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KIT and PDGFRA play a major role in the oncogenic process in gastrointestinal

stroma tumors (GIST) and small molecules have been employed with great

success to target the KIT and PDGFRA pathways in this cancer. However,

approximately 10% of patients with GIST are resistant to current targeted drug

therapy. There is a need to explore other potential targets. Although p53

alterations frequently occur in most cancers, studies regarding p53 in GIST

have been limited. The CDKN2A/MDM2/p53 axis regulates cell cycle

progression and DNA damage responses, which in turn control tumor

growth. This axis is the major event required for transformation from low- to

high-risk GIST. Generally, p53 mutation is infrequent in GIST, but p53

overexpression has been reported to be associated with high-risk GIST and

unfavorable prognosis, implying that p53 should play a critical role in GIST. Also,

Wee1 regulates the cell cycle and the antitumor activity of Wee1 inhibition was

reported to be p53 mutant dependent. In addition, Wee1 was reported to have

potential activity in GIST through the regulation of KIT protein and this

mechanism may be dependent on p53 status. In this article, we review

previous reports regarding the role of p53 in GIST and propose targeting the

p53 pathway as a novel additional treatment strategy for GIST.
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Gastrointestinal stromal tumor

GISTs are a subgroup of mesenchymal tumors arising from

the gastrointestinal tract and have been considered as smooth

muscle tumors (such as leiomyomas or leiomyosarcomas) based

on the histologic characteristics (1). Until the discovery of KIT

(CD117) expression in GIST (2), the origin of GIST was

proposed to be from the interstitial cells of Cajal (ICCs) or

precursors (3–5).

GISTs are relatively rare and account for 1%–2% of cases of

gastrointestinal malignancy (6). They were most commonly

found in the stomach (55.6%), followed by the small intestine

(31.8%), colon and rectum (6%), other locations (5.5%) (7), and

esophagus (<1%) in a systemic review of 9,747 GISTs. Surgical

resection is the main treatment for localized GISTs. The risk of

GIST recurrence was estimated using the modified National

Institutes of Health consensus classification system based on the

tumor size, mitotic count (8), and primary location (gastric vs.

non-gastric). Most low- and intermediate-risk GISTs are cured

by surgical resection. In contrast, high-risk GISTs should be

treated with adjuvant therapy with 3-year imatinib, which can

improve recurrence-free survival (RFS) and overall survival.

Neoadjuvant therapy may be an alternative for high-risk

GISTs, which can potentially increase the complete resection

rate and avoid surgical rupture and resection of the involved

organs (9). Palliative treatment, mainly targeted therapy, is the

standard treatment for advanced/metastatic GISTs, and classical

cytotoxic chemotherapy is inactive for GIST.

c-KIT mutations (2, 10) followed by platelet-derived growth

factor receptor alpha (PDGFRA) mutations (11) were discovered

and small molecule targeted therapies with tyrosine kinase

inhibitors (12, 13) were developed in GIST. Imatinib,

sunitinib, regorafenib, and ripretinib are approved in advanced

GIST without selection for matched druggable targets. The post-

hoc analysis of clinical trials found that KIT exon 9 mutation was

associated with a lower response rate and progression-free

survival (PFS) compared to exon 11 mutation under treatment

with 400 mg/day of imatinib, and 800 mg/day of imatinib

benefited patients with KIT exon 9 mutation upon progression

despite 400 mg/day of imatinib (14). Although most PDGFRA

mutations are sensitive to imatinib, D842V is resistant to

imatinib and targeted agents other than avapritinib. Currently,

genetic testing of KIT and PDGFRA is essential before treatment

initiation (15), and comprehensive genomic profiling, such as for

lung cancer, should be considered to identify driver mutations

(e.g., SDH, BRAF, NF1, NTRK fusion, and FGFR fusion) for

GISTs without KIT and PDGFRA mutations.

KIT and PDGFRA are the main driver mutations but

insufficient to promote tumor progression from low- to high-

risk GISTs. Additional chromosomal aberrations and

subsequent dysregulation of the cell cycle are essential for
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tumor progression. For example, chromosome 9/9p loss,

homozygous CDKN2A (located on chromosome 9p) deletion,

p14/p16 loss, activation of MDM2/CDK4 leading to RB1/p53

inactivation, and loss of cell cycle control are considered to be

the main events for progression to high-risk GISTs (16).
Driver mutations and approved
targeted therapy for GIST

The nature of GISTs became better understood with the

identification of KIT (CD117) expression and c-KIT mutations (2,

10). Heinrich et al. investigated possible alternative receptor tyrosine

kinase (RTK) oncoproteins using immunoprecipitations with

polyclonal panRTK antisera and found hosphor-PDGFRA was

the predominant hosphor-RTK in a KIT wild type GIST cell line

(GIST478). Activated PDGFRA mutations were subsequently

found in 35% (14 of 40) of KIT-WT GIST (11). Although most

GISTs have either mutation of KIT or PDGFRA kinase genes as

driver mutations, approximately 10 to 15% of GISTs do not harbor

a KIT or PDGFRAmutation, which are collectively grouped as KIT/

PDGFRA-WT GIST.

With the understanding of the molecular biology of GIST

and discovery of effective targeted therapy against KIT/

PDGFRA pathways , the disease has become more

manageable, but the treatments are not completely curative.

Several small molecule compounds targeting KIT and other

tyrosine kinases, such as imatinib (12, 13), sunitinib (17),

regorafenib (18) and ripretinib (19) have shown efficacy in

advanced GIST and have been approved for the treatment of

advanced GIST. In the SWOG phase III S0033 trial imatinib

treatment resulted in a median PFS of 18-20 months (13) and

26% of GIST patients survived 8 years or longer (20).

Approximately 10% of GIST patients have primary

resistance to imatinib and many of these resistant tumors

lack mutations in KIT or PDGFRA, or they harbor a PDGFRA

exon 18 D842V mutation. Secondary mutation on KIT (exons

13, 14, 17) developed after imatinib treatment leading to

resistance to imatinib. Sunitinib and regorafenib were found

to overcome such secondary mutation of KIT (21). Sunitinib

treatment after failure of imatinib showed a median time to

tumor progression of 27.3 weeks in GIST patients (17).

Regorafenib treatment resulted in a median PFS of 4.8

months after failure of imatinib and sunitinib (18).

Ripretinib produced a median PFS of 6.3 months in GIST

patients after failure of imatinib, sunitinib, and regorafenib

(19). All the above inhibitors are widely used in routine

clinical practice for patients with advanced GIST and

significantly improve the overall survival of GIST patients

(22–25). In addition, for patients with symptomatic and/or

rapidly progressive disease harboring a PDGFRA exon 18
frontiersin.org

https://doi.org/10.3389/fonc.2022.872202
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2022.872202
D842V mutation, avapritinib has been suggested over either

imatinib or observation in the setting of initial therapy. These

tumors often demonstrate primary resistance to imatinib,

whereas the response rate with avapritinib was nearly

90% (26).

In KIT/PDGFRA-WT GISTs, SDH deficiency and other

genetic alterations, such as BRAF, NF1, and NTRK fusions,

were the main alterations according to comprehensive genetic

profiling. Therefore, the proportion of GIST without mutation is

decreasing. However, quadruple WT GISTs without mutations

or alterations in the KIT/PDGFRA, RAS pathway, or SDH

complex are the current treatment challenges because of lack

of active treatment for such patients and inactivity of transitional

cytotoxic chemotherapy for GISTs (27).

In addition, resistance to targeted therapy is another

challenge, as these tyrosine kinase inhibitors (TKIs) can

cytostatically inhibitor tumor growth but not induce apoptosis

leading to cell killing. Therefore, GIST may be incurable once it

develops metastasis.
Is p53 a biomarker or target in GIST?

TP53 in GIST

The TP53 gene encoding the p53 tumor suppressor protein

is referred to as the guardian of genome and is mutated in most

human cancers, although the frequency of mutation varies

according to cancer type (28). The wild-type p53 protein plays

a critical role in the cellular response to DNA damage in order to

induce cell cycle arrest and DNA repair, or apoptosis (28). The

incidence and possible prognostic role of TP53 mutations have

been studied in most cancers (28–30). However, the role of p53

in GIST has received relatively little attention, largely because

both KIT and PDGFRA deregulation play such a strong role as

the major oncogenic processes in GIST (1). As CDKN2A loss,

MDM2 overexpression, and p53 inactivation are the main events

for tumor progression to high-risk GISTs, in this article, we

review previous reports regarding p53 in GIST and propose a

novel treatment strategy against GIST by non-genotoxic targeted

activation of p53. In a meta-analysis including 1,163 patients

from 19 studies, p53 expression was significantly higher in high-/

intermediate-risk GISTs compared to low-/very-low-risk GIST

and correlated with a poor prognosis (31).

Generally, TP53 mutation has been found to be infrequent

(<5%) in GIST cohorts (32–34). Henze et al, reported that

TP53 mutation was both infrequent (3%) and independent of

p53 immunostaining in 62 GISTs (33). In a cohort of 83 GISTs,

four patients had inactivating TP53 or RB1 mutations, which

were associated with high-risk tumors, and three patients

developed recurrent and metastatic GISTs (35).
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The role of p53 alterations, other than those involving TP53

mutation, have been evaluated in relation to GIST aggressiveness

and progression. In a gene expression study of 30 localized GIST,

upregulated genes were significantly enriched for those involving

cell cycle regulation and the DNA damage response pathway in

high risk compared to low risk GIST (36). As p53 is a key

regulator responsible for cell cycle control in response to DNA

damage, it may also be involved in tumor progression for high

risk GIST. Other studies have confirmed that p53 expression is

associated with high risk of recurrence in localized GIST (37, 38).

It was reported that 40.0% of one hundred and twenty-five

localized GIST had a p53 alteration, including 20.8% TP53

mutation and 24.8% p53 overexpression, and that the GISTs

with p53 alterations were more commonly found in localized

high risk GISTs with shorter relapse-free survival. This suggested

that p53 alteration, involving either mutation or overexpression,

is a significant independent indicator of poor prognosis (36).

The relatively high rate of TP53 mutation (20.8%) in this study

may be related to the high proportion of high-risk GIST (48%)

(37). In another study of 96 localized GIST, p53 expression was

also found to be significantly associated with increased mitotic

rate and the risk of malignancy (38). Similarly, in another report

of 104 KIT-positive GISTs, p53 expression significantly

correlated with high-risk epithelioid GISTs regardless of the

tumor site (31).

Using samples from the SSGXVIII trial (39, 40), a phase III

study comparing adjuvant one-year and three-year imatinib in

high-risk GIST patients, IHC was performed in 320 primary

GIST and mutations analyzed using Sanger sequencing in 245

cases (41). A high expression of CDK4 (32.8%) was associated

with a favorable RFS, whereas high expression of MDM2

(12.2%) or p53 (35.3%) was associated with a shorter RFS. The

overall frequency of TP53 mutations was low (3.5%) and could

not be predicted by the IHC detection of p53. TP53 mutations

tend to occur more frequently in gastric GISTs associated with a

worse RFS.

In a phase III study of advanced/metastatic GIST patients

undergoing imatinib 400 mg vs 800 mg daily treatment, 353

GISTs were screened for p53 immunostaining, and only samples

with high p53 expression were subsequently analyzed for TP53

mutations (42). Only 13 (16.4%) TP53 mutations were found

among 79 GISTs with high p53 expression, consistent with

previous studies that TP53 mutations cannot be predicted by

IHC alone. In addition to previously well-known prognostic

factors including performance status, KIT mutation, and tumor

size, molecular biomarkers of low p16 and high p53 expressions

were correlated with imatinib response and identified as

significant and independent prognostic factors of PFS (43).

Low p16 was supposed to be a result from loss of CDKN2A

which encodes both p14ARF and p16INK4a. p14ARF is a negative

regulator of MDM2 function (43).
frontiersin.org

https://doi.org/10.3389/fonc.2022.872202
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wu et al. 10.3389/fonc.2022.872202
A more comprehensive study assessed the prognostic

significance of CDKN2A, RB1 or TP53 mutation/copy loss in

71 primary GISTs. The occurrence of genetic alteration was

associated with high risk primary GISTs. The presence of cell

cycle-related events was associated with a significantly shorter

relapse-free survival (p < 0.0001) and overall survival (p = 0.042).

This study provide indirect evidence that genomic alterations

involving cell cycle-related genes were associated with GIST

progression to malignant disease (44).

Although these results cannot be directly compared because

of the different approaches, a consistent lack of close association

between TP53 mutations and IHC data was found. Alternative

reasons for mutation independent activation of p53 could

include cellular stress, such as hypoxia, or posttranscriptional

modifications such as phosphorylation, acetylation

or sumoylation.

In conclusion, TP53 mutation is generally infrequent in

GIST despite the frequency being higher in high-risk GIST.

The overexpression of p53 by IHC cannot predict TP53

mutation, but has been shown to be significantly associated

with localized high-risk GIST with unfavorable relapse free

survival. In addition, p53 expression was also reported to be

an independent prognostic factor for advanced GIST

undergoing imatinib treatment. The overall evidence suggests

that p53 expression and/or TP53 mutation play a critical role in

tumor progression and may be unfavorable prognostic factors

for imatinib treatment. These findings provide a rationale to

explore targeting the p53 pathway as a novel therapeutic strategy

in GIST.
MDM2 alteration and as a possible target
in GIST

MDM2 is transcriptionally transactivated by p53 and can

negatively auto-regulate p53 by ubiquitination (28, 45), therefore

MDM2 is considered an oncogene and its amplification or

overexpression can increase tumor cell proliferation by

suppressing p53 (46).

Regarding MDM2 amplification, only one out of 35 (3%)

GISTs was found to be amplified for MDM2 in one series (47).

In contrast, by IHC, 40% of GIST cases (14 out of 35 patients)

were reported to be positive for MDM2 IHC staining, which

was significantly associated with metastasis (48). Based on a

limited study of MDM2 in GIST, MDM2 expression may be an

indicator of aggressive behavior and poor prognosis, likely

resulting from inhibition of p53 function. This implies that

targeting MDM2 may be a potential strategy for treatment of a

subset of GIST, particularly for WT-p53 GIST. Nutlin-3, an

MDM2 inhibitor, has shown selectively growth inhibitory and

little cytotoxic activity in WT p53 GIST cell lines (GIST430,

GIST48, GIST48B) compared with p53 mutated cells

(GIST882, GIST-T1) (33).
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Wee1

A study of Wee1 expression knockdown by siRNA or Wee1

kinase inhibition with MK1775 was observed to reduce KIT

expression (49). This suggested that Wee1 plays a potential role

in the regulation of KIT in GIST which may contribute to an

anti-proliferative effect of Wee1 inhibition in this cancer. Wee1

inhibition was reported to promote the autophagic degradation

of KIT and, therefore, targeting Wee1 was suggested to

represent a novel strategy for GIST therapies. Another study

identified a role of Wee1 in GIST using kinome profiling with

loss-of-function assays, and demonstrated that in addition to

KIT mutant GIST, Wee1 may be a promising target in

PDGFRA D842V mutant GISTs (50). However, only p53

mutated cells were used in the above studies, implying this

approach may be limited to p53 mutated cell lines, as indicated

in previous reports of Wee1 inhibitors (28, 51, 52). It is of

interest to determine whether Wee1 plays the same role in WT

p53 GISTs.
Future clinical studies targeting
p53 in GIST

Targeted therapies, either alone or in combination with

immune checkpoint inhibitors have been evaluated in clinical

trials (53). Most studies have involved small molecule

inhibitors approved in GIST, such as imatinib, sunitinib,

regorafenib and/or ripretinib. However, no trials have

included drugs targeting the p53 pathway, although a

few preclinical studies have indicated the efficacy of

such compounds.

As MDM2 expression has been associated with poor

prognosis GISTSs (48) and MDM2 inhibitors (33)

demonstrated to suppress growth and induced apoptosis in

WT p53 GIST cells, the use of MDM2 inhibitors may be an

additional strategy beyond KIT and PDGFRA in future

studies. However, preclinical studies, particularly in vivo

studies, to confirm the feasibility of using MDM2 inhibitors

in GIST are lacking. As no clinical trials of p53-directed

targeted therapy have been performed or are underway in

GISTs, only some clinical studies on other malignancies can be

summarized to highlight the applicability of such agents in

GISTs in the future.

Although several preclinical studies have shown

impressive results, the limited clinical trials of MDM2

inhibitors in other cancers have been disappointing. A phase

III study, MIRROS (NCT02545283), failed to meet its primary

goal of showing the combination therapy of idasanutlin and

cytarabine was superior to placebo plus cytarabine regarding

improvement of survival in acute myeloid leukaemia (54).

Limited efficacy of HDM201 (siremadlin) in combination with
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ribociclib (a CDK4/6 inhibitor) was observed in patients with

locally advanced or metastatic liposarcoma, even though this

tumor highly expresses MDM2 and CDK4 (55). As no agents

targeting MDM2 have so far been successful, the therapeutic

strategy of targeting the p53 pathway in this way has been

doubted. The next challenge is to understand why these

studies have shown limited efficacy. It should be clarified

whether these targeted agents insufficiently reactivate WT-

p53 or if the dose limiting hematologic and gastrointestinal

toxicity of p53 reactivation is not tolerated. Furthermore, the

efficacy of MDM2 inhibitors may be limited by WIP1

phosphatase expression (56). WIP1 inhibition has been

shown to enhance the activity of MDM2 inhibitors (28, 45,

57, 58). Unfortunately, due to the lack of suitable compounds

for in vivo evaluation, the studies of WIP1 inhibition have

been limited to the preclinical setting, however there is a

strong case for the development of WIP1 inhibitors suitable

for clinic evaluation.

In contrast, MK-1775 is active against p53 mutated GIST

cells both in vitro and in vivo. Besides the regulation of KIT

expression, synthetic lethality may be the key mechanism in p53

deficient cells (28, 51, 52). Clinical studies of MK-1775 are

ongoing and early phase studies in various tumors have

reported encouraging results (59–62).

RITA, a p53 activator, induced p53 in only one p53-WT

GIST48B (but not GIST430 or GIST48), followed by growth

inhibition and apoptosis. GIST-T1, a p53-mutated cell line, was

also highly sensitive to RITA without p53 activation. The

aforementioned findings suggested the feasibility of a p53-

independent mechanism of action for RITA treatment (24). As

no biomarkers can predict the response or resistance to RITA,

RITA may not be a good targeted agent in GIST.
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Proposed incorporation of targeting
based on p53 status into current
GIST clinical practice

Based on the above evidence, CDKN2A/MDM2/p53

pathway alterations frequently occur in high-risk GISTs. The

clinical application of this knowledge may be a prognostic factor,

or a predictive factor to identify patients who would benefit from

adjuvant imatinib treatment (63). Therefore, the genetic testing

of these p53 pathway components is required and p53 status

would be a critical biomarker for risk stratification beyond the

current model based on clinical features (location, tumor size,

mitosis). In addition, targeted treatment based on p53 status,

either as monotherapy or in combination with KIT/PDGFRA

targeted therapy, is proposed for metastatic GISTs (Figure 1).

Furthermore, if p53-directed targeted therapy shows promising

results in metastatic GISTs, the incorporation of p53-directed

targeted therapy may be considered for development in the

neoadjuvant setting for high-risk GIST, in combination with

KIT/PDGFRA targeted therapy to increase response rate and

maximize tumor shrinkage (Figure 1). However, due to currently

limited studies as described above, preclinical research is

warranted to build a case for the evaluation of such a

treatment strategy in clinical trials.
Conclusions

CDKN2A/MDM2/p53 pathway alterations in GIST have been

associated with high-risk GIST, adverse clinicopathological

characteristics and poor patient survival (Figure 2). Preclinical
FIGURE 1

Future development of p53 for potential clinical application in GIST. Genetic testing including p53 should be included for risk evaluation. p53
targeted therapy (MDM2 inhibitor for wild-type p53 or Wee1 inhibitor for mutant p53) may be incorporated in palliative treatment for metastatic
GIST or neoadjuvant treatment for high-risk GIST (if it works in metastatic GIST).
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studies have demonstrated the potential activity of MDM2

inhibitors in p53-WT GIST cells and Wee1 inhibitors in p53-

mutated GIST cells. Clinical trials are warranted to determine the

role of these novel targeted treatments in GIST.
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