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Many large-scale, high-throughput experiments use DNA barco-
des, short DNA sequences prepended to DNA libraries, for
identification of individuals in pooled biomolecule populations. How-
ever, DNA synthesis and sequencing errors confound the correct
interpretation of observed barcodes and can lead to significant data
loss or spurious results. Widely used error-correcting codes borrowed
from computer science (e.g., Hamming, Levenshtein codes) do not
properly account for insertions and deletions (indels) in DNA barcodes,
even though deletions are the most common type of synthesis error.
Here, we present and experimentally validate filled/truncated right end
edit (FREE) barcodes, which correct substitution, insertion, and deletion
errors, even when these errors alter the barcode length. FREE barcodes
are designed with experimental considerations in mind, including
balanced guanine-cytosine (GC) content, minimal homopolymer runs,
and reduced internal hairpin propensity. We generate and include lists
of barcodeswith different lengths and error correction levels that may
be useful in diverse high-throughput applications, including >106

single-error–correcting 16-mers that strike a balance between decoding
accuracy, barcode length, and library size. Moreover, concatenating
two or more FREE codes into a single barcode increases the available
barcode space combinatorially, generating lists with >1015 error-
correcting barcodes. The included software for creating barcode librar-
ies and decoding sequenced barcodes is efficient and designed to be
user-friendly for the general biology community.

DNA barcodes | error-correcting codes | information storage |
massively parallel synthesis

Many modern large-scale biology experiments use high-
throughput DNA sequencing to study the behavior of in-

dividual biomolecules in pooled populations. These experiments
encode the identity of individual members via DNA barcodes: short
and unique DNA sequences that are coupled to each member in the
population (Fig. 1A). DNA barcode-based identification is central to
such diverse applications as single-cell genome and RNA sequenc-
ing (1–7), gene synthesis (8, 9), high-throughput antibody screens
(10, 11), and drug discovery (12, 13). Such experiments have been
enabled by recent breakthroughs in massively parallel, pooled DNA
synthesis (14, 15). For example, a recent study used DNA barcodes
to discover small-molecule inhibitors of enzymes by screening ∼108
small molecules. Each small molecule was attached to a unique
set of three DNA barcodes. The highest affinity ligands were
enriched via multiple rounds of selection and then identified via
high-throughput sequencing of the attached barcodes (16). The
rapid growth of such methodologies in all areas of biomedicine
requires the development of large pools (>106 members) of
unique DNA barcodes to identify individual members (e.g., cells,
proteins, drugs) in heterogeneous ensembles.
Every assay with DNA barcodes is subject to errors introduced

during DNA synthesis and sequencing. These errors decrease
experimental power and accuracy by confounding the identity of
individual biomolecules in the population. The most common
DNA synthesis error is a single-base deletion (Results). This is
particularly challenging to decode because it causes a frameshift

in all downstream sequencing. Substitutions and insertion errors
are also common during massively parallel pooled oligonucleo-
tide synthesis (Results). Our own experimental results are con-
sistent with manufacturer-advertised error rates of up to one per
200 nucleotides (nt) (17). For 20-base pair (bp)-long barcodes
with no error correction, this translates to a best-case scenario of
10% data lost or, worse, incorrectly interpreted. Next-generation
sequencing also has error rates between 10−3 and 10−4. This
alone represents errors in ∼1% of our example 20-bp barcodes,
which can be limiting for detection of rare events. These errors
can be overcome through the use of error-correcting DNA
barcodes: DNA sequences that can correctly identify the un-
derlying individuals in a pooled experiment even in the presence
of sequencing and synthesis errors.
Error-correcting barcodes must efficiently detect and correct

all DNA sequencing and synthesis errors. Many current DNA
barcode strategies repurpose error-correcting codes developed
for computers (18, 19), such as Hamming or Reed–Solomon
codes, to DNA applications (20, 21). Hamming distance (i.e., the
number of substitutions between two sequences of equal length)
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Fig. 1. Applications and error correction strategies of DNA barcodes. (A) Illustrative examples of high-throughput sequencing assays that require large lists
of error-correcting DNA barcodes. Barcodes are used to identify individual cells or molecules in pooled libraries (1, 10, 13). (B) Current strategies to correct
synthesis and sequencing errors in DNA barcodes are confounded by indels. Hamming distance can only handle substitutions. Levenshtein distance is con-
founded by the fact that barcodes are prepended to other sequences of interest. Indels thus produce phantom Levenshtein distance errors when bases from
the remaining DNA molecule shift into or out of the barcode window. (C) Examples of FREE divergence (this work), given the actual edit history. Levenshtein
(Lev) and Hamming distances are also shown for comparison. A substitution and insertion are correctly attributed as two edits by FREE divergence (first
column). FREE divergence is a symmetrical function [i.e., FreeDiv(E, O) = FreeDiv(O, E)] (first and second columns). Different actual edit paths can result in the
same observed sequence (second and third columns). Indels can have zero cost, particularly near the end of the barcode, where they can occasionally be
undone by fill or truncation (fourth column). Edits past the barcode end can matter since the fill/truncation step happens only upon observation (fifth
column). del., deletion; div., divergence; ins., insertion; sub., substitution; trunc., truncation.
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is possibly the most used due to its simplicity. However, nearly all
well-studied error-correcting codes developed in computer sci-
ence, including the widely used Hamming codes, were not
designed to handle insertions and deletions (indels), which are
the most common errors in DNA synthesis. Such codes are
generally used only to detect errors without correcting them, but
even a single error (e.g., deletion) has the possibility of con-
verting one barcode into another. Levenshtein codes, also known
as edit codes, can theoretically account for all three types of
common error (substitutions, insertions, and deletions), but only
when the corrupted length of each barcode after errors is known
(22, 23). This is a critical limitation in real-world DNA barcode
applications because errors can change the barcode length un-
predictably, which leads to erroneous decoding of Levenshtein-
based barcodes in the context of a longer read (Fig. 1B). As a
workaround, Levenshtein codes can be used at twice the level of
error correction as desired for a given application, for example,
using a two-error–correcting code when a one-error–correcting
code is desired, but this is inefficient and significantly decreases
the number of valid barcodes for a given oligonucleotide length.
In sum, existing DNA barcode strategies are unable to efficiently
detect and decode real-world errors encountered during DNA
synthesis and sequencing.
Here, we develop and experimentally validate error-correcting

filled/truncated right end edit (FREE) barcodes. FREE barcodes
can correct substitutions, insertions, and deletions even when the
edited length of the barcode is unknown. These barcodes are
designed with experimental considerations in mind, including
balanced guanine-cytosine (GC) content, minimal homopolymer
runs, and no self-complementarity of more than two bases to re-
duce internal hairpin propensity. We generate and include lists of
barcodes with different lengths and error correction levels that
may be broadly useful in diverse high-throughput applications. For
each barcode set, we calculate hairpin melting temperatures that
can be used to select subsets of barcodes to match experimental
conditions. Our largest barcode list includes >106 unique error-
correcting barcodes usable in a single experiment. Moreover,
appending two or more barcodes together combinatorially in-
creases the total barcode set, producing >109–1012 unique error-
correcting DNA barcodes. The included software for creating new
barcode libraries and decoding/error-correcting observed barcodes
is fast and efficient, decoding >120,000 barcodes per second with
a single processor and is designed to be user-friendly for a broad
biologist community.

Results
Overview of FREE Divergence Codes. After DNA synthesis and se-
quencing, a barcode of length n can be altered, and is not
guaranteed to end after exactly n bases. Our goal is to design
barcodes that can be unambiguously identified from the first n
bases of the sequenced read. To begin, we define a filled/trun-
cated right-endm-edit, hereafter written “FREm-edit,” of a DNA
sequence of length n to be the result of any m-edits [substitutions
(sub), insertions (ins), or deletions (del)], followed by truncating or
filling with any random bases on the right (as from the unknown
downstream read) as necessary to return to original length n (Fig.
1B). For any two DNA sequences X and Y of the same length, we
define the FREE divergence between X and Y, written FreeDiv(X,
Y), to be the minimum m such that Y is a FRE m-edit of X.
Fig. 1C shows a typical example of how FREE divergence

captures the actual number of barcode edits in the context of a
longer read. An insertion has caused the final “T” to move out of
the barcode window, but FREE divergence correctly accounts
for its loss. FREE divergence is a symmetrical function [i.e.,
FreeDiv(X, Y) = FreeDiv(Y, X)] (Fig. 1C). This is because re-
versing the edits and reversing the right-end fill or truncation
step moves one from Y back to X in the same minimum number
of steps (SI Appendix). FREE divergence is defined as the

minimum number of steps between the expected and observed
barcodes, but it is possible to accomplish the same transformation
with more edits, for example, via the identity del + ins = sub (Fig.
1C). Also, indels near the end of the sequence can result in a
FREE divergence of zero if the inserted or filled bases match the
truncated or deleted bases, respectively. While Fig. 1C shows this
for deletions, inserting “GC” instead of deleting it results in the
same sequenced barcode. Finally, we note that FREE divergence
is not a metric, a mathematically precise term for distance, be-
cause edits outside the barcode window can lead to violation of
the triangle inequality (Fig. 1C and SI Appendix). This requires us
to use specialized code generation techniques that do not rely on
the properties of a metric, and also underlies usage of the term
“divergence” rather than “distance” throughout this work.
With FREE divergence defined, building an error-correcting

barcode list is conceptually equivalent to packing spheres in the
space of possible barcodes (Fig. 2A). We set a barcode length n
and call any DNA sequence of length n a word. For any word B,
we call the set of all words W such that FreeDiv(B, W) ≤ m, the
m-error decode sphere of B, written as DecodeSpherem(B), or
just DecodeSphere(B) if m is clear from context. Any observed
DNA sequence within DecodeSphere(B) will, by definition, decode
to (error-correct to) the center word B (Fig. 2A). Then, an m-
error–correcting FREE code is simply any set of barcodes such
that the m-error decode spheres of all barcodes are disjoint (i.e.,
no two decode spheres overlap). Any corrupted barcode with up
to m errors is thus in the decode sphere of exactly one barcode
and can be decoded (error-corrected) uniquely (Fig. 2A). Re-
quiring disjoint decode spheres places a limit on the relationship
between allowed m, the number of correctable errors, and n, the
barcode length: To fit more than one nonoverlapping decode
sphere in the space requires that 2 m + 1 ≤ n (SI Appendix).

Efficient FREE Barcode Generation and Decoding. A software library
accompanying this paper efficiently generates FREE barcodes
with a given total length and error correction level. The gener-
ation algorithm is conceptually very simple: Iterate through the
space of n-mers alphabetically, find the decode sphere for each
candidate barcode, and reserve barcodes whose decode spheres
do not overlap the decode spheres of any previously reserved
barcodes (Fig. 2A). This set of reserved barcodes, by definition,
forms a valid FREE code. Additional algorithmic details make
the process faster and more memory-efficient (Methods). Adding
valid code words in alphabetical order is a heuristic method
previously observed to efficiently pack spheres (24). Experimental
synthesis and sequencing limitations are also incorporated during
barcode selection. Candidate barcodes must have the following: (i)
balanced GC content (40–60%), (ii) no homopolymer triples (e.g.,
AAA), (iii) no GGC [a known Illumina-based error motif (25)],
and (iv) no self-complementarity of greater than two bases to reduce
hairpin propensity. All of our software is available in the GitHub
repository accompanying this paper (github.com/finkelsteinlab/
freebarcodes).
The number of available error-correcting barcodes for a DNA

sequence of length n will depend on the experimentally required
degree of error correction (Fig. 2B). We generated libraries of
single-error–correcting codes up to a 16-nt length, containing
>1,600,000 barcodes. In addition, we generated more robust,
double-error–correcting codes up to a 17-nt length with >23,000
unique members (SI Appendix, Table S1). Barcodes correcting m
errors require a length of at least 2m + 1 bp because, otherwise, all
decode spheres overlap all other decode spheres (SI Appendix).
Thus, the one-error–correcting and two-error–correcting barcode
libraries have minimum lengths of 3 bp and 5 bp, respectively. All
single-error–correcting and double-error–correcting barcode librar-
ies shown in Fig. 2B are included as supporting information
(Dataset S1) and are available in the GitHub repository (github.
com/finkelsteinlab/freebarcodes). The barcode decoding software
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runs in time proportional to the length of the barcodes but con-
stant with respect to the number of barcodes in the library. Hence,
one-error–correcting and two-error–correcting codes decode at
the same speed for a given barcode length even though the one-
error libraries contain many more barcodes (Fig. 2C). Even the
slowest decodes considered here, the 17-mer double-error cor-
rection barcodes, decode at >120,000 barcodes per second on a
desktop computer using a single processor.

Comparison with Current Error-Correcting DNA Barcode Strategies.
Current state-of-the art error-correcting DNA barcoding appli-
cations often use Hamming or Levenshtein error correction
strategies (20, 23). Hamming codes only correct substitutions,
and are thus insufficient for any DNA barcode applications with
indels (26). However, they are linear codes, meaning the code
words form a well-structured lattice in barcode space. We tested
an alternative hypothesis that pruning these well-packed Ham-
ming decode spheres to subsets with disjoint FreeDiv decode
spheres could result in a more efficient packing (more barcodes
for a given barcode length) than our alphabetical generation
strategy. This was not, in fact, the case: FREE codes have about
a factor of two more barcodes for a given length than our best
pruning of Hamming codes (Fig. 2D).
Levenshtein codes can be used directly (i.e., without pruning)

because they account for indels, but they must be used at a
twofold higher error correction for DNA barcode applications
(Fig. 1B). We generated such overcorrected Levenshtein bar-
code sets in a manner similar to the FREE code generation
strategy. This strategy produced even fewer barcodes than the
pruned Hamming code sets (Methods and Fig. 2D). Sequence-
Levenshtein codes attempted to solve the problems inherent in
using Levenshtein codes for DNA applications, but an error in the
derivation of these codes (27) often causes the decode spheres to
overlap, resulting in wrong barcode decodings (SI Appendix). In

sum, FREE codes offer a substantially larger number of usable
barcodes for a given barcode length when taking into consideration
real-world errors such as the deletions, insertions, and substitutions
that are encountered during DNA sequencing and synthesis.

Error Correction in Real and Simulated Data. We validated FREE
barcodes generated in this study by both numerical simulation
and experiment. Pooled oligonucleotide synthesis was used to
produce a library of >8,000 oligos with double-error–correcting
barcodes at both ends (Fig. 3A). The barcodes were arranged
such that each left barcode should only ever be observed on the
same oligo with one specific right barcode sequence, and simi-
larly for right barcodes. Hence, we were able to measure the rate
of incorrectly decoding barcodes from observing unexpected left-
right barcode pairs (Methods). We sequenced 1.4 million copies
of this library on an Illumina MiSeq instrument for an average
coverage of 159-fold using the standard Illumina workflow.
Full-length, paired-end Illumina sequencing was used to

measure the background synthesis and sequencing error rates
(Fig. 3 B and C). Using full-length, paired-end reads permitted
discrimination between synthesis and sequencing errors (Meth-
ods). Substitution, insertion, and deletion error rates from library
amplification using Q5 polymerase have previously been reported
to occur at rates less than 10−5, and thus are a negligible fraction of
the measured synthesis errors (28). Measured errors were domi-
nated by single-base synthesis deletions, which occurred at rates of
∼1 in 200 bp and ∼1 in 100 bp in the left and right barcode re-
gions, respectively (Fig. 3B and SI Appendix, Fig. S7). The twofold
difference in synthesis error rates between the two sides is con-
sistent with the synthesis error rates reported by the manufacturer
(17). Sequencing error rates are between 10−4 and 10−3, as ad-
vertised by Illumina (Fig. 3C). In sum, experimental error rates are
dominated by deletion errors. As Hamming codes are not designed
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to error-correct deletions in barcodes, they will perform very poorly
in DNA-based experiments.
We compared the experimentally determined error rates with

simulations of the overall decoding error rate (i.e., the probability
of incorrectly demultiplexing a barcode). Simulations were used to
analyze the decode error rate for several error-correcting codes as
a function of the per-base error rate, perr (Fig. 4). Simulations were
performed in two different ways. First, we used a binomial model,
which assumes independent and identically distributed errors at
each base, to calculate the probability of observing more than one
or two errors given per-base perr. Second, we directly simulated the
errors directly using our decoding software: For a given per-base
perr, we randomly select barcodes and add errors with probability
perr. For simplicity, insertion, deletion, and substitution error rates
were modeled as perr/3 with no correlation between individual
errors within a given barcode. The corrupted barcodes are then
decoded using our software, and the fraction of incorrectly deco-
ded barcodes is used as a measure of the decode error rate.
At experimentally determined per-base error rates, perr, each

increase in error correction level results in at least an order of
magnitude improvement in the decoding error rate (Fig. 4). For
example, our experimental data showed an overall per-base perr

of ∼10−2 (Fig. 3 B and C). At this per-base error rate, the ap-
proximate uncorrected decode error rate (solid line) is 8% for
length 8 barcodes and 15% for length 16 barcodes. Without error
correction, a best-case scenario would be that these errors could
be successfully filtered out, representing a significant loss of data.
In other scenarios, these data might be erroneously counted.
Error correction improves the decoding error rate significantly.
For length 8 barcodes, the approximate decode error rate is 8%
with zero-error correction, 0.3% with single-error correction,
and 0.005% with double-error correction. For length 16 barc-
odes, the approximate decode error rate is 15% with zero-error
correction, 1% with single-error correction, and 0.05% with
double-error correction. A more comprehensive comparison of
the various barcode lists is given in SI Appendix, Figs. S3–S5. The
simulated results are consistently better than the binomial ap-
proximation because indels near the right end occasionally add
the correct base and because insertions occasionally push other
errors out of the barcode window (SI Appendix, Fig. S2).
We validated FREE barcodes by measuring the decoding er-

ror rates for the experimental dataset described earlier (Fig. 5).
For double-error correction, we used mismatches in barcode
pairs to identify erroneously decoded barcodes (Methods). After
corrections, we observe error rates of 0.29% and 0.46% for left
and right barcodes respectively. We counted the zero- and one-
error correction rates shown in Fig. 5 by also counting the
number of errors observed in each correctly decoded barcode.
That is, zero-error correction decode error rates were calculated
as the number of erroneously decoded barcodes plus the number
of correctly decoded barcodes with one or two errors; one-error
correction errors were counted similarly. On the other hand, the
theoretical model was calculated using the synthesis and se-
quencing error rates found in Fig. 3 to calculate the decode error
probability of each barcode depending on its base composition,
and then combined for an overall error rate (SI Appendix).
The experimentally observed decoding error rates follow the

same trend as the simulated errors: Decode error rates decrease
by approximately an order of magnitude with each additional
error correction level. We also observed that experimental error
rates are higher than the theoretical error rate. This is explained
by two observations. First, the theoretical model assumes in-
dependent errors at each position along the barcode. This as-
sumption is not observed in the experimental data (SI Appendix,
Fig. S7). Second, the starting position of each barcode may not
be defined exactly because the primer region can have errors.
We are careful to identify the start of each barcode as precisely
as possible (SI Appendix), but any errors in starting position
appear as spurious insertions or deletions during decoding.
Nonetheless, even though per-base errors are not independent,
the overall order-of-magnitude decrease in decode errors per er-
ror correction level is recapitulated in the experimental dataset.
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Fig. 4. Decoding corrupted barcodes from simulated errors. Modeled and
simulated decoding error rates given the per-base error rate for length 8 (A) and
length 16 (B) barcodes. Barcode sets are labeled according to length and number
of errors corrected; for example, the 16-2 code is length 16 and corrects up to
two errors. Solid lines show the error rate approximations using a binomial
model. Circles and triangles show direct simulation error rates for single- and
double-error–correcting codes, respectively. Substitution, insertion, and deletion
errors each have a simulated error rate P(error per base)/3 for simplicity.
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Fig. 5. Decoding corrupted barcodes from experimental data. Observed
decoding error rates compared with theoretical rates from the synthesis and
sequencing error rates.
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Combinatorially Large Barcode Lists via Concatenation. State-of-the-
art high-throughput sequencing applications already require >106

unique barcodes (16). We anticipate that improvements in high-
density pooled oligo synthesis, along with the continuing reduction
in sequencing costs, will continue to push the need for even larger
error-correcting barcode sets. Below, we demonstrate that arbi-
trarily large barcode lists (>1015 unique members shown here) can
be constructed from FREE barcodes by concatenating multiple
FREE barcodes in a row.
As a demonstration, we concatenated two or three barcodes from

the same starting list of subbarcodes (Fig. 6). For the rest of this
section, we will refer to the original barcodes as “subbarcodes,”
while “barcode” will refer to the full-length, concatenated barcode.
Due to the possibility of indels, the starting positions of the second
and third subbarcodes are only known approximately, and that
approximation worsens as more subbarcodes are added (Fig. 6A).

Decoding the subbarcodes sequentially from left to right is a
strategy to account for this ambiguity. The left-most subbarcode is
decoded first, and the decoded subbarcode is then used to find the
starting position of the next subbarcode. The error correction level
of each FREE subbarcode remains the same, such that three con-
catenated double-error correction subbarcodes can each correct up
to two errors for a maximum total of six corrected errors if the
errors are evenly distributed, two per subbarcode. Overall concat-
enated barcode decoding error rates are given by the probability of
any decoding error in any subbarcode or barcode. Concatenated
barcode error rates are thus slightly higher than for the individual
subbarcodes (Fig. 6B). The increased error rate of concatenated
barcodes is due, in part, to errors in determining barcode bound-
aries, but direct simulation of decoding errors shows that this effect
is relatively small (Fig. 6B). The decoding process is performed
automatically using the software accompanying this paper.
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Fig. 6. Combinatorial barcode libraries via concatenation of FREE barcodes. (A) Concatenated barcodes can be decoded sequentially in a left-to-right order, even
when the end position of each edited subbarcode is not initially known. The decoded first FREE subbarcode can be used to find the starting position of the next
subbarcode, and similarly for subsequent subbarcodes. (B) Concatenated barcode decoding error rates. Concatenated barcode labels use the following format: a
3 × (16-1) barcode consists of three concatenated subbarcodes, each of which is 16 bp long and can correct up to one error. Lines indicate a binomial model. Points
indicate direct simulation. (C and D) Concatenating multiple barcodes combinatorially increases the numbers of effective FREE barcodes. Concatenated barcodes
can correct the same number of errors per subbarcode. When the errors are distributed evenly among the subbarcodes, concatenated barcodes can correct a
higher total number of errors than the individual subbarcodes. (C) Concatenated single-error–correcting barcodes. (D) Concatenated double-error–correcting
barcodes. Dashed lines indicate projected quantities calculated by sampling. Dotted lines indicate log-linear projections.
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Concatenating FREE barcodes results in combinatorially large
barcode sets that will be sufficient for even the most demanding
high-throughput sequencing applications (Fig. 6). The concate-
nated barcodes were pruned to remain compatible with experi-
mental constraints by removing DNA sequences that had triplet
repeats of a single base or excess self-complementarity (defined
as any self-complementarity of any three or more bases). Even
with these filters, we generated full lists of up to 1010 barcodes with
concatenation of three single-error–correcting codes (Fig. 6). Be-
yond that, where possible, the projected total barcode count was
estimated via subsampling. When even that was limited by available
hard drive space, the projected total was estimated via log-linear fit,
which went above 1015 barcodes for 3 × (16-bp single-error) barc-
odes. Due to their size, we do not include these concatenated
barcode sets explicitly with this paper. They can be generated on
demand using the included software package and single barcode
lists. In sum, concatenating FREE codes produces a rapid and ef-
ficient strategy for further increasing the size of error-correcting
barcode lists for pooled high-throughput sequencing experiments.
Concatenated barcodes can also be used to significantly de-

crease error rates. The simplest such strategy is to consider r
concatenated repeats of each subbarcode as a complete barcode:
For example, instead of using barcodes AAC and GGT, using
repeated, concatenated barcodes AACAAC and GGTGGT. Any
barcodes with mismatching decoded subbarcodes (AACGGT or
GGTAAC in the previous example) are then filtered out. The
decoding error probability is then the probability that all r sub-
barcodes are not only wrong but are all erroneously decoded as
the same wrong subbarcode. If p is the probability of a sub-
barcode decoding error, then the full-length decoding error is qpr,
where q is the probability of r wrong decodes all being the same
wrong subbarcode (SI Appendix, Fig. S8). Meanwhile, the proba-
bility of filtering is approximately only rp (SI Appendix). For ex-
ample, two-error–correcting length 10 barcodes have an estimated
decoding error probability, p, of 10−4 at our observed per-base error
rate of 10−2. Using two or three repeats brings the decoding error
probability down to an estimated 10−12 or 10−19 while only filtering
out reads with a probability of 2× 10−4 or 3× 10−4, respectively (SI
Appendix, Fig. S8). Hence, concatenated FREE barcodes can be
used for experiments requiring extremely low decoding error rates.

Discussion
Here, we described the design and experimental validation of
FREE error-correcting DNA barcodes capable of correcting
substitution, insertion, and deletion errors, even when the cor-
rupted length of the barcode is unknown. We generated lists of
FREE divergence error-correcting barcodes and provided soft-
ware on GitHub for user-friendly generation and decoding of
these DNA barcodes for real-world applications.
Most high-throughput DNA sequencing applications require

PCR-based amplification or reverse transcription (in the case of
RNA) of the input nucleic acid libraries. The polymerase and re-
verse transcriptase enzymes used during library preparation perform
best on libraries that avoid stable secondary structures and self-
complimentary regions. To improve the utility of our codes for such
demanding applications, we used UNAFold (29) to calculate the
melting temperature of hairpins for the FREE barcodes included
with this paper (Dataset S1). This information will allow users to
prune out barcode sequences with a propensity to form stable
hairpins in their specific experimental conditions (SI Appendix, Fig.
S9). Such experimental considerations will further increase the
utility of FREE codes for demanding high-throughput sequencing
applications.
In validating the FREE barcodes, we measured the types and

frequency of errors that are introduced during massively parallel
oligo synthesis and Illumina-based high-throughput sequencing.
We observed that deletions during synthesis were the most fre-

quent sources of error (∼1 per 100 nt), followed by substitutions
and insertions (∼1 per 1,000 nt). These experimentally measured
error frequencies were used to simulate and experimentally
measure the decoding quality of FREE codes. Even though the
observed decoding error rates do not follow a model that as-
sumes independent errors at each base, we still obtain expo-
nential improvement of the final decoding error rate with codes
that correct for increasing numbers of errors. Importantly, the
error-correcting decode software runs fast enough to handle the
massive datasets involved in modern high-throughput sequencing
applications, decoding hundreds of thousands of barcodes per
second on a single processor for all barcode lists considered.
In this paper we have focused on codes that fix a specified

number of errors because such barcodes are platform-independent,
and hence widely applicable. However, one can also use the FREE
barcode method to produce barcodes with a desired total decode
error probability instead of a maximum number of correctable er-
rors. For example, if the rates of substitutions, deletions, and in-
sertions for a given synthesis and sequencing pipeline are known, a
user could choose to generate barcodes that have, say, a 10−6

probability of decode error. Instead of creating decode spheres by
iterating over all barcodes with up to a chosen number of errors,
one would iterate over the most likely erroneous barcodes until the
total probability of the barcodes contained in the sphere is at least
1–10−6. All other steps of the generation and decoding process
would remain exactly the same. This strategy would be more effi-
cient (i.e., produce more barcodes per barcode length) for a given
desired decode error rate. The tradeoff is that this barcode set
would be tied to a specific DNA synthesis and sequencing pipeline.
As such, popular synthesis and sequencing pipelines may warrant
their own dedicated barcodes in the future.
Furthermore, while we have focused exclusively on FREE

codes prepended to the start of sequenced DNA reads, the
current work applies equally to their natural mirrored counter-
part, filled/truncated left end edit codes. This would be required
for applications where the barcode appears at the end of each
sequenced read rather than the beginning. In fact, the same codes
can be used by simply taking the reverse complement of FREE
codes before synthesis and again before decoding. Hence, FREE
barcodes can be used equally well on the 5′ or 3′ end of pooled
samples, as long as the orientation is chosen appropriately.
FREE barcodes are a powerful tool to correct DNA barcode

errors, reducing measurement errors in modern high-throughput
experiments. We anticipate that the use of FREE barcodes will
improve these assays in three key ways: (i) helping avoid spurious
results, (ii) decreasing the amount of discarded data, and (iii)
increasing experimental signal-to-noise ratios. Decreasing spurious
results and decreasing discarded data are important for any ex-
periment involving DNA barcodes, but we are most excited by the
new possibilities available with increased signal-to-noise ratios. The
power to decrease error rates from 15 to 0.05%, as in Fig. 4B, could
open the door for entirely new assay designs. We anticipate that
FREE barcodes will be broadly useful for the ever-growing set of
pooled high-throughput sequencing experiments in cell and mo-
lecular biology, protein engineering, and drug discovery.

Methods
Definitions and Numerical Representation of DNA. For any barcode system, the
word length, n, is given. Any DNA sequence of length n is a word, and any
word observed in the data is an observed word.

We represent strings of DNA as base 4 numbers, where A, C, G, and T
correspond to 0, 1, 2, and 3, respectively. Thus, for example,

AAGCT= ð00213Þbase4 = 39  length  5.

Here, 39 is the word number and 5 is the word length. Note that the word
length is required to uniquely convert numbers to DNA to account for leading
A’s. For example, the word number from the example above, 39, with word
length 3 is simply GCT. For word length n, the largest valid word number is 4n − 1.
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For an m-error–correcting code, we define a decode sphere around a
barcode B to be the set of all words with FreeDiv less than or equal tom, and
we define an encode sphere to be the set of all words of FreeDiv less than or
equal to 2m. We write these as DecodeSphere(B) and EncodeSphere(B).

Barcode Generation. FREE barcode sets are generated with a modified lexi-
cographic code generation method. Lexicographic code generation consists
of marching through all words lexicographically, alphabetically in this case,
and adding new words to the list of barcodes whenever they are sufficiently
far from all previous barcodes (30). For Hamming codes, lexicographic codes
are linear (30), and, more generally, lexicographic code generation has been
shown to have relatively good sphere-packing efficiency (24). The first FREE
modification to the procedure is to enforce the following sequencing and synthesis
properties: (i) balanced GC content (40–60%), (ii) no homopolymer triples (e.g.,
TTT), (iii) no triplet self-complementarity, and (iv) no GGC [Illumina error motif (25)].

For speed, we iterate over these potential barcodes via recursive base
addition: Given a barcode prefix P, we add the next base only if it does not
violate any of the above. We thereby skip large recursive subtrees in which
all words violate one of the above conditions.

For an m-error–correcting code, the only requirement is that the decode
spheres of all barcodes are disjoint. Because FREE divergence is not a metric,
standard metric-based code generation methods cannot be used. Instead, we
accomplish this directly with a sphere iterator (SI Appendix). For every accepted
barcode B, we iterate over DecodeSphere(B) and reserve all words therein as
mapping to B. For any potential new barcode P, we first verify that no words in
DecodeSphere(P) are reserved before accepting it as a new barcode.

This algorithm would be very slow because most decode sphere tests
would run into reserved words and fail to add new barcodes. One further
observation makes this process tractable. Given a barcode B and a proposed
new barcode W, if FreeDiv(B, W) ≤ 2m, that is, if W is in EncodeSphere(B),
then DecodeSphere(W) and DecodeSphere(B) overlap and W is not a valid
new barcode (SI Appendix). This implies the following algorithm: Generate
the code by lexicographically iterating over words while looking for new
barcodes to add to the code. For each accepted new barcode B, we color any
uncolored words in EncodeSphere(B) black, and we then color all words in
DecodeSphere(B) red. Restricting encode sphere coloring to previously un-
colored words avoids overwriting the decode spheres of all previous barcodes.
All black- and red-colored words are guaranteed to not be valid barcodes, so
addition of new barcodes is restricted to uncolored words. For an uncolored
proposed new barcodeW, DecodeSphere(W) is checked for red words. If no red
words are found, W is added as a new barcode.

The coloring of barcodes, decode spheres, and encode spheres is accom-
plished by having an array of 4n integers valued 0, 1, or 2: 0 for uncolored, 1 for
black, and 2 for red. The location of each integer in memory itself represents
the word, via the numerical representation of DNA given above. This is both
memory- and speed-efficient. Memory efficiency is important, as it is a limiting
resource for this method. The memory required for barcode generation is 4k

bytes, which was up to 16 Gb of random access memory (RAM) for this paper.

Barcode Decoding. The decoding process builds the code book and looks up
decodedwords directly. We do this in a memory-efficient fashion as follows. For
each barcode in a list, the barcode index is defined as the index of that barcode
within the list of barcodes. We again reserve a space of 4k integers to represent
the code space. For each barcode B, we store the barcode index of B at every
word of DecodeSphere(B). We store barcode indices rather than barcode
numbers because barcode indices require fewer bits per word. The memory
required for barcode decoding is ð1, 2, or  4Þ× 4n bytes, requiring one, two, or
four bytes to store each barcode index. For this paper, the maximum memory
used for barcode decoding was 32 Gb of RAM.

Barcode Pruning. Specific barcode lists from literature or elsewhere may
sometimes be required for a given experiment, but require pruning to find a
subset with error correction. We accomplish barcode pruning via the same

strategy as barcode generation, but only considering the input set of barc-
odes as potential new barcodes. This pruning method was also used to prune
the linear Hamming codes.

Simulation of Errors. To test the error-correcting capacity of FREE barcodes,
we wrote error-simulating code, which adds a given number of substitutions,
insertions, deletions, or all three randomly distributed. We used this to verify
the correctness of each of the FREE m-error–correcting codes by randomly
selecting barcodes, adding m errors, and verifying that the decoded word
matches the expected word. We used the same code for generating Fig. 4 by
randomly choosing the number of errors from a binomial distribution with
probability of error perr.

Levenshtein Barcodes. Levenshtein barcodes were generated lexicographi-
cally using the standard technique of code generation with a metric. Briefly,
for desired barcode length n and number of correctable errors e, we walk
through the space of n-mers lexicographically adding any new word if it (i)
satisfies the same sequencing and synthesis properties as above and (ii) has a
Levenshtein distance at least 2e + 1 from any previously accepted barcode.

Pruned Linear Hamming Barcodes. We generated Hamming barcode lists using
linearity in base 4 (SI Appendix). Briefly, a Hamming code of length nwith k < n
“message bits” can be generated by all linear combinations of k basis vectors of
length n, which are chosen to enforce the error correction properties required.
These codes were then filtered according to the FREE sequencing and synthesis
property requirements and pruned as described above to form valid FREE codes.

Experimental Synthesis, Sequencing, and Decoding Error Rates. Oligonucleo-
tide pools were designed as in Fig. 3A, with primers and barcodes on each
end and a spacer in the middle (116-bp total length). To test the FREE method,
8,634 barcodes of length 17 and double-error correction were used in
8,634 unique pairs. Oligos were synthesized (CustomArray, Inc.), and the oligo
pool was amplified for 20 cycles with Q5 polymerase (New England Biolabs) and
sequenced on an Illumina MiSeq machine with 2 × 150-bp paired-end reads.
Reads are available on the Sequence Read Archive under accession number
SRP145011. Maximum likelihood sequences were inferred using both reads.

The left and right primer sequences were used to determine both the read
orientation and the starting position of each barcode (SI Appendix). Each
barcode was then decoded using the FREE decoding software. Matching
barcodes identified correctly decoded barcodes, while mismatching barc-
odes indicated an error. The FREE method was powerful enough to reveal a
surprising and unrelated source of error: the creation of oligo chimeras,
sequences with the left part of one oligo and the right part of another,
which we then also accounted for (SI Appendix).

Once each oligo had been identified from its barcodes, the observed se-
quencewas alignedwith the reference sequence. At each basewhere the two
reads agreed with each other but not with the reference sequence, we
counted a synthesis error; at each base where the reads disagreed and one
readmatched the reference sequence, we counted a sequencing error; and at
each base where the reads disagreed and neither matched the reference
sequence, we counted a synthesis error and a sequencing error.

Observed synthesis and sequencing error rates for each reference base
were used to find theoretical decoding error rates for each barcode, given its
base composition. These were then used to estimate the overall expected
error rate (SI Appendix).

ACKNOWLEDGMENTS. We thank James Rybarski, Andrea Hawkins-Daarud,
Jeffrey Hussmann, Prakash Mohan, Alexander Boulgakov, and Kevin Drew
for useful feedback throughout the project. This work was supported by a
College of Natural Sciences Catalyst Award, the Welch Foundation (Grant F-
1808 to I.J.F.), and the NIH (Grants R01 GM120554 and R01 GM124141 to
I.J.F., Grant F32 AG053051 to S.K.J.).

1. Klein AM, et al. (2015) Droplet barcoding for single-cell transcriptomics applied to

embryonic stem cells. Cell 161:1187–1201.
2. Macosko EZ, et al. (2015) Highly parallel genome-wide expression profiling of indi-

vidual cells using nanoliter droplets. Cell 161:1202–1214.
3. Zheng GXY, et al. (2016) Haplotyping germline and cancer genomes with high-

throughput linked-read sequencing. Nat Biotechnol 34:303–311.
4. Kitzman JO (2016) Haplotypes drop by drop. Nat Biotechnol 34:296–298.
5. Haque A, Engel J, Teichmann SA, Lönnberg T (2017) A practical guide to single-cell

RNA-sequencing for biomedical research and clinical applications. Genome Med 9:75.
6. Zilionis R, et al. (2017) Single-cell barcoding and sequencing using droplet micro-

fluidics. Nat Protoc 12:44–73.

7. Spies N, et al. (2017) Genome-wide reconstruction of complex structural variants using

read clouds. Nat Methods 14:915–920.
8. Eroshenko N, Kosuri S, Marblestone AH, Conway N, Church GM (2012) Gene assembly

from chip-synthesized oligonucleotides. Curr Protoc Chem Biol 2012:ch110190.
9. Plesa C, Sidore AM, Lubock NB, Zhang D, Kosuri S (2018) Multiplexed gene synthesis in

emulsions for exploring protein functional landscapes. Science 359:343–347.
10. Fan R, et al. (2008) Integrated barcode chips for rapid, multiplexed analysis of pro-

teins in microliter quantities of blood. Nat Biotechnol 26:1373–1378.
11. Ma C, et al. (2011) A clinical microchip for evaluation of single immune cells reveals

high functional heterogeneity in phenotypically similar T cells. Nat Med 17:

738–743.

Hawkins et al. PNAS | vol. 115 | no. 27 | E6225

CE
LL

BI
O
LO

G
Y

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802640115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802640115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802640115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802640115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802640115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802640115/-/DCSupplemental


12. Zimmermann G, Neri D (2016) DNA-encoded chemical libraries: Foundations and

applications in lead discovery. Drug Discov Today 21:1828–1834.
13. Melkko S, Scheuermann J, Dumelin CE, Neri D (2004) Encoded self-assembling

chemical libraries. Nat Biotechnol 22:568–574.
14. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: Technologies and

applications. Nat Methods 11:499–507.
15. Petrone J (2016) DNA writers attract investors. Nat Biotechnol 34:363–364.
16. Litovchick A, et al. (2015) Encoded library synthesis using chemical ligation and the

discovery of sEH inhibitors from a 334-million member library. Sci Rep 5:10916.
17. CustomArray, Inc. (2018) About Us. Available at www.customarrayinc.com/aboutus_main.

htm. Accessed January 8, 2018.
18. Peterson WW, Weldon EJ (1972) Error-Correcting Codes (MIT Press, Cambridge, MA).
19. MacWilliams FJ, Sloane NJA (1977) The Theory of Error-Correcting Codes (Elsevier,

New York).
20. Lyons E, Sheridan P, Tremmel G,Miyano S, Sugano S (2017) Large-scale DNA barcode library

generation for biomolecule identification in high-throughput screens. Sci Rep 7:13899.
21. Erlich Y, Zielinski D (2017) DNA Fountain enables a robust and efficient storage ar-

chitecture. Science 355:950–954.

22. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and
reversals. Sov Phys Dokl 10:707–710.

23. Costea PI, Lundeberg J, Akan P, Tag GD (2013) TagGD: Fast and accurate software for
DNA tag generation and demultiplexing. PLoS One 8:e57521.

24. Houghten SK, Ashlock D, Lenarz J (2006) Construction of optimal edit metric codes.
2006 IEEE Information Theory Workshop–ITW ’06 Chengdu (IEEE Press, Piscataway,
NJ), pp 259–263.

25. Quail MA, et al. (2012) A tale of three next generation sequencing platforms: Com-
parison of ion torrent, Pacific biosciences and Illumina MiSeq sequencers. BMC
Genomics 13:341.

26. Hamming RW (1950) Error detecting and error correcting codes. Bell Labs Tech J 29:
147–160.

27. Buschmann T, Bystrykh LV (2013) Levenshtein error-correcting barcodes for multi-
plexed DNA sequencing. BMC Bioinformatics 14:272.

28. Lee DF, Lu J, Chang S, Loparo JJ, Xie XS (2016) Mapping DNA polymerase errors by
single-molecule sequencing. Nucleic Acids Res 44:e118.

29. Markham NR, Zuker M (2008) UNAFold: Software for nucleic acid folding and hy-
bridization. Methods Mol Biol 453:3–31.

30. van Zanten AJ (1997) Lexicographic order and linearity. Des Codes Cryptogr 10:85–97.

E6226 | www.pnas.org/cgi/doi/10.1073/pnas.1802640115 Hawkins et al.

http://www.customarrayinc.com/aboutus_main.htm
http://www.customarrayinc.com/aboutus_main.htm
www.pnas.org/cgi/doi/10.1073/pnas.1802640115

