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ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are the progenitor cells that can regenerate
the entire blood compartment, including the immune system. Recent studies have unearthed
considerable immune-modulating potential of these cells. They can migrate through chemotactic
gradients, differentiate into functional immune cells, and crosstalk with immune cells during
infections, autoimmune diseases, and cancers. Although the primary role of HSPCs during solid
malignancies is considered immunosuppressive, recent studies have discovered immune-
activating HSPCs and progeny. In this review, we will discuss the recent evidence that HSPCs act
as immunomodulators during solid cancers and highlight the future directions of discovery. STEM
CELLS 2019;37:166–175

SIGNIFICANCE STATEMENT

Hematopoietic stem and progenitor cells have been used during solid cancers to rescue mye-
loablated bone marrow but not as an independent immune cell. Additionally, most immunother-
apy strategies have focused on lineage-committed or terminal effector immune cells. This
article highlights recent work demonstrating that hematopoietic stem and progenitor cells are
key modulators of cancer immunity that should be incorporated in cellular immunotherapy
strategies.

INTRODUCTION

Hematopoietic stem and progenitor cells (HSPCs)
at various stages of multipotency and lineage-
commitment have been implicated as key mod-
ulators of immunity [1]. Namely, it has been
suggested that HSPCs can regulate cancer pro-
gression [2–17], drive autoimmunity [18–20], and
regulate infections and inflammation [1, 20–30].
In each of these disease settings, multiple reports
have described HSPC-mediated immune-suppres-
sive and stimulatory functions. In addition, there
is a well-documented dependence on HSPCs for
emergency hematopoiesis, the reconstitution and
employment of the blood system during inflam-
matory conditions [1, 21–26].

In the context of cancers, hematopoietic
stem cell (HSC) transplantation is largely
thought of as doing two things: (a) providing
the HSPCs to rescue the bone marrow (BM)
after toxic therapies or (b) providing graft-
versus-leukemia effect, an immune response
driven by the immune response of contaminat-
ing T or natural killer (NK) cells present in the
graft that target minor human leukocyte antigen

(HLA) mismatching between graft and tumor
[31–33]. Although the clinical use of HSPC trans-
fer for a number of malignant and nonmalig-
nant conditions is life-saving [31–37], there is an
underappreciated role for autologous, nonmis-
matched HSPCs as a cellular immunotherapy for
solid cancers. In this review, we attempt to shift
the narrative on HSPCs from a simple recon-
stituting cell or the mediator of graft-versus-
leukemia to a multifunctional cell capable of
immense immunomodulation. Additionally, with
the advent of immunotherapy, there is an impor-
tant need to evaluate all hematologic cells that
are integral to the cancer immune response,
including the HSPC that gives rise to all innate
and adaptive immune cells.

There are multiple reports of the protumor
functions of HSPCs in the context of peripheral
cancers. On the contrary, there are multiple
reports of the antitumor function of HSPCs in
brain tumors, a site traditionally considered
to be immunoprivileged. Therefore, we have
divided this review into sections dealing with
HSPC functions in peripheral tumors or brain
tumors. Although there is some overlap in the
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two settings, we anticipate that through this division cross-
comparison of mechanisms between the two settings can
inform future investigation into the untapped immunothera-
peutic potential of HSPCs.

HSPC Differentiation and Lineage Commitment

Generation of the blood compartment requires an intricately
coordinated system of migration, self-renewal, lineage commit-
ment, differentiation, and proliferation known as hematopoie-
sis. Natively, this process generates all blood cells in the
immature child and swiftly repopulates any blood cell deficits
in the mature adult [38–42]. Although the majority of this pro-
cess occurs in the BM, extramedullary hematopoiesis can
occur in distant sites such as the spleen. In patients that
require a rescue of the blood-forming hematopoietic cells,
stem cell transplantation is performed. Within this stem cell
transplant is HSPCs, a heterogeneous population that encom-
passes HSCs and hematopoietic progenitor cells (HPCs). Dogma
dictates that HSPCs follow an orderly and linear path of differ-
entiation into terminal effector cells. Recent work has demon-
strated considerable discrepancies with this notion and instead
promotes the global theory that most effector cells come from
a milieu of genetically heterogeneous HPCs [39].

One of the theories of HSPC differentiation is that HSCs
become multipotent progenitors (MPP). These MPPs serve as
the primary blood-forming component of the body that gener-
ates all lineages and plays the largest role in reconstituting
myeloablated hosts during HSPC rescue [38, 39]. Recent stud-
ies have suggested that there may be considerable early
lineage-restriction in MPPs; specifically, the MPP2 and MPP3
may be myeloid-restricted, whereas the MPP4 is lymphoid-
restricted [39]. Downstream of the MPP is a traditionally
binary split between the common myeloid progenitor (CMP)
or the common lymphoid progenitor (CLP) [40]. The CLP then
narrows into small lymphocyte differentiation and progresses
into the T and B cell differentiation and maturation pathways.
This review will ignore the role of HSPC-derived lymphoid cells
given the predominant focus of HSPC immunology research
being focused on the myeloid progenitor populations. Down-
stream of the CMP are the megakaryocyte erythrocyte progen-
itor (MEP) and the granulocytic–monocytic progenitor (GMP)
[40]. Given the limited knowledge about the role of platelets
or red blood cells in immunity, the MEP was ignored. However,
considerable attention has been paid to the GMP and its prog-
eny: the progenitor that generates macrophages, neutrophils,
dendritic cells, eosinophils, and basophils [38–42].

One of the key cell populations that has a strong link to
HSPCs is the myeloid-derived suppressor cell (MDSC). MDSCs
are a heterogenous population of myeloid cells that are halted
in immature states of development. Although MDSCs them-
selves lack mature myeloid cell markers, they can eventually
differentiate into nearly all myeloid cell types [4, 27]. One of
the key forms of cancer-mediated influence on HSPCs is to
differentiate HSPCs into MDSCs [4]. In the mouse system,
MDSCs can be characterized as CD11b+Ly-6G+Ly-6Cint (polymor-
phonuclear, PMN-MDSC) or CD11b+Ly-6G−Ly-6Chi (monocytic,
Mo-MDSCs) [2, 4, 27]. Although in the human system MDSCs
are often characterized as CD11b+CD14−CD33+ or Lin−HLA-
DR−CD33+. Additionally, PMN-MDSCs have upregulated signal
transducer and activator of transcription 3 (STAT3) and nicotin-
amide adenine dinucleotide phosphate that can promote

reactive oxygen species (ROS) but low nitric oxide (NO),
whereas Mo-MDSCs are known to have upregulated STAT1
and inducible nitric oxide synthase that promotes high NO and
low ROS. In relation to cancer, MDSCs can promote metasta-
ses, angiogenesis, and a more stem-like phenotype of tumor
cells [11, 27, 43]. The hallmark protumor functions of MDSCs
that are most relevant to immunity revolve around impair-
ing T cell function to allow cancer progression and metasta-
sis. MDSCs can impair T cell function through: (a) arginase
1-mediated metabolism of L-arginine, a key substrate for T cell
proliferation, (b) NO-mediated inhibition of T cell Janus kinase-
STAT signaling, (c) inhibition of MHC II expression, (d) induction
of T cell apoptosis, and (e) expression of coinhibitory mole-
cules including programmed death-ligand 1 (PD-L1; Fig. 1)
[4, 27, 44].

Clinical Context

The historical context of BM transplants as an oncologic ther-
apy begins with the graft-versus-tumor effect concept. First
popularized in the 1960s by Nobel Prize winner E. Donnall
Thomas, this soon emerged as a leading therapy for leukemias
that remains effective to this day [31, 33, 45]. Soon after,
George Canellos and Emil Frei III popularized the use of high-
dose “megadose” chemotherapy with autologous HSPC trans-
fers for breast cancer patients from 1985 to the late 90s
[45, 46]. Throughout this period, a multitude of participants
were enrolled in breast cancer trials that were committed to
prove the efficacy of this therapy. Despite this massive effort,
the lack of survival benefit with high-dose therapy coupled
with future risk of leukemia induced by the megadoses of che-
motherapy left the breast cancer field with an understandable
resistance to continue megadose chemotherapy with autolo-
gous HSPC rescue [47–51].

There are still many clinicians that promote high-dose che-
motherapy with autologous HSPC rescue for some incredibly
fatal solid malignancies based on multiple reports of marked
success. For instance, high-dose chemotherapy with autolo-
gous HSC transplant has seemed effective for triple negative
breast cancer patients [52] and is still being tested (NCT
02670109). Autologous HSC transplant is also especially effec-
tive in a subset of heavily pretreated pediatric brain tumor

Figure 1. Immunosuppressive function of myeloid-derived sup-
pressor cells. Abbreviations: HSPCs, hematopoietic stem and pro-
genitor cells; PD-L1, programmed death ligand-1; MHC II, major
histocompatibility complex II.
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patients [32, 53–58]. Finlay et al. advocate for chemotherapeu-
tics that specifically have BM toxicity, including Thiotepa, Eto-
poside, Melphalan, and Busulfan and follow with allogeneic or
autologous HSPC rescue [56–58].

Regardless of the type of cancer, the discussion surrounding
chemotherapy with salvage HSPC transplant typically focuses
on two mechanisms of action: (a) ability of high-dose chemo-
therapy to mediate greater tumor regression as compared with
normal chemotherapy and (b) the graft-versus-tumor effect if
allogeneic stem cell transplantation is performed because of
contaminating T/NK cell immune responses against minor HLA
mismatching between graft and tumor [32, 33, 47–50]. Outside
of these two mechanisms, there has been little to no clinical
evaluation of the ability of the HSPC transplant cells to inde-
pendently mediate an immunologic effect on cancers. Despite
this, preclinical investigation on the role of HSPCs in cancers,
infections, and autoimmunity has continued to evolve.

Experimental Use of HSPCs

There are at least two distinct settings in which HSPCs are
studied: native (or homeostatic) and transplant. The native
human system in which all HSPCs are derived from self and
have not been transferred or transplanted from donor to
recipient. In that setting, studies determine the role of HSPCs
in contexts of disease that occur to that single host. The con-
verse setting in which HSPCs are studied is the transplant set-
ting. In that setting, HSPCs are either harvested from BM or
peripheral blood of a donor, then transplanted to a recipient.
There are two variations on this model: transplant-treatment
and transplant-delay. In transplant-treatment, HSPCs are used
as a therapeutic intervention and their role is studied subse-
quent to the treatment. In transplant-delay, HSPC transplants
are used to specifically label the BM cells with a trackable tag
to distinguish the BM-derived cells from peripheral cells in
murine systems. Once these chimeras of two types of BM cells
are stably engrafted, the transplant-delay experiment can
begin.

Immunomodulatory Capacity of HSPCs

HSPCs respond to inflammation with emergency hematopoi-
esis, a process that replaces immune effectors that are
destroyed, exhausted, or otherwise occupied with clearance
of inflammatory stimuli [22–24, 26]. In a more nuanced role,
HSPCs can enhance or diminish the highly educated adap-
tive immune system through MDSC-like immune suppres-
sion or myeloid antigen-presenting cell-like immune
activation [1–7, 9–21, 27, 28, 30, 59–61]. In each of these
functions, HSPCs can enable or prevent infections, autoim-
munity, cancers, and even modulate surgical site healing
responses [29].

HSPCs are also proficient at migrating to sites of inflamma-
tion through chemokine axes. In the case of malignant glio-
mas, brain tumors can capitalize on the stromal cell-derived
factor (SDF)-1-CXCR4 axis to attract HSPCs to the brain tumor
microenvironment through glioma-secreted SDF-1 [62–67].
This HSPC tropism for certain inflammatory sites has promoted
the concept that HSPCs can be a carrier or vehicle cell that will
package desired particles, molecules or nucleotides [68, 69].
Once packaged, HSPCs could theoretically traffic or migrate
through a known axis and deliver its contents to a desired site.

Additionally, HSPCs are highly sensitive to exogenous cues
and express receptors for key inflammatory cytokines [11].
Therefore, HSPCs can become activated and differentiate
in response to cytokines including interferon (IFN)-γ, IFN-α,
and granulocyte–monocyte colony-stimulating factor (GM-CSF)
[1, 2, 21, 23, 60, 70–74]. Once activated or differentiated by such
cytokines, HSPCs and their progeny can then act as immuno-
modulatory cells. Although HSPCs have distinct roles in a multi-
tude of inflammatory settings, herein we will detail the role of
these cells in the context of solid cancers.

HSPCS IN SOLID PERIPHERAL CANCERS

Clinical Correlations in Peripheral Cancers

Immunosuppression can promote cancer formation and pro-
gression [3, 4]. Specifically, immature myeloid cells (IMCs)
including suppressive macrophages or MDSCs play a major role
in preventing homeostatic immune surveillance [3, 4, 27]. The
subset of HSPCs that are myeloid-restricted can oftentimes
overlap in function with immature suppressive myeloid cells
and similarly promote cancer formation and progression
(Fig. 2). In an important clinical PNAS paper by Wu et al., they
noted significant dysregulation of myelopoiesis in 133 untreated
patients with 7 different types of cancers including hepatocellu-
lar, breast, cervical, esophageal, gastrointestinal, lung, and ovar-
ian [11]. In this dysregulation, they observed four to sevenfold
increased numbers of GMPs and a preference for granulocyte
differentiation. In addition, the degree of dysregulation in the
circulation was correlated with severity of disease. Key drivers
to the dysregulation were GM-CSF and IL-6, components that
promoted the HSPC or GMP differentiation into MDSCs in vitro
and in vivo. Additionally, in the tumor microenvironment of the
colon cancer patients, there was significant infiltration of
CD133+CD14+ and CD133+CD15+ MDSCs. In the same setting,
the CD34+ subsets appeared to migrate to the tumor site via
the CXCR4 chemokine receptor. Altogether this study indicates
that human HSPCs and the early myeloid progenitors found in
the circulation and tumor stroma are intimately involved in
promoting progression of at least seven major peripheral
cancers.

Premetastatic Niche

In early studies in a transplant-delay model, Lyden
et al. demonstrated a significant role of BM-derived cells in
driving vascularization and angiogenesis in B6RV2 lymphoma
or Lewis lung carcinoma (LLC) [7]. In the follow-up of those
studies, Kaplan et al. demonstrate that the VEGFR1(Flt1)+

HSPCs from the BM are key drivers of premetastatic niches,
sites that have a protumor microenvironment that promotes
seeding of metastases [6]. In murine hosts with intrader-
mally injected LLC and B16 melanoma, this HPC subset pro-
motes metastases to the lung. In follow-up studies in the
same transplant-delay model, Giles et al. demonstrate the
mobilization of HSPCs out of the BM and into the blood-
stream that engraft in premetastatic niches [5]. Once in
these premetastatic niches, the HSPCs proliferate and differ-
entiate into MDSCs that suppress immunity and promote
metastasis. They demonstrate that in newly diagnosed rhab-
domyosarcoma patients, the number of progenitor cells in
the blood capable of generating the myeloid lineage was
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increased (granulocytic/monocytic colony-forming unit [CFU-
GM]). In addition, in patients with invasive subtypes of
breast cancer there were higher levels of VEGFR1+CD34+

HSPCs as compared with noninvasive nonmetastatic breast
cancer, demonstrating a correlation between cancer pres-
ence or metastases and increased numbers of HSPCs. In
total, BM progenitors are one of the many drivers of the pre-
metastatic niche and one primary mechanism by which this
occurs is through HPC-derived MDSCs.

Dysregulated Myelopoiesis

Casbon et al. demonstrated in a native system that when mice
are given breast cancer, they have a significant expansion of
immunosuppressive MDSCs in the tumor, blood, spleen, and
premetastatic lung [2]. They found that the key driver of
this expansion was the release of G-CSF by the tumor itself
that coordinated the differentiation and activation of BM
HSPCs. Importantly, the differentiation program of the
HSPCs (LSK, Lin−sca-1+c-kit+) began with an expansion of the

Figure 2. Immunosuppressive pressure on HSPCs during solid cancers. Abbreviations: HSPCs, hematopoietic stem and progenitor cells;
GMPs, granulocyte–monocyte precursors; MDSCs, myeloid-derived suppressor cells; GM-CSF, granulocyte–monocyte colony-stimulating
factor; G-CSF, granulocyte colony-stimulating factor; BM, bone marrow; MPP, multipotent progenitor; CMP, common myeloid progenitor,
MMPs, matrix metalloproteinases.
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HSC compartment (LSK Flk2−CD150+CD48−) during early tumor
progression, whereas the MPPs (LSK Flk2+; LSKFlk2−CD48+) and
CD11b+Ly-6G+Ly-6Cint PMN-MDSC or CD11b+Ly-6G−Ly-6Chi Mo-
MDSCs expanded during later tumor progression. An additional
component of this breast cancer study that was corroborated
by Cortez-Retamozo et al. in lung adenocarcinoma is that
HSPCs can home to the spleen during tumor progression and
undergo a dysregulated myelopoiesis including expansion of
HSPC-derived tumor-associated macrophages (TAMs) and neu-
trophils [2, 3]. During this extramedullary myelopoiesis, early
myeloid progenitors, including the GMP, can accumulate and
develop into tumor-promoting MDSCs. In a similar study by Sio
et al., breast cancer induced similarly impaired hematopoiesis
and drove early myeloid progenitors out of BM and into the
spleen for extramedullary myelopoiesis [9]. They noted that
tumor progression in these mice was correlated with histone
methylation changes in lin−c-kit+ HSPCs in the BM. Specifically,
BM cells had histone methylation at sites that drove genetic
dysregulation of lineage commitment and hematopoiesis,
including altered regulation of the Hox family genes and Poly-
comb repressive complex 2 (PCR2). Furthermore, they demon-
strated that this process was also dependent on G-CSF and
synergy with GM-CSF and FLT3L.

Qu et al. demonstrated that innate immune system inflam-
matory regulators like matrix metalloproteinases (MMP) can
drive dysregulation of BM myelopoiesis [75]. In their trans-
genic model in which MMP12 was overexpressed, there was
an expansion of CMPs and GMPs in the BM with a concomi-
tant decrease in MEPs. Meanwhile, in multiple peripheral
organs there was an expansion of functionally suppressive
CD11b+Gr-1+ MDSCs. In addition, they discovered that in
MMP12-overexpressing animals, IL-6 in the lung drove a
Stat3-mediated adenocarcinoma formation. Altogether, these
findings demonstrated that multiple peripheral tumor models
can cause significant migration of HSPCs from the BM toward
distant sites where they undergo extramedullary myelopoiesis
into tumor-promoting myeloid cells.

Metastasis and Exosome Effects on BM

In a separate line of questioning, it has been demonstrated by
Shiozawa et al. that prostate cancer can establish metastases
in the BM that outcompete HSPCs [76]. In related studies,
Peinado et al. demonstrated that melanoma exosomes are sig-
nificant contributors to metastasis. In an elegant system of
treating mice with melanoma exosomes, they “educate” the
BM of melanoma exosome-treated mice [77]. In turn, when
the BM of exosome-educated mice was transplanted into a
transplant-delay model, the tumor volume was markedly
higher, HSPCs were increased in tumor, vasculature was more
pronounced, and metastases were enhanced. The exosomes
educate through horizontally transferring the oncogenic MET
tyrosine kinase from B16 melanoma exosomes into HSPCs.
Given the oncogenic role of MET in promoting migration, inva-
sion, and angiogenesis in tumors, exosome-treated BM HSPCs
promoted these phenomena. In addition, marked BM mobiliza-
tion was induced by MET, including an increase in MET-
transferred vasculogenic (c-kit+Tie2+) and hematopoietic
(c-kit+sca-1+) HSPCs in the circulation.

HSPCs in the BM can therefore be significantly impacted by
peripheral solid malignancies through metastases to the BM,
epigenetic regulation of HSPCs, induction of HSPC migration to

premetastatic sites or the spleen, and polarizing HSPC differ-
entiation toward MDSCs. HSPCs can then in turn significantly
modulate the success of immunologic rejection of peripheral
cancers.

Immunostimulatory Role of HSPCs in Peripheral
Cancers

There is an overwhelming amount of evidence supporting the
idea that HSPCs in peripheral solid malignancies are immuno-
suppressive. There is, however, one groundbreaking report by
Wrzesinski et al. in a melanoma model that counters this para-
digm. In 2007, they reported that intravenously administered
lin−c-kit+ HSPCs can drive the proliferation of adoptively trans-
ferred CD8+ T cells through an IL-7 and Il-15 mediated mecha-
nism [15]. Importantly, this was independent of the effects of
9Gy myeloablation. Interestingly, the activation state of the
adoptively transferred T cells also did not influence the ability
of HSPCs to modulate proliferation. In describing the effect of
HSPCs on host immune compartments, they do indicate an
increase in host CD4 T cells, Gr-1 granulocytes, NK1.1 NK cells,
and B220 B cells, a series of cell types they claim can impair
the function of HSPC-expanded CD8+ T cells. Most importantly,
the HSPC-mediated expansion of CD8+ T cells promoted antitu-
mor immunity as measured by tumor volume over time.

Although the higher-dose host conditioning is perceived as
the ostensible antitumor component of host conditioning-HSPC
therapies, Wrzesinski et al. changed that focus and highlighted
the immunologic function of HSPCs. This falls in stark contrast
to the historical backdrop in which this paper was presented.

HSPCS IN BRAIN TUMORS

Background

Standard therapy including surgical resection, chemotherapy,
and radiation yields a median survival of 18 months for malig-
nant gliomas [78]. The addition of tumor-treating fields has
recently yielded a median survival of 20.5 months [79]. There
have been some reports of success in using autologous HSPCs
for some heavily pretreated incredibly fatal pediatric solid
malignancies [32, 53–58]. Although promising, these therapeu-
tic strategies are focused on the value of high-dose chemo-
therapies that can successfully treat brain tumors. In this
setting, HSPCs are used because the primary toxicity of Thio-
tepa, Etoposide, Melphalan, and Busulfan is in the BM which
can be rescued by transplant [56–58]. Although promising,
future therapies will require novel combinatorial approaches
that employ modification of the immune system for antitumor
activity with minimal toxicity to patients.

Stem cell therapies present a novel therapeutic approach
because gliomas are proficient at capitalizing on the SDF-1-C-
X-C chemokine receptor 4 (CXCR4) axis to recruit stem cells to
the brain tumor microenvironment [63–67]. Of significance to
many in the brain tumor field is the capability of mesenchymal
stem cells (MSCs) and neural stem cells (NSCs) to both carry
antitumor compounds or molecules and traffic successfully to
the brain tumor microenvironment [68, 80, 81]. Of the more
underappreciated stem cell types that also traffic to the brain
tumor microenvironment, HSPCs follow the same SDF-1-CXCR4
migratory axis [63, 67, 82]. Although this is also a rather unique
vehicle to the brain tumor site, only a couple of groups have
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tested the ability of HSPC-carriers to enact antitumor
functions.

The role HSPCs may play in this system is reliant on two
key characteristics. First, HSPCs are at their core the precursor
cell for the immune system. This means that given the right
microenvironment, HSPCs will differentiate into progeny that
will have their own immunologic function. Second, HSPCs have
a unique and strong tropism for gliomas that is not readily
found or well-characterized in all peripheral organs or cancers.
Therefore, if HSPCs were used either as a carrier cell with an
immune-modulating compound or molecule, HSPC-derived
cells could deposit antitumor molecules and would likely have
an additional intrinsic role as a differentiated immune cell in
the brain tumor microenvironment. There is therefore
untapped potential for altering brain tumor immunity with
HSPCs.

HSPC Trafficking to Brain Tumor

In a series of seminal studies, Tabatabai et al. demonstrated
the mechanisms behind HSPC tropism to gliomas [63–67]. They
first acknowledged that HSPCs in the BM depend on SDF-1
(CXCL12) and CXCR4 expressed on HSPCs to maintain tethering
in the marrow. And in 2005, they noted that gliomas express
both molecules as well but most importantly noted glioma-
mediated release of SDF-1. In prior studies, the expression of
these molecules has been linked to glioma migration and inva-
siveness. However, in their study, determined that IV-
administered HSPCs capitalized upon TGF-β-dependent release
of SDF-1 (CXCL12) in the brain tumor microenvironment and
the SDF-1 receptor, CXCR4, on HSPCs for successful migration
of HSPCs toward human (T189 and T204 primary GBM lines)
and murine gliomas (LNT-229 and SMA-560) [63]. They next
delineated in 2006 that there is a potential for synergy of the
HSPC homing with irradiation and tumor hypoxia. They deter-
mined that 24 hours after 8 Gy irradiation and 12 hours after
1% oxygen exposure, LNT-229 glioma induces hypoxia induc-
ible factor-1 (HIF-1α)-dependent enhanced HSPC migration.
Importantly, they determined that the migratory capacity
remained dependent on TGF-β signaling. At this point, their
conclusions maintained that HSPCs were a strong candidate as
a cellular vector for the treatment of gliomas and that there
was potential for strong synergy with standard of care includ-
ing temozolomide and irradiation as well as hypoxia-inducing
antiangiogenic drugs.

After determining the interactions of HSPCs with irradia-
tion and hypoxia, they turned their attention to the method of
extravasation from the vessels into the brain tumor microenvi-
ronment. They determined that gliomas induce an upregula-
tion of CD62E (E-selectin) on the endothelium near the glioma
microenvironment that is reliant on VEGF and TGF-β signaling.
The combined system of SDF-1-CXCR4 chemotaxis and glioma-
induced E-selectin expression allow for HSPCs to circulate
nearby and extravasate from inside the blood vessel into the
glioma microenvironment.

Of vital importance to the success of any antitumor ther-
apy is to have a therapy that engages the target site and
leaves normal stroma unharmed. In the most recent iteration
of HSPC-glioma migration research, the same group demon-
strated by 2-photon and PET imaging that HSPCs are proficient
at migrating to gliomas, but refrain from trafficking to normal
tissue including spleen, lung, liver, and muscle [67]. This

targeted feature of HSPCs indicates the potential to use an
HSPC-carrier that through the aforementioned mechanisms
can specifically target the desired glioma microenvironment,
while minimizing errant migration in the periphery. This is of
vital importance for therapeutic modalities that may be carried
by HSPCs that have well-described toxicity profiles in other
organs and need to be selectively targeted to glioma tissue.

HSPCs as Vehicles

Tabatabai et al. next focused on proof of principle that HSPCs
are efficient carriers that can serve as a transport vehicle for
antitumor molecules or compounds. This entailed using a
GFP-lentivirus to transduce lin−HSPCs ex vivo prior to HSPC
transfer. In a transplant-delay setting, they implanted SMA-560
gliomas and observed noninferior migration of HSPCs to the
brain tumor microenvironment when compared with control
HSPCs [65]. In addition, they demonstrated that GFP-transduced
HSPCs were not tumorigenic and did not impact the survival of
glioma-bearing animals. Through this proof-of-principle study
and the preceding mechanistic studies, Tabatabai et al. opened
up the capability of utilizing HSPCs as cell-based, efficient carrier
of antitumor therapies to the glioma microenvironment.

In a more recent study by Noyan et al., they used an
HSPC-carrier to induce a dominant negative mutant of TGF-β
receptor II (TβRIIDN) in the tumor microenvironment. This
entailed a transplant-delay model in which transplant with the
TβRIIDN HSPCs replaced normal marrow with cells deficient in
TGF-β signaling. Afterward, GL261 glioma was subcutaneously
injected and analyzed for antitumor immune response. After
successfully diminishing TGF-β signaling in the tumor microen-
vironment, the HSPC therapy promoted antitumor efficacy
compared with a vector control [83, 84]. Although these
results indicate the capabilities of HSPC carriers, the authors
used subcutaneous GL261, not intracranially implanted GL261,
thereby limiting the translation to the true brain tumor
microenvironment.

Although these studies are both promising, they focus on
the influence of the object being carried by the HSPCs. There-
fore, much of the speculation about HSPC-carrier therapies has
persisted without attention to the intrinsic immunomodulatory
functions of HSPCs.

HSPCs as Components of Tumor Vascularization

Although the investigation of fate of HSPCs in brain tumors is
minimal, there has been some investigation of HSPC-derived
endothelial cells in brain tumors. Udani et al. used a
transplant-delay model with rat glioma (RT-2/RAG) in a murine
system to investigate incorporation of HSPCs in the glioma.
They determined that the HSPC-derived cells gave rise to
CD45+ endothelial-like cells that incorporated into the blood
vessels in the glioma [85]. Although there was reliable engraft-
ment of these HSPC-derived cells, there was no engraftment in
normal brain. This study identifies an obvious next step in the
investigation for HSPC-glioma research: investigating the differ-
entiation, fate, and functions of HSPC-derived immunologic
cells in gliomas.

HSPC-Mediated Immune-Activation in Brain Tumors

Although reports in peripheral solid malignancies demonstrate
that HSPCs are largely immunosuppressive, there are three
reports of HSPCs used in transplant-treatment models that
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indicate HSPCs act as immune-effectors by stimulating T cell
responses (Fig. 3). The functions described in these reports are
akin to the findings in Wresinksi et al. that described HSPC-
mediated expansion of CD8+ T cells in a melanoma model.

In Flores et al., HSPCs synergize with adoptive T cell immu-
notherapy, dendritic cell vaccine, and host conditioning to pro-
mote glioma rejection [13]. The glioma model used, KR158B,
was intracranially implanted and had considerable resemblance
to the histological features of glioblastoma. A few key roles for
HSPCs in this system are identified. Of primary interest, HSPCs
promoted the recruitment of tumor-reactive T cells to the brain
tumor microenvironment. This was demonstrated through imag-
ing and flow cytometry of brain tumors of mice that were trea-
ted intravenously with DsRed+ HSPCs and GFP+ tumor-reactive T
cells. In the experiments that included HSPCs, there was a
marked increase in T cell engraftment in the brain tumor. This
was further demonstrated to occur through migration assays to
be dependent on CCL3 (MIP-1α) that was released by HSPCs to
attract T cells to gliomas. Altogether, the synergistic combination
of adoptive T cell immunotherapy, dendritic cell vaccine, and
host conditioning lead to prevention of early glioma growth and
mediated long-term cures.

In a recent report by Wildes et al., HSPC differentiation
into immune cells in brain tumors was investigated in the
same system. It was demonstrated that HSPCs that migrate to
malignant gliomas can differentiate into immune-stimulating
dendritic cells (DCs) that are required for antitumor efficacy
[14]. Interestingly, 3 hours after intravenous injection, HSPCs
that had migrated to the brain tumor microenvironment
retained multipotency, whereas after 24 hours post-transplant,
HSPCs did not retain multipotency. Additionally, HSPC-derived
cells were largely CD11c+CD11b+MHCII+ DCs with high CD86
and low CD80, CD8α, and CD103 expression. This tumor-
infiltrating DC that is CD8loCD103lo is very different from the
CD103+ DCs implicated in adoptive cellular therapy for periph-
eral malignancies [86]. The HSPC differentiation occurred

through T cell-released IFN-γ in the brain tumor microenviron-
ment that then in-turn further activated tumor-reactive T cells
in a feedback loop. In this setting, HSPC-derived cells
expressed very low levels of F4/80, Ly-6G/6C, PD-L1, CD3, and
c-kit. Of additional interest is the impact of these HSPCs on
host immunity during brain tumor progression. Although Wre-
sinski et al. noted an increase in host CD4 T cells, Gr-1 granulo-
cytes, NK1.1 NK cells, and B220 B cells, Wildes et al. noted a
decrease in host CD11b+Ly-6G/6C+PD-L1+ MDSCs among other
innate immune cells in the brain tumor microenvironment.
Although this investigation did not analyze peripheral organs,
future studies should be developed to study peripheral and
intracranial malignancies in parallel. It will be interesting to
continue to develop our understanding of how HSPCs behave
differently depending on their microenvironmental niche.

The findings described above by have been further
expanded to include analyses in the combination therapy of
HSPC transplant with PD-1 checkpoint blockade [87]. Interest-
ingly, in brain tumors that are refractory to PD-1 blockade,
CCR2+ HSPC transfer mediates immunologic rejection of tumors
that generates long-term cures. Interestingly, the CCR2+ popula-
tion is the population that migrates to brain tumors, differenti-
ates into immune-activating DCs, and promotes tumor rejection.
Although the therapeutic PD-1 blockade models in this article
did not use total body irradiation, the CCR2+ HSPC population
was less capable of rescuing myeloablated hosts than the
CCR2− population. This may indicate that the subset of the
HSPC population that drives antitumor immunity may be more
of a hematopoietic progenitor cell than a pure HSC. Regardless,
these studies indicate that HSPCs have an independent role in
inducing antitumor immunity.

Although the complete mechanisms of HSPC function in
brain tumors is unclear, future studies will determine how
these findings translate to human HSPCs and their use in treat-
ing human brain tumors. Additionally, new articles continue
to identify novel pathways through which the brain can

Figure 3. Brain tumor microenvironment after HSPC transfer during adoptive cellular therapy. HSPCs migrate to brain tumor as previ-
ously described. HSPCs chemoattract T cells from periphery via MIP-1α. T cells release IFN-γ that drives HSPC differentiation intratumo-
rally. HSPC-derived dendritic cells then promote T cell activation in situ. Abbreviations: HSPCs, hematopoietic stem and progenitor cells;
DCs, dendritic cells.
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communicate with the immune system. Although brain lymph
vessels were identified in 2015 [88, 89], recent studies have
identified channels that connect brain to the skull BM [90].
Considering the immunomodulatory role of HSPCs in brain
tumors, future discovery needs to incorporate analysis of these
novel circulation and migration pathways.

CONCLUSION

HSPCs can migrate to tumors, differentiate into immune cells,
and crosstalk with the immune system. HSPCs are therefore a
multifunctional cell that can be transplanted for specific settings
with immense combinatorial capabilities. Given the sometimes
contradictory functions of HSPCs during solid cancers, therapeutic
takeaways are different depending on the disease, the ana-
tomic location of disease, and the microenvironmental niche
that makes up the HSPC environment. For peripheral cancers,
tumor-bearing host HSPCs appear immunosuppressive and
should be targeted to impair protumor functions. On the con-
trary, the fact that HSPC transfers can synergize with T cells in
peripheral and CNS tumors indicates that we should optimize
this HSPC function. Perhaps future therapeutic development
for both peripheral and CNS malignancies should focus on cre-
ating environmental niches either in lymphoid organs or in
tumor sites that facilitate immune-activating, antitumor HSPC
functions. Regardless of the disease context, we anticipate
considerable therapeutic development focused on HSPCs to
drive antitumor immunity.
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