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Overview

DNA damaging chemotherapy is the first line of treatment for certain cancers, but its long-

term success is often marred by the eventual acquisition of chemoresistance. Other cancers

cannot be treated because they are intrinsically resistant to such chemotherapy. These 2 types

of resistance are coupled in the context of translesion synthesis (TLS), which is carried out by

specialized TLS DNA polymerases that can replicate past DNA lesions but in a lower fidelity

manner. First, TLS DNA polymerases permit the bypass of modified DNA bases during DNA

synthesis, thereby allowing proliferation to continue in the presence of chemotherapy, an issue

of particular relevance to intrinsic drug resistance. Second, mistakes introduced by TLS poly-

merases copying over DNA lesions introduced during the chemotherapy lead to mutations

that contribute to acquired resistance. These dual functions of mutagenic TLS polymerases

with respect to chemoresistance make these proteins very promising targets for adjuvant ther-

apy. The major branch of mutagenic TLS requires REV1, a Y family DNA polymerase that

recruits other TLS polymerases with its C-terminal domain (CTD) including POL z, which is

also required. Recent evidence obtained using mouse models is summarized, which shows that

interfering with REV1/POL z-dependent mutagenic TLS during DNA damaging chemother-

apy can help overcome problems due to both intrinsic resistance and acquired resistance.

Ways to develop drugs that block mutagenic TLS are also considered, including taking advan-

tage of structural knowledge to target key protein-protein interfaces.

Introduction

While DNA damaging chemotherapy can be very effective and even curative in the treatment

of certain cancers, intrinsic and acquired drug resistance underlies tumor progression and

morbidity in many cancer patients. Intrinsic resistance defines a cell state that is inherently tol-

erant of drug action. This can include the activation of drug efflux pumps or detoxifying pro-

cesses that effectively reduce intracellular drug concentration [1]. This can also include a

change in the recognition or persistence of DNA damage, mediated by an enhanced DNA

repair capability, a blunted DNA damage response, or the ability to proliferate in the presence

of DNA damage. Conversely, acquired drug resistance represents a mutational or epigenetic

process by which a chemosensitive cell develops 1 or more of the characteristics of an intrinsi-

cally resistant cancer cell. Thus, the mechanisms underlying intrinsic and acquired drug resis-

tance are quite distinct. One describes a cell state, and the other describes the capability of
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reaching that cell state. Yet, these processes are very much coupled in the context of mutagenic

translesion synthesis (TLS).

As discussed throughout this review, mutagenic TLS polymerases underlie 2 important

phenotypes in response to genotoxic chemotherapy. First, they allow for the bypass of modi-

fied DNA bases during DNA synthesis, allowing proliferation to continue in the presence of

chemotherapy. Second, the low fidelity replication performed by TLS polymerases results in

the introduction of inappropriate, nonpairing bases across from modified nucleotides. The

bypass function of TLS polymerases is particularly relevant to intrinsic drug resistance. Many

tumors, including most pancreatic adenocarcinomas, nonsmall cell lung cancers, and aggres-

sive brain tumors, as well as most metastatic malignancies, fail to significantly regress follow-

ing chemotherapy [2]. In these tumors, TLS activity contributes to a drug resistant state by

promoting the tolerance of DNA damage [3–6]. Conversely, the mutational role of TLS poly-

merases is central to process of acquired drug resistance. Tumor regression and relapse follow-

ing chemotherapy is almost always accompanied by the development of drug resistant disease.

This may not occur at initial relapse, but upon serial cycles of treatment patients generally suc-

cumb to tumors that have acquired intrinsically resistant disease. In fact, for certain cancers

the overall prognosis is not dictated by the initial response of the tumor to chemotherapy.

Rather, the response of the relapsed tumor to therapy is a significantly better determinant of

overall survival. For instance, a high error-prone TLS activity translates into greater tumor

adaptation to chemotherapy, while a low error-prone TLS activity leaves tumor in a treatment-

naïve state. This latter state is amenable to continued long-term treatment of tumors that

remain response to treatment with the initial therapy.

The dual functions of mutagenic TLS polymerases in intrinsic and acquired chemoresis-

tance make these proteins very attractive potential targets for adjuvant therapy. When com-

bined with front-line genotoxic therapy, these TLS inhibitors would be expected to sensitize

tumors to chemotherapy while blocking drug-induced mutation. Consequently, while the gen-

eration of such inhibitors is complex, their route to the clinic is more apparent. TLS inhibitors

could be applied in combination with the standard of care for many malignancies. By effec-

tively increasing the effects of chemotherapy in target cells, these agents may also allow for a

reduction in chemotherapy dose regimens. An added benefit of these agents may be a reduc-

tion in the rate of secondary chemotherapy-driven malignancies that occur in patients follow-

ing successful treatment of the primary disease.

TLS polymerases bypass DNA damage

TLS polymerases are highly conserved, specialized DNA polymerases that can replicate past

aberrant DNA lesions but in a lower fidelity manner—a trade-off that preserves genomic

integrity in cells [7]. These incorrect nucleotides become fixed into mutations during the next

round of DNA replication, contributing to overall fitness and evolution in single cell organ-

isms but propelling tumorigenesis and disease in humans (Fig 1A). There are 10 known

human TLS polymerases (REV1, POL η, POL ι, POL κ, POL z, POL μ, POL λ, POL β, POL ν,

and POL θ), which are distributed in 4 families (Y, B, X, and A), and also Prim Pol, which

additionally has primase activity. Although all TLS DNA polymerases are more error-prone

than replicative DNA polymerases, some are capable of bypassing specific (cognate) lesions in

a relatively error-free manner (Table 1). The extent of DNA synthesis errors during TLS

depends on various factors, including the identities of the TLS polymerases employed, the

presence or absence of cognate lesions, DNA sequence context, and thermodynamic favorabil-

ity in the catalytic step [8–10]. The significance of the TLS process to human health is illus-

trated by xeroderma pigmentosum-variant patients, who are deficient in POL η and are

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006842 August 17, 2017 2 / 16

https://doi.org/10.1371/journal.pgen.1006842


Fig 1. DNA damage bypass process. (A) Mechanism of the 2-step DNA damage bypass process. To bypass DNA

damage, REV1 inserts deoxycytidine triphosphates across the damage or orchestrates the recruitment of the other

polymerases, POL ι, POL κ, POL η, to replicate across the damage. Thereafter, POL ζ complex can help extend beyond

the damage to enable re-initiation of undamaged DNA replication. If an incorrect nucleotide gets incorporated across the

damage, this misincorporated nucleotide will lead to a mutation in the next round of replication. (B) A schematic

representing the protein domains of the Y-family translesion synthesis (TLS) polymerases, REV1, POL ι, POL κ, POL η.

https://doi.org/10.1371/journal.pgen.1006842.g001
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Table 1. Summary of the characteristics, expression, the availability of mouse model, and association to cancers of B- and Y-family translesion

synthesis polymerases.

Polymerase Characteristics Expression Mice Model Cancer Association

REV1 (REV1)

Y-family

• Exclusively inserts dCMPs

opposite template Gs,

abasic sites, and adducted

G residues [13, 14]

• Acts as a scaffolding

protein by interacting with

both POL ζ and RIR

containing POL η, POL κ
and POL ι [15, 16]

• Generates G/C

substitutions during Ig gene

somatic hypermutation [17]

• Accumulates in DNA

damaged induced foci [18–

20]

• Protein expression is cytoplasmic in

all tissues, with highest in adrenal

gland, muscle, liver, etc. (http://www.

proteinatlas.org/

ENSG00000135945-REV1/tissue)

• RNA expressed in all tissues, with

highest expression in brain tissues and

reproductive organs (http://www.

proteinatlas.org/

ENSG00000135945-REV1/tissue and

https://gtexportal.org/home/gene/

REV1)

• Rev1BRCT (ΔBRCT

region; accelerated skin

cancers, genotoxin-

induced genome

instability) [21, 22].

• Rev1AA (defective Rev1

catalytic domain; reduced

somatic hypermutation)

[23].

• Rev1KO (Rev1 deficient;

near-infertile and

unstable genome) [24]

• Several hepatocarcinomas and

occasional lung cancers show high

expression of REV1 [25] (http://

www.proteinatlas.org/

ENSG00000135945-REV1/cancer)

• Responsible for drug resistance in

ovarian cancer cells [26]

• No known somatic mutations in

cancers

POL η (POLH)

Y-family

• Bypasses T-T CPD and

cisplatin-GG efficiently, but

inefficiently across

adducted residues, AP

sites, 8-oxo-G [27–32]

• Accumulates at DNA

damage foci [20, 33].

• Generates A/T

substitutions during somatic

hypermutagenesis [34]

• Protein expression ubiquitous in

nucleus and cytoplasm of all tissues,

with high expression in thyroid, lung,

pancreas, placenta, testis, etc. (http://

www.proteinatlas.org/

ENSG00000170734-POLH/tissue)

• RNA expressed in all tissues, with

highest expression in tonsil, lymph

nodes and testis (http://www.

proteinatlas.org/

ENSG00000170734-POLH/tissue and

https://gtexportal.org/home/gene/

POLH)

• PolhKO (Pol η deficient;

fertile, viable, but

susceptible to skin

cancers, mirrors XP-V

phenotype, UV irradiated

cells prone to chromatid

breaks) [35–37]

• Polh+/- (slightly

susceptible to UV

radiation-induced skin

carcinogenesis) [35]

• Gene mutations causes XP-V [38]

• High expression in single basal

cell carcinomas of the skin and

some liver cancers (http://www.

proteinatlas.org/

ENSG00000170734-POLH/cancer)

• Enhanced expression in ovarian

cancer stem cells [39]

• Elevated levels in head and neck

tumor samples [40]

• 3 missense POLH mutations

found amongst 201 melanoma

patients [41]

POL κ (POLK)

Y-family

• Propensity to make −1

frameshift mutations, but

efficiently bypasses

thymine glycols and

guanine adducts [42, 43]

• Propensity to extend

mispaired primer-template

termini [44]

• Protein expression data in normal

tissues unknown

• RNA expressed in all tissues, with

slightly high expression in thyroid,

parathyroid, endometrium, and testis

(http://www.proteinatlas.org/

ENSG00000122008-POLK/

tissue#gene_information & https://

gtexportal.org/home/gene/POLK)

PolkKO (Pol κ deficient;

fertile, cells are UV

sensitive, spontaneous

mutator phenotype in

kidneys, liver and lungs,

and the mice has

shortened survival than

Polk+/- and Polk+/+ mice)

[45, 46]

• Elevated expression in lung

cancer [47, 48]

• Ectopic overexpression of POL κ
induces aneuploidy and

carcinogenesis in mice [49]

• Two non-coding POLK SNPs

associated with lung cancer risk [50]

• Three somatic POLK mutations in

26 prostrate patients [51]

POL ι (POLI)

Y-family

• Efficiently bypasses

template dA; but does so

inefficiently on the template

dT [52, 53]

• Briefly accumulates in

replication stress foci [54]

• Back-up polymerase in

the absence of POL η.

Inefficiently bypasses UV

damage in the absence of

POL η [11, 55]

• High protein expression in

parathyroid, thyroid, reproductive

organs and pituitary (http://www.

proteinatlas.org/

ENSG00000101751-POLI/tissue)

• High RNA expression in testis,

thyroid and parathyroid gland (http://

www.proteinatlas.org/

ENSG00000101751-POLI/tissue and

https://gtexportal.org/home/gene/

POLI)

PoliKO (Pol ι deficient;

mice susceptible to

damage-induced lung

tumors) [56].

PolιKO mice cells not

sensitive to DNA

damaging agents [57]

• Elevated expression in breast

cancer cells [58]

• Important candidate for lung

neoplasia [59]

• Overexpressed in bladder cancer

and in esophageal squamous cell

carcinoma [60–62]

• POLI SNP (rs8305) correlated with

significant high risk of both lung

adenocarcinoma and squamous cell

carcinoma [63]

• POLI SNP (rs3218786)

significantly associated with

TMPRSS2-ERG fusion-positive

prostrate tumors [64]

(Continued )
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therefore susceptible to UV radiation-induced cancers because the cognate UV-induced cyclo-

butane pyrimidine dimers are instead bypassed by alternate TLS polymerases (POL ι and POL

κ) in a relatively error-prone manner [11, 12].

Distinct structural and biochemical features of the TLS polymerases enable them to repli-

cate past the DNA damage. For example, in contrast to classical replicative polymerases, Y-

family TLS polymerases possess a smaller thumb and finger domain that makes fewer contacts

with DNA and also lack an 3´-5´ exonuclease activity to proofread misincorporated nucleo-

tides. Together, these structural attributes result in a larger and/or more permissive catalytic

site than replicative polymerases that allows TLS polymerases to accommodate distorted and

damaged nucleotides [81, 82]. In addition, other physical features such as the polymerase-asso-

ciated domain of Y-family polymerases and the wrist and the N-clasp region of POL κ also

contribute to polymerase architecture conducive to replication across DNA damage (Fig 1B)

[83–87]. Furthermore, regulatory domains of TLS polymerases enable their proper localization

and regulation [88]. These special structural features of TLS polymerases are fundamental to

their roles in DNA damage bypass.

Besides the structural features of individual TLS polymerases, successful TLS also depends

on interactions between these polymerases and other cellular proteins that target and choreo-

graph their activity. REV1 functions as a principle scaffolding protein, which recruits other

TLS polymerases to first insert a nucleotide opposite the DNA lesion and then eventually help

extend the distorted primer-template terminus, in what is recognized as the two-step mecha-

nism of TLS (Fig 2) [7, 8, 89]. For the insertion step, a particular interface of the REV1 CTD

interacts with the REV1-interacting-region (RIR) of the inserter polymerases (POL η, POL ι,
POL κ). Mutations that disrupt the RIR-interface in the Rev1 CTD prevent interaction with

the inserter polymerase in yeast-2 hybrid (Y2H) screens [15, 16, 90, 91]. Insertion across from

the damaged base can also be less frequently carried out by REV1 and POL z [8]. In the second

step, an extender TLS enzyme, a role most frequently fulfilled by POL z (REV3/REV7/POLD2/

POLD3) and in some cases by POL κ, replaces the inserter and extends the primer-template

Table 1. (Continued)

Polymerase Characteristics Expression Mice Model Cancer Association

POL ζ4

B-family

(REV3 [REV3]

polymerase,

REV7 [REV7],

POLD2 and

POLD3

accessory

subunits) [65]

• POL ζ4 mediate inefficient

TLS across CPDs, (6–4)

photoproducts, adducted

residues and AP sites, but

an error free bypass of

thymine glycols [53, 66, 67]

• Serves as the key

extender polymerase

during TLS [68]

• REV3 protein is expressed minimally

in the cytoplasm of different tissue

types. REV3L transcript is highly

expressed in endometrin, smooth

muscle, cerebellum and the uterine

tissues (http://www.proteinatlas.org/

ENSG00000009413-REV3L/tissue

and https://gtexportal.org/home/gene/

REV3)

• High REV7 protein expression in

bone marrow and lung tissues. And

high REV7 RNA expression in testis,

bone marrow, lymph nodes, tonsils,

and appendix (http://www.proteinatlas.

org/ENSG00000116670-MAD2L2/

tissue and https://gtexportal.org/home/

gene/MAD2L)

• Rev3KO (Rev3 deficient;

embryonically lethal and

spontaneous and

genotoxin induced

genome instability) [69–

71]

• Rev3Δlox (conditional

Rev3 deficiency; reduced

cell proliferation,

spontaneous genomic

instability and mice

develop spontaneously

mic lymphoma and

spontaneous skin

tumors) [72–74]

• Rev7KO (Rev7 deficient;

delayed growth, infertile,

reduced cell proliferation,

spontaneous genome

instability) [75, 76]

• REV7 depletion enhances

cisplatin sensitivity in ovarian

cancer cells [77]

• Loss of REV7 sensitizes ovarian

and breast cancer cells to PARP

inhibition [78]

• High expression in B-cell

lymphoma [79]

• Elevated expression in colon

cancer [80]

AP, apurinic; CPD, cyclobutane pyrimidine dimers; dCMP, deoxycytidine monophosphate; TLS, translesion synthesis; XP-V, xeroderma pigmentosum-

variant.

https://doi.org/10.1371/journal.pgen.1006842.t001
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termini [90]. For the POL z -mediated extension step, a different interface in REV1 CTD—dis-

tinct from the interface for RIR recognition—makes contact with specific amino acids located

on REV7. Mutating residues in the Rev7-interface of the Rev1 CTD inhibits Rev1-Rev7

Fig 2. Protein-protein interactions between translesion synthesis (TLS) polymerases are important

for the DNA damage bypass process. Two pathways are expected to facilitate TLS across DNA damage—

the REV1 dependent and REV1 independent pathway. Majority of the DNA lesions are bypassed in a REV1

dependent fashion, which engages in protein-protein interactions with other TLS polymerases via its C-

terminus. REV1 interacts with the REV1-interacting-region (RIR)-containing residues of POL ι, POL κ, POL η
to enable insertion of nucleotides across the damage. And REV1 also interacts via key residues with REV7 of

the POL ζ complex to facilitate extension beyond the insertion step. REV1 also binds to POLD3 subunit of the

POL ζ complex to enable the key switch from the “insertion” to the “extension” step. In the REV1 independent

pathway, the RIR-containing polymerases, POL ι, POL κ, POL η, by interacting with the proliferating cell

nuclear antigen (PCNA) interacting protein (PIP) and ubiquitin-binding motif (UBM)/ ubiquitin-binding zinc

finger (UBZ) domains of PCNA, can also enable TLS at the damaged site. Likewise, the POL ζ complex also

interacts with the PIP box of PCNA to access the DNA and enable TLS.

https://doi.org/10.1371/journal.pgen.1006842.g002
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interaction in Y2H studies and sensitizes chicken DT40 cells to cisplatin [15]. Apart from

bypassing DNA damage at stalled replication forks, TLS polymerases also engage in filling sin-

gle stranded (ss) DNA gaps left behind by replicative polymerases, via the less-well understood

gap-filling mechanism [92, 93].

Interestingly, TLS polymerases are also required for other cellular functions. For example,

during interstrand cross-link (ICL) repair in replicating cells, certain TLS polymerases—REV1,

POL ι, POL κ and POL ν—are required for DNA synthesis over the ICL on the newly exposed

leading strand [94–97]. Likewise, in nonreplicating cells, ICL repair depends on the Rev1-POL

z TLS polymerases to fill the ssDNA-gaps [98]. In a similar fashion, both nucleotide excision

repair (NER) and base excision repair (BER) pathways respectively can employ POL κ and POL

η to fill the ssDNA gaps left behind after the excising step [99, 100]. Additionally, POL η was

recently shown to drive microhomology-mediated break-induced replication (MMBIR) that

causes complex genomic rearrangements in yeast and has an important role in homologous

recombination (HR) in DT40 cells [101, 102]. Finally, REV1 was recently shown to be required

for replication of G-quadruplex structures, thereby influencing epigenetic stability [103]. Inde-

pendent of its role in TLS, REV7 promotes nonhomologous end joining (NHEJ) at double

strand breaks and at telomeres by inhibiting CtIP-mediated end resection [104]. Additionally,

REV7 plays a supporting role in cell cycle regulation by sequestering CDH1, which prevents

premature activation of the anaphase-promoting complex, thereby inhibiting an exit from mito-

sis [105]. All these examples are suggestive of an overarching influence of TLS polymerases and

their components on cellular physiology, in which they influence DNA damage tolerance, DNA

repair, epigenetic stability, and replication across repetitive sequences.

Modulation of TLS polymerases alters tumor response to

chemotherapy

A growing body of evidence now shows that suppression of TLS polymerases not only sensitizes

tumor cells to drugs, but also reduces acquisition of drug-induced mutations implicated in

tumor resistance. Thus, inhibition of TLS polymerases is a promising new approach to improv-

ing cancer therapy. Moreover, in some cancers, TLS polymerases are overexpressed (Table 1),

The impact TLS polymerases have on chemotherapy responses in different cancer subtypes has

recently been investigated. In one study, the potential of Rev3 inhibition for the treatment of intrin-

sically chemoresistant cancers was investigated. A study utilizing the KrasG12D;p53−/− preclinical

model of lung adenocarcinoma showed that, when the level of Rev3 was reduced, these otherwise

resistant tumors were sensitized to cisplatin, increasing the overall survival of mice with Rev3-defi-

cient tumors by 2-fold compared with control mice with Rev3-proficient tumors [106]. Reduction

of Rev3 or Rev1 in these tumor cells also reduced cisplatin-induced mutagenesis in culture.

In a study that employed the Eμ-myc arf-/- mouse model of B-cell lymphoma, when mice were

subjected to repeated cycles of tumor engraftment and cyclophosphamide treatment, relapsed

tumors that appeared after the first round of chemotherapy continued to respond to cyclophos-

phamide if they were Rev1 deficient. This is in direct contrast to Rev1-proficient relapsed tumors,

which exhibited varying degrees of acquired resistance to cyclophosphamide chemotherapy (Fig

3). Additionally, cyclophosphamide-induced mutagenesis of these lymphoma cells in culture was

suppressed by Rev1 depletion. These studies showed that Rev1-dependent error-prone bypass of

cyclophosphamide-induced DNA damage contributes to the mutagenesis and hence the tumor

drug resistance. Thus this study provided the first in vivo evidence that TLS polymerases play a

critical role in the development of acquired chemoresistance [107].

Chemotherapy-induced mutagenesis is a phenomenon proposed to cause secondary malig-

nancies and tumor relapse. Hence, targeting REV1 and REV3 might not only increase killing
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of cancer cells but could also potentially suppress secondary malignancies and tumor relapse.

The same principal was explored when an innovative nanoparticle-mediated delivery system

was used to target both REV1 and REV3 in combination with a cisplatin prodrug. A nearly

complete inhibition of tumor growth and dramatically enhanced survival was observed in

LnCaP prostate cancer mouse model [108]. In addition, REV7 depletion has been shown to

sensitize ovarian cancer to cisplatin and reduce tumor volumes in nude mice [77]. These stud-

ies support the hypothesis that TLS inhibition can suppress at least some classes of intrinsic

chemoresistance. Likewise depletion of REV3 in cervical cancer cells [109] or nonsmall cell

lung cancer cells [110]; REV1, POL z, POL η in HeLa cells [111]; and POL η in ovarian cancer

stem cells [39] all sensitize cells to cisplatin. It remains to be seen whether other cancer cell

subtypes would similarly respond to knockdown of TLS polymerases and whether observa-

tions in cell studies could be recapitulated in mouse models.

Another approach to potentially enhance tumor cell killing via suppression of TLS poly-

merases is to discover synthetic lethal partners of TLS polymerases. For example, this classical

approach is employed in killing BRCA2-deficient tumors by utilizing PARP1 inhibitors [112].

Although a compelling idea, TLS synthetic partners are largely unknown. However, a whole

genome siRNA library screen in A549 lung cancer cells identified one gene RRMI—the large

Fig 3. Reduction of Rev1 suppresses chemoresistance. In a tumor mouse model, administration of chemotherapy reduces tumor formation by killing

the generally chemoresensitive tumor cells. However, many of the tumors that relapse are resistant to further killing from chemotherapeutic treatment,

thereby reducing survival of the mice. In contrast, mice harboring relapsed tumors in which REV1 has been knocked down remain sensitive to

chemotherapy, whereby their survival is prolonged.

https://doi.org/10.1371/journal.pgen.1006842.g003
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subunit of ribonucleotide reductase that confers a synthetic lethal interaction with REV3

[113]. In another lung cancer cell line and in breast cancer cells, ataxia-telangiectasia and Rad3

related inhibition was found to synthetically enhance lethality in cisplatin-treated REV3-defi-

cient cells [114]. In addition, Rev3-deficient DT40 cells exhibited synthetic lethality with

RAD54 [115], suggesting a promising potential. Synthetic-lethal partners of TLS polymerases

need to be explored in greater detail across other cancer subtypes.

Drug inhibitors to target TLS polymerases

Taken together, the studies discussed above suggest that small molecules that directly inhibit

catalytic functions or disrupt key protein-protein interactions of TLS polymerases could be

adjuvants that have the potential to significantly improve chemotherapy. For example, fluores-

cence-based assays conducted in high-throughput platforms were used to search for small

molecule inhibitors that affect catalytic functions of TLS polymerases. Pamoic acid, aurintri-

carboxylic acid, and ellagic acid were found to inhibit POL ι and POL η [112], while candesar-

tan cilexetil inhibited the enzymatic function of POL κ as well as enhanced UV-induced

cytotoxicity in xeroderma pigmentosum-variant (XP-V) cells [116]. Likewise, 3-O-methylfuni-

cone, a natural compound isolated from a marine fungal strain, selectively inhibited mamma-

lian Y-family TLS polymerase activity (POL κ, POL, ι, POL η) [117]. Further studies are

required to identify compounds with improved specificity and potency.

Very recently small molecules inhibitors that target TLS DNA polymerase protein-protein

interactions have been shown to be possible therapeutic candidates. For example, a small mol-

ecule inhibitor that binds to REV7 and inhibits its interaction with REV3 was shown to par-

tially suppress ICL repair [118]. Whether the same drug could also suppress TLS is worth

investigating. Similarly, detailed structural knowledge of other TLS interfaces, such as between

REV1 and REV7 and between REV1 and RIR carrying proteins could be exploited in drug dis-

covery and design.

Perspective and conclusion

Inhibiting TLS polymerases is a promising approach to improve chemotherapy as it could

increase killing of cancer cells, while at the same time reducing the possibility of relapse and

acquired drug resistance by reducing chemotherapy-induced mutagenesis. Even cancers

known to be intrinsically drug resistant could potentially be sensitized by this approach. Addi-

tionally, TLS specific inhibition could also potentially target other repair and recombination

pathways that involve TLS polymerases including NER, BER, MMBIR, HR, and NHEJ. How-

ever, several outstanding questions still need to be addressed, for example, improving under-

standing of the structural basis of key protein-protein interactions made by the TLS

polymerases. Recently it was shown that the subunits of replicative polymerases cross talk with

TLS Polymerases. For instance, the POLD3 subunit of the replicative DNA polymerase POL δ
possess an RIR that interacts with the RIR-interface of REV1 CTD, while the POLD2 subunit

of POL δ interacts with POL η [90]. These observations suggest that the TLS mechanism is

even more complex than previously anticipated and that drug inhibitors for 1 TLS polymerase

could potentially target multiple other TLS polymerases. An added complication is that TLS

polymerases η, ι, and κ can also function independently of REV1 by interacting with proliferat-

ing cell nuclear antigen (PCNA) via the UBM/UBZ domain and the PCNA interacting protein

(PIP) domain (Fig 2). It is not known quantitatively what percent of DNA damage in the cells

is bypassed in a Rev1-dependent versus REV1-independent manner. This knowledge will help

decipher whether a single inhibitor targeting the Rev1/RIR or the REV1/REV7 interaction or a

combination of inhibitors targeting the REV1/RIR, REV1/Rev7 and UBM/UBZ-PIP-PCNA
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interactions would be required for a complete TLS inhibition. Also, a better understanding of

synthetic lethal partners of TLS polymerases would provide insights into which tumors might

be most susceptible to chemotherapy treatments involving small molecule inhibitors of TLS

polymerases. Finally, the effectiveness of small molecule inhibitors of TLS polymerase could be

further improved by delivery systems that could target these drugs to specific tumors in cancer

patients. Because protein-protein interactions are so important for TLS, drug targets for these

interaction interfaces could be promising candidates for cancer therapeutics.
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