofen, naproxen, and aspirin.
Cotinine positivity indicates serum values of > 1 ng/mL, while THC positivity indicates > 0.5 ng/mL. GPR15+
proportion refers to the proportion of CD3+CD4+ PBMCs. Regression results shown for all subjects (n = 62). Note:
the cg19859270*cg05575921 was centered and normalized prior to entry into the regression model.

To more stringently examine the above relationships, equivalent models were run restricting
to the n = 45 subjects demonstrating concordance between self-reported smoking intensity (tobacco
and/or cannabis) and serum indicators (serum cotinine and/or THC). As shown in Table S3, the full
model incorporating both CpGs and their interaction term as predictors (Model 2D) demonstrated
the best overall fit, with an R2 of 0.779 (p = 1.83 × 10−9). Similar to the above results, the interaction
term between the two CpGs was a significant predictor (p < 0.001) and improved the significance of
cg19859270 as a predictor (p < 0.05), while cg05575921 (p = 5.30 × 10−5) and cigarettes per day (p < 0.01)
also remained significant predictors of GPR15+ Th cell percent.

A third set of regression analyses were performed to explore specific effects of tobacco vs. cannabis
smoking on GPR15+ Th cell percent. As shown in Table S4, the addition of dummy variables indicating
tobacco-only smoking (n = 10 subjects) and cannabis-only smoking (n = 9 subjects) in the last year
did not improve model fit compared to Model 1A (Model 3A, R2 = 0.370, p = 3.50 × 10−6), nor did
the addition of immunologic variables (Model 3B, R2 = 0.344, p = 4.16 × 10−4). The addition of the
two CpGs as predictors did improve fit (Model 3C, R2 = 0.585, p = 7.38 × 10−8), as did the addition of
their interaction term (Model 3D, R2 = 0.666, p = 1.35 × 10−9), similar to models 1C and 1D. Variables
indicating tobacco-only and cannabis-only smoking were not significant predictors of GPR15+ Th cell
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percent in any of the above models, whereas cigarettes per day but not average cannabis use remained
a significant predictor in the full model (p < 0.05). Similarly, although the tobacco-only subjects had
a higher mean GPR15+ Th cell percent (7.3, SD 4.4) than the cannabis-only smokers (4.6, 3.0), the
difference was not significant (p = 0.13), nor did the two groups demonstrate significantly different
mean levels of cg05575921 methylation (p = 1) or cg19859270 methylation (p = 1).

Given the consistent findings that methylation of cg19859270 interacted with cg05575921 to
predict GPR15+ Th cell percent, this interaction was plotted as the effect of high (+1 SD) versus
low (-1 SD) cg19859270 methylation values on the relationship between cg05575921 methylation
and GPR15+ Th cell percent, as depicted in Figure 4. As demonstrated in the figure and by the
corresponding regression model (Model 2D), low cg19859270 methylation intensified the effect of
decreasing cg05575921 methylation, reflective of increasing smoke exposure, on expansion of the
GPR15+ population of CD3+CD4+ Th cells.Genes 2019, 10, x FOR PEER REVIEW 13 of 20 
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The interaction is visualized by plotting regression lines for cg05575921 while holding the value of
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Table S3. The ribbons indicate the model-based 95% confidence intervals for each regression line.

Lastly, to examine the relative contributions of cg05575921, cg19859270, and their interaction term
as linear predictors of GPR15+ Th cell percent, the three terms were entered into a linear regression
model which was then analyzed using the relaimpo() package in R using the default settings, n = 1000
bootstraps. The overall model was significant (R2 = 0.583, p = 1.09 × 10 −11), as was each predictor
individually. The relative contributions of cg05575921 was greatest at 36.2% (95% CI 23.4%–36.2%),
followed by cg19859270 at 14.9% (2.4%–36.2%), and their interaction term at 9.3% (0% to 22.7%).
The same procedure was then performed using the full model (Model 1D) including smoking intensity
variables and immunologic predictors in addition to the two CpGs and their interaction term. Results
of that analysis were similar, showing a relative contribution of cg05575921 of 27.9% (15.5%–44.3%),
cg19859270 of 11.5% (2.9%–30.0%), and their interaction term of 7.4% (0%–16.1%). The contribution of
cigarettes per day was 13.8% (4.1%–27.7%) and scaled marijuana use was 4.8% (1.4%–11.6%), while the
remaining predictors all contributed less than 3% of the variance individually.
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4. Discussion

Smoking is associated with increased morbidity and mortality. Although the mechanisms
underlying this risk are not fully understood, smoking-associated increases in GPR15-expressing
immune cells are implicated in a number of illnesses that affect smokers. However, their biological role
and mechanisms underlying their strong association with smoking are not well understood.

In this study, we examined a cohort of young African Americans, over half of whom reported
lifetime exposure to tobacco and cannabis smoke, exploring differential effects of tobacco and cannabis
smoking on GPR15+ Th cell percent in the context of other immunological variables and epigenetic
indicators of smoking, using a series of multiple linear regression models. We confirmed the association
between increased GPR15+ Th cell percent and smoking habits found by Bauer and others [25,49]
finding independent effects of cigarette and cannabis smoking intensity in our preliminary model,
suggesting additive effects of tobacco and cannabis smoke exposure. However, after accounting for
other immunological variables, the significant main effect of cannabis smoke exposure was reduced to
non-significance. This finding was confirmed by supplemental analyses including analyses focused on
biochemically confirmed tobacco-only smokers, cannabis-only smokers, and non-smoking controls.

The addition of epigenetic indicators of smoking, i.e., decreased methylation at cg05575921 and
cg19859270, substantially improved prediction of GPR15+ Th cell percent in the context of our regression
models, consistent with our hypotheses that these two methylation loci reflect both systemic exposure
to smoke and the transcriptional status of GPR15, but did not fully account for self-reported smoking’s
association with GPR15+ Th cell percent, with cigarettes per day remaining a significant predictor.
This finding suggests that smoking intensity influences GPR15+ Th cell percent through mechanisms
not fully captured by the methylation state of two CpGs or other variables measured. This finding
is consistent with prior work by Andersen and colleagues [32], who demonstrated that self-report
of smoking habits, when accurate, performed approximately equally as well as measurement of
cg05575921 methylation in predicting serum cotinine status, but that the combination of both self-report
and cg05575921 methylation was overall most predictive.

We hypothesized that ancestry, particularly African American ancestry, might influence the
relationship between smoking and GPR15+ Th cell percent. In particular, Dogan and colleagues [27]
previously demonstrated that rs2230344, the only common non-synonymous SNP in the immediate
region of cg19859270, showed a significant main effect on the relationship between smoking status
and cg19859270 methylation in African Americans, though not in European Americans. In our study,
we were unable to genotype subjects to confirm this effect but did not find an effect of ancestry when
entered in conjunction with other predictors. It is unclear whether the ascertainment of rs2230344
genotype in addition to methylation status at cg05575921 and cg19859270 would greatly improve the
ability to predict GPR15 levels, although this hypothesis could be readily tested in future investigations.

Although a minor effect of BMI on GPR15+ Th cell percent was seen in Model 1C and 1D, the effect
was not present prior to the introduction of the two CpGs and their interaction term to the regression
model, nor was it seen in models restricted to subjects concordant for self-reported smoking habits
and serum indicators of smoking. This inconsistent finding could be an artifact of our relatively small
sample size, or might be the result of negative correlations among the predictors, but nonetheless
suggests that controlling for BMI may be important in future studies examining the relationship
between smoking, GPR15+ Th levels, and inflammatory disease, particularly given prior reports linking
obesity with elevated of C-reactive protein [67,68]. Other potentially confounding demographic and
behavioral variables that could affect immune composition and function did not significantly contribute
to GPR15+ Th cell percent, although larger studies in the future could uncover more subtle effects.

The finding that greater hypomethylation of cg19859270 amplified the relationship between smoke
exposure, as indicated by cg05575921 hypomethylation, and GPR15+ Th cell percent is consistent
with expectations that decreased methylation of exonic CpGs facilitates greater gene expression.
The mechanism underlying significant interaction between cg05575921 and cg19859270 is not clear
but may be influenced by several factors. Because hypomethylation of cg05575921 and cg19859270



Genes 2020, 11, 149 14 of 19

in whole blood have been shown to be linked with more pronounced hypomethylation in distinct
immune cell populations, specifically monocytes and granulocytes (cg05575921) and T and B cells
(cg19859270) [24,46], one possibility is that the effect observed may therefore indicate unmeasured
interactions between these cell populations.

In this context, it should be noted that methylation of the promoter region of methylene
tetrahydrofolate reductase (MTHFR) was recently shown to influence smoking-induced hypomethylation
of both cg05575921 [69] and cg19859270 [70]. In fact, cg19859270 was the locus most highly influenced
by MTHFR promoter methylation across the genome (p = 9.04 × 10 −15) in the study of Andersen
and colleagues [32]. This suggests the availability of donor methyl groups for DNA methylation,
DNA replication, and other cellular processes may be an additional unmeasured factor in our study
influencing GPR15+ Th cell percent.

Although they have been associated with a variety of inflammatory conditions, the biological
role of GPR15+ expressing T cells is not clear. Bauer [45] and colleagues recently demonstrated that
GPR15 expression was not specific to any T cell subtype, although it was most expressed on Th17 cells,
and suggested a potentially protective role for GPR15-expressing T cells in chronic smoking. Going
forward, further mechanistic studies are needed to establish whether GPR15-expressing T cells convey
risk, benefit, or neither in smokers and whether they may be targets for therapeutic interventions.

If relevant to health, measurement of GPR15+ T cell levels directly by flow cytometry may
be the most appropriate in clinical settings. In contrast, accurate estimation of the GPR15+ T cell
levels by epigenetic assays requires analysis of a large number of CpGs to accurately estimate cell
proportions [71]. While this information may be obtained through the use of a genome-wide chip
such as the Illumina 450k, this assay is costlier and time consuming than flow cytometry. The custom
designed digital PCR probes used in this study, by comparison, are significantly less costly (we estimate
under $10 in reagents per sample), but do not provide cell proportion data. However, the use of such
probes may be useful in large-scale studies where DNA but not peripheral blood samples suitable for
flow cytometry are available, and the cost of genome-wide array-based assays may be prohibitive.

Several unexpected findings in our study are worth noting. First, we observed that a number of
our subjects with the greatest GPR15+ Th cell percent did not demonstrate serum cotinine positivity.
Examination of our dataset (available in Table S5) shows that most of these subjects were either positive
for serum THC or self-reported recent tobacco or cannabis smoking. Similarly, a single individual who
was negative for self-report of both tobacco and cannabis use, and negative for serum cotinine and THC
had a GPR15+ Th cell percent above 5%. However, examination of this data point showed evidence
of hypomethylation of cg05575921, consistent with chronic smoke exposure. Lastly, it is interesting
that the subject with the most hypomethylation of cg19859270 was in the serum negative, self-report
negative group, and showed a cg05575921 methylation value within the non-smoking range (88%).
Taken together these findings highlight the utility of obtaining complementary sources of information
regarding substance use habits and the potential for assay failure.

Because the relatively small sample size examined in the current study is a limitation, replication
in an independent sample is needed to confirm whether the combination of digital PCR assays
for cg05575921 and cg19859270 truly improves prediction of GPR15+ Th cell percent. The small
sample size may have also obscured other significant contributions to GPR15+ Th cell percent such
as cannabis-specific smoking patterns, and ethnicity, particularly the low number of non-African
Americans in our sample. Second, as discussed above, because we were unable to control for cell
type proportions in our analyses, caution is warranted in interpretation of our results, and future
experiments with cell proportion data are needed to confirm our findings. Third, the small amount of
variability of cg19859270 compared to cg05575921 or direct measurement of GPR15+ Th cell percent
suggest that it has little utility as an independent biomarker for smoking. Fourth, a low rate of cotinine
positivity in the subjects with the greatest GPR15+ Th cell percent suggests that poor ELISA assay
performance may have impacted our results, despite strong correlations between cotinine positivity
and cg05575921 methylation.
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5. Conclusions

In conclusion, we have demonstrated that two smoking-associated CpGs, cg05575921 and
cg19859270, and their interaction, mediate a substantial portion (38.5%) of the relationship between
tobacco smoking and increased GPR15+ Th levels in the context of multiple linear regression models.
In addition, the impact of cg05575921 demethylation on GPR15+Th levels was amplified by cg19859270,
suggesting the possibility of enhanced prediction of cell level using only these two smoking-associated
CpGs. The impact of cg19859270 in amplifying the association between cg05575921and increased
GPR15+ Th levels is of potential theoretical interest given the possibility that it reflects a permissive
interaction between different parts of the adaptive immune system. Because GPR15+ Th levels have
suggestive links with smoking-associated diseases, further efforts to define its biological role in both
smokers and non-smokers are needed. Our results suggest that it may be feasible to estimate GPR15+

Th cell levels in settings where direct measurement of GPR15+ Th cells are not possible, such as large
DNA biobanks.
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