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Abstract: The use of chemometric methods based on the analysis of variances (ANOVA) allows
evaluation of the statistical significance of the experimental factors used in a study. However, clas-
sical multivariate ANOVA (MANOVA) has a number of requirements that make it impractical for
dealing with metabolomics data. For this reason, in recent years, different options have appeared
that overcome these limitations. In this work, we evaluate the performance of three of these multi-
variate ANOVA-based methods (ANOVA simultaneous component analysis—ASCA, regularized
MANOVA–rMANOVA, and Group-wise ANOVA-simultaneous component analysis—GASCA) in
the framework of metabolomics studies. Our main goals are to compare these various ANOVA-based
approaches and evaluate their performance on experimentally designed metabolomic studies to find
the significant factors and identify the most relevant variables (potential markers) from the obtained
results. Two experimental data sets were generated employing liquid chromatography coupled to
mass spectrometry (LC-MS) with different complexity in the design to evaluate the performance of
the statistical approaches. Results show that the three considered ANOVA-based methods have a
similar performance in detecting statistically significant factors. However, relevant variables pointed
by GASCA seem to be more reliable as there is a strong similarity with those variables detected by
the widely used partial least squares discriminant analysis (PLS-DA) method.

Keywords: feature detection; ANOVA; ASCA; rMANOVA; GASCA; metabolomics; biomarkers

1. Introduction

In recent years, chemometric tools have been used to analyze omic data and, in
particular, metabolomic data obtained mainly through the hyphenation of chromatographic
and mass spectrometric techniques [1]. These studies have different goals for which these
chemometric tools are helpful, as introduced below [2].

First, chemometric approaches such as classification (or discrimination) methods
allow the differentiation of groups of samples (i.e., case and control samples) and, more
interestingly, the detection of variables that discriminate between these groups [3]. These
variables are usually called markers, and can be associated in metabolomic studies with
specific molecules that, for instance, are altered due to a certain exposure or treatment.
The selection of these relevant variables that allow the characterization of the different
groups of samples (also known as the feature selection step) is critical in the analysis
of metabolomic datasets. In fact, the biological interpretation of the metabolic changes
observed between sample groups is often based exclusively on the selected variables. A
widely used example of these tools is the partial least squares discriminant analysis (PLS-
DA) [4], a supervised method (i.e., it uses information about the identity of samples when
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building up the calibration model) focused on the differences between the sample types [5].
In addition, the use of variable selection methods helps to distinguish between the variables
that are the most related to each type of sample and those that have a more significant
influence on achieving a correct differentiation [6,7]. The two most used variable selection
methods are the Selectivity Ratio (SR) [8] and the Variable Influence on Projection (VIP)
scores [9]. However, as highlighted in the literature, the incorrect use of these methods
can lead to misleading results because PLS-DA tends to overfit data [10,11]. For this
reason, interest in alternative methods for sample discrimination and variable selection
is increasing (e.g., principal component analysis in combination with linear discriminant
analysis (PCA-LDA) or principal components-discriminant function analysis (PC-DFA)).
Nevertheless, most of these alternative methods are non-linear approaches (i.e., machine
learning approaches such as neural networks or random forests), allowing both the samples’
discrimination and the determination of the variables that most strongly influence the
model [11,12]. On the one hand, these methods can often handle datasets of thousands of
variables as well as missing values without pre-processing required. They are also robust to
overfitting and outliers. On the other hand, visualization is rather complex and difficult to
interpret. The selection of the appropriate parameters is crucial, and a worse classification
is encountered when compared with PLS-DA. Additionally, PLS-DA provides a better
dimensionality reduction. This problem has already been addressed, and previous works
have reported comparisons between different discriminant methods [11].

In contrast, methods focused on evaluating the statistical significance of the studied
experimental factors have arisen in the last years. Various approaches have appeared with
the common characteristic of relying on ANOVA to decompose the data variance as a
function of the experimental design and the considered factors [13]. First, multivariate
ANOVA (MANOVA) was proposed [14]. However, its main limitation is primarily related
to the required sample size: MANOVA has a strong requirement of having more sam-
ples than variables. In metabolomic studies, the most common scenario is to have more
variables than samples, which limits the success of this approach [15]. For this reason,
alternative approaches were proposed allowing the multivariate data analysis without the
need for meeting these strict MANOVA requirements (i.e., sample size and independency,
variables multivariate normality, equal group covariance matrices) due to a previous step
of data compression. These approaches can be divided into those that perform the data
compression step using principal component analysis (PCA, or similar techniques such
as Simultaneous Component Analysis, SCA) and those using regression-based methods
such as Partial Least Squares (such as ANOVA-PLS [16] or ANOVA Target Projection [17]).
Finally, PCA-based approaches seem to be more successful, which has led to the proposal
of a variety of methods with this common feature.

The main difference between these PCA-based approaches is how the compression step
is implemented to the factor matrices obtained after ANOVA decomposition. The ANOVA-
PCA method was initially proposed [18]. In ANOVA-PCA, the residuals were added to the
effects’ matrix before their evaluation. Later, ANOVA Simultaneous Component Analysis
(ASCA) was presented, with remarkable success [19,20]. The main difference between
ASCA and the previous methods is that ASCA does not consider the residuals for modelling
the ANOVA-decomposed matrices of the effects. In addition, ASCA assumes both equal
variance and no correlation between the considered variables, which could affect the
obtained models and hinder their interpretation. Alternative methods such as rMANOVA
(regularized MANOVA) have been proposed to overcome these limitations [21]. rMANOVA
is a kind of intermediate method with features between MANOVA and ASCA, since it
allows the variable correlation without forcing all variance equality. Similarly, the GASCA
(group-wise ANOVA-simultaneous component analysis) method has been presented [22].
GASCA attempts to overcome limitations of ASCA by using an approximation based on
group-wise sparsity in the presence of correlated variables to facilitate interpretation. These
last two methods have been proposed for the analysis of omics data that are characterized
by their high dimensionality in the direction of the variables (and a reduced number of
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samples) and their sparsity due to the presence of a large number of variables that do not
present a response for certain samples (i.e., large number of zero elements) [23].

In addition to providing information on the statistical significance of the experimental
factors studied, these ANOVA-based methods can also determine the variables most related
to the considered experimental factor (i.e., molecules that can be considered markers for the
different sample groups). Knowledge related to potential markers can be obtained similarly
to that described above when PLS-DA is used. However, only some implementations
of these ANOVA-based methods enable this variable selection in a straightforward way,
and, in some cases, a reliable determination of potential markers is difficult to achieve [21].
Hence, an in-depth comparison of the performance of the main aforementioned ANOVA-
based methods is needed, on the one hand, to evaluate the significant factors of the
experimental design, and on the other hand, to assess the identification of the most relevant
variables that discriminate sample groups. The ideal scenario would be to find the method
that best accomplishes both goals in a single analysis.

In this work, we have evaluated the ability of these ANOVA-based methods to detect
the variables responsible for the differences between groups of samples. In this way,
the ASCA, rMANOVA and GASCA results are compared, taking as reference the most
relevant variables determined by standard methods such as univariate statistical tests and
multivariate PLS-DA analysis using VIP Scores as the variable selection method. This
study was carried out using experimental datasets of different complexity obtained by
liquid chromatography coupled to mass spectrometry (LC-MS). Two experiments were
performed: a case with only one factor in the design (yeast samples with two extraction
protocols), and a more complex case with multiple factors (zebrafish embryos samples
exposed to two endocrine disruptor chemicals (EDCs), each at two concentration levels). In
these examples, the effects of the design factors are analyzed both using the chromatograms
(total ion current chromatograms) and from the areas of the different analytes (mass values)
observed in the data.

2. Results

The performance of the different multivariate ANOVA-based methods has been com-
pared considering the two following aspects: the statistical significance of the experimental
factors (i.e., lipid extraction on yeast growth dataset and exposure level on zebrafish dataset)
and the relevant variables selected for characterization of samples. This list of selected
relevant variables was then compared with the results obtained by other widely used
approaches (particularly PLS-DA variable selection methods).

2.1. Statistical Assessment of Experimental Factors Effects

First, the three ANOVA-based methods were compared using the TIC chromatograms
of the yeast samples both in positive and negative ionization modes. In this case, the
variables are retention times at which relevant compounds are eluting (e.g., these molecules
are presented exclusively in only one sample group, or the peak height is different according
to the various sample groups). Since a replicate of the sphingolipid samples was lost
(Extraction B), a balanced data set could not be generated (eight samples of Extraction A
and seven samples of Extraction B). Thus, when required, one of the samples of Extraction
A was removed to allow the study to consider a balanced data set.

Table 1 shows the results obtained for the three multivariate ANOVA-based meth-
ods. In most cases, the experimental design factor studied (i.e., lipid extraction on yeast
growth dataset and exposure level on zebrafish dataset) could be regarded as statistically
significant. In ASCA and rMANOVA, the obtained p-values were very close to the lower
threshold marked by the number of performed permutations set to 10,000, indicating a
large significant effect. In contrast, GASCA results showed some differences between the
results obtained for positive or negative MS ionization. The calculated p-values for TICs
in the positive ionization mode (0.001) were lower than those calculated for the negative
ionization mode (0.039). This outcome was reasonable because the lipids extracted in both
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extractions provided several different signals in the positive mode (due to the variety of
families of extracted lipids giving more variability in the measured signal). Still, fewer
differences were observed for the negative ionization mode (i.e., fewer lipids provided an
observable signal in the MS spectra). If the features matrix is considered, similar results
were obtained between the two ionization modes. The ASCA results did not show relevant
differences between positive and negative ionization modes, and the p-values obtained
were similar to those for rMANOVA and GASCA. In this case, all methods detected a clear
statistical significance effect for the factor representing the type of extraction (probably due
to the major variability in the features matrix over the TICs matrix when considering the
values for the chromatograms and the ROI determined areas).

Table 1. Summary of the statistical assessment study for the considered datasets showing obtained
p-values for the different ANOVA-based approaches.

Dataset Experimental Factor ASCA rMANOVA GASCA

TIC
Matrix

Yeast–MS negative
ionization mode Type of lipid extraction 0.0001 (0.0007 *) 0.0001 0.039 *

Yeast–MS positive
ionization mode Type of lipid extraction 0.0001

(0.0001 *) 0.0001 0.001 *

Features
Matrix

Yeast–MS negative
ionization mode Type of lipid extraction 0.0001

(0.0001 *) 0.0001 0.002 *

Yeast–MS positive
ionization mode Type of lipid extraction 0.0001

(0.0001 *) 0.0001 0.002 *

Zebrafish embryos–BPA
exposure

Exposure concentration
Control vs. Low 0.0001 0.0001 0.09
Control vs. High 0.0001 0.0001 0.10

Control vs. Low vs. High 0.0001 0.0001 0.01

Zebrafish embryos–E2
exposure

Exposure concentration
Control vs. Low 0.4472 0.0001 0.47
Control vs. High 0.0001 0.0001 0.22

Control vs. Low vs. High 0.0093 0.0001 0.35

* Balanced data (a sample was eliminated from the set).

The study of the zebrafish samples allowed for a more in-depth study. Here, the feature
matrix contains the areas of the variables filtered after ROI procedure. These variables are
expressed as m/z values and can be associated with metabolites by their accurate mass
and their fragmentation pattern (the matches between the experimental and theoretical
MS/MS spectra). Regarding the zebrafish dataset, there were two possible comparisons
at two dose/concentration levels for each chemical defining the studied experimental
factors: control vs. low and control vs. high. In addition, there was also a three-level
study considering control vs. low vs. high. In this study, it was observed that the effects
caused by BPA or E2 are different. In the case of BPA, almost all comparisons provided
significant p-values (except the two-level studies evaluated by GASCA). In contrast, for E2,
only rMANOVA found a statistically significant effect of the chemical exposure in two-level
studies (both low and high doses). We noted that ASCA did not detect the effect of E2 at
low concentration as statistically significant, which from a biological point of view makes
sense (i.e., E2 is a natural estrogenic hormone, whereas BPA is an exogenous endocrine
disruptor [24]). Thus, it could be expected that E2 would have smaller effects compared
to BPA. In contrast, rMANOVA found a statistically significant effect even in the case
of E2, which seemed to point out it was the more sensitive ANOVA-based multivariate
with regards to detecting differences between the considered groups. However, it was
not clear if these differences were caused by real potential markers, or could be related
to experimental error (e.g., background contributions, badly detected metabolites). This
hypothesis could be reinforced when considering the list of potential markers detected
by each method (see below) and the significant differences between potential candidates
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detected by rMANOVA and the PLS-DA VIP scores approach. If the ternary systems were
considered, all three methods identified statistically significant effects in the case of BPA,
whereas there were divergent results with E2. ASCA and rMANOVA provided statistically
significant p-values, but GASCA did not determine a ternary effect. These results agreed
with what was observed in the individual two-level studies (control vs. low and control vs.
high) in which there was no significant effect for GASCA in any case. In contrast, ASCA
and rMANOVA gave a significant effect when the control vs. high dose was considered.

From these results, it seemed clear that they did not always provide analogous results,
despite some similarities being observed between the three ANOVA-based methods. If
we consider ASCA as the reference ANOVA-based method due to its most common use, a
direct relationship with rMANOVA or GASCA results cannot be established. It seemed
that, in general, rMANOVA tended to determine more statistically significant effects with
results similar to ASCA. This behavior could be expected as there is a clear relationship
between ASCA and rMANOVA established by the regularization factor (δ). In contrast,
GASCA (especially in the case of the feature matrix analysis, probably due to the sparser
data structure) did not detect these minor effects and, consequently, the design factor was
not identified as statistically significant. For example, in the case of zebrafish samples
exposed to low-level E2, no relevant effects were expected from a biological viewpoint.
Furthermore, these results were confirmed by the PCA analysis of zebrafish exposed to E2
(see Figure S1 in Supplementary Materials). The PC1 vs. PC2 scores diagram shows that
high-dose exposed samples grouped together, far from the control and low-dose samples.
In contrast, the control and low-dose samples were much closer and, therefore, were not
identified as statistically different.

2.2. Impact on Variable Selection

In addition to the previous statistical significance study, applying methods based on
the combination of ANOVA and factor analysis allowed the exploration of the distribution
of samples and variables in the new dimensional space defined by the principal compo-
nents. Considering the scores diagrams, in all cases, the ANOVA-based methods enabled
differentiation of the samples based on the factor studied, including in cases where the
statistical study did not identify statistically significant factors (for example, the exposure
to low concentration E2).

Figure 1 shows as an example the results obtained in two cases. In the first row, the
results obtained in the study of the TICs of the yeast experiment in positive mode are
shown (the factor was identified as significant in all cases). For the three methods (ASCA,
rMANOVA, and GASCA), the first component differentiated by sample type (Figure 1A).
The largest within-group difference was observed for GASCA, and to a minor extent for
ASCA. In contrast, rMANOVA showed a significant difference among the different types
of samples, but almost no differences between the different samples of a particular type.
This may reflect the impact of the ANOVA decomposition in the different approaches. This
decomposition seemed to force a major similarity within group samples in rMANOVA,
whereas ASCA and GASCA could leave more variability.

In the second row of plots (Figure 1B), results for the study of the features matrix of
the treatment of fish with low-dose BPA compared with controls are shown. In this case,
the effect detected by GASCA was not significant (p-value > 0.05) and, although the scores
plot discriminated between the control and exposed samples, this difference was minor
when compared to rMANOVA, in which the behaviour of the sample types was much more
distinct. ASCA showed an intermediate performance giving statistical significance to the
factor, but with a representation of the score values similar to GASCA.
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Figure 1. Exploration of the scores generated by the ANOVA-based methods: values of the first
component. (A) TICs yeast positive. Sample colouring depending on the factor studied: green
bars–extraction A: phospholipids, and blue bars—extraction B: sphingolipids; (B) Zebrafish embryos
exposed to low–dose BPA. Sample colouring depending on the factor studied: green bars—control
samples and blue bars—low-dose BPA treatment.

Figure 2 shows how the variables behave in the cases discussed above (i.e., TICs
yeast positive, A and B panels, and zebrafish embryos exposed to low-dose BPA, C, and D
panels). In addition to the profiles provided by the ANOVA-based methods and to compare
with a widely used method in the field of metabolomics, profiles of the variable selection
approaches (e.g., Selectivity Ratio and the VIP Scores) obtained by PLS-DA are also shown.
In these PLS-DA models, classes were defined according to the used experimental design.
For instance, in the yeast growth studies, samples from extraction A were set as a class
(0) whereas samples from extraction B were set as another class (1). Figure 2A shows the
profiles obtained by PLS-DA, and Figure 2B shows those obtained by methods based on
different multivariate ANOVA methods previously used for the analysis of the TICs yeast
study in positive ionization mode. In both cases, variable channels (i.e., retention times of
the TIC chromatograms) between 200 and 250 were highlighted as the chromatographic
regions enabling differentiation between sample types. Moreover, when considering the
first loadings profiles corresponding to the ANOVA-based methods factor decomposed
matrices, different patterns could be distinguished. The ASCA loading profile resembled
the TIC chromatogram of the sample and the PLS-DA selectivity ratio profile (see similarity
between these profiles in Figure 2A,B). Instead, the GASCA loading profile was more
similar to the profile obtained for the PLS-DA VIPs scores. Finally, the rMANOVA profile
was the most different to the other methods, but positive and negative features were
observed in the profiles.
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Figure 2. Comparison of the loadings obtained by PLS-DA variable selection methods and ANOVA-
based methods. (A) TICs yeast positive PLS-DA profiles: VIP scores and selectivity ratio; (B) TICs
yeast positive ANOVA–based approaches: ASCA, rMANOVA, and GASCA loadings; (C) Zebrafish
embryos exposed to low–dose BPA PLS-DA profiles: VIP scores and selectivity ratio; (D) Zebrafish
embryos exposed to low–dose BPA ANOVA–based approaches: ASCA, rMANOVA, and GASCA
profiles. In each plot, profiles were normalized to an equal area for representation in the same scale.
Shadowed boxes represent regions with a high number of relevant variables.

In the case of the features matrices from the ROI analysis for the study of zebrafish
embryos with low-dose exposure, the loadings profiles are shown in Figure 2C for the
PLS-DA based methods and Figure 2D for the ANOVA-based methods. Similarly, there
is an observable link between the variables relevant for both PLS-DA and ANOVA-based
methods (i.e., regions that showed larger positive contributions for PLS-DA methods and
positive or negative contributions for ASCA methods, as highlighted by the shadowed
boxes in each figure). Focusing on the ANOVA-based profiles, the ASCA profile was the
most different from the other approaches. A quantitative evaluation of the similarity of
the profiles can also be performed by calculating the correlation coefficient between the
different sets of profiles (Table S1). For example, in the case of the study of yeast TICs in
the positive ionization mode, the ASCA profile was more similar to that obtained by the
selectivity ratio approach (0.83), while GASCA was more similar to the profiles obtained
using the VIPs scores (0.93). In contrast, rMANOVA was more different to the other profiles
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(lower coefficient values). Additionally, the same trend was also observed for the rest of
the studies when considering the entire Table S1. In general, a good similarity was found
between the loading profiles obtained for the different approaches with relatively large
correlation coefficients. However, the similarity of the loading profiles resolved for GASCA
and the PLS-DA VIP scores could be highlighted because, in all cases, they showed the
highest correlation values (all had a value above 0.89).

Next, the matching variables selected as relevant from the different approaches were
compared, taking as a benchmark the variables determined by the field’s reference (i.e., PLS-
DA VIP Scores). Figure 3 shows the logical relations between these selected relevant vari-
ables for the different approaches using Venn diagrams. Here, four cases were considered:
TICs and features matrices of the yeast study in the positive mode and at two levels of
BPA exposure to zebrafish embryos. In all cases, the total number of relevant variables has
been limited to 50 to focus on the variables with greater importance, and in an attempt
to avoid coincidences by chance. In the case of PLS-DA VIP scores and Selectivity Ratio
methods, those 50 variables with the higher values were selected. For the ANOVA-based
methods, these variables showing the 50 largest loadings values in absolute value for
the first component were selected. As shown above, this first component was enough to
distinguish between the various sample types for the studied cases when considering the
related factor matrix from the ANOVA decomposition. The results obtained in the analysis
of the data from the rest of the examples are shown in the Supplementary Materials, giving
concordant results (Figure S2).

Figure 3A shows results from the study using the TICs obtained for yeast in positive
ionization mode. The Venn diagram showed that 20 variables are common to all considered
approaches. Only ASCA (20) and rMANOVA (12) presented a relevant number of unique
variables detected only by one method. These results confirmed the previous evidence
in which the variable selection profiles or loadings associated with each method were
evaluated. GASCA was the ANOVA method that provided the most similar results com-
pared with PLS-DA. Figure 3B shows the evaluation of the corresponding selected variables
obtained after preprocessing the LC-MS yeast samples in the positive mode. In this case, the
number of variables common to all approaches is much lower (4). Again, only ASCA and
rMANOVA have many unique variables (causing this low number of coincident variables).
When considering the study of zebrafish embryos treated with BPA at two dose levels
(Figure 3C,D), the obtained results led to similar conclusions. However, ASCA showed a
different behaviour compared to all the other methods. For instance, in the control vs. high
BPA exposure study, ASCA had many unique variables that avoided the coincidence from
other methods. A list of identified metabolites present in zebrafish embryos is included
in Table S5 (only the compounds that were characterized at MS/MS level are included).
The significance obtained with each of the methods tested (VIPs, selectivity ratio, GASCA,
ASCA, and rMANOVA) is included for each compound. Again, ASCA provided higher
statistical values to different compounds than the rest of the methods, in agreement with
the analysis from Figure 3.

Finally, the univariate ANOVA and multivariate ASCA-based profiles were individu-
ally compared with those retrieved by the PLS-DA VIP-Scores approach (Supplementary
materials Table S2). In the case of yeast TICs data, the coincidence of the detected variables
with PLS-DA was larger with GASCA (47 of 50), followed by rMANOVA (34), and finally
ASCA (24 of 50). When comparing the selected variables with the PLS-DA, this trend
occurred in most studied cases (Figure 4). In summary, rMANOVA and GASCA could
be better options if the main goal of the study is variable selection after the ANOVA de-
composition stage. This fact confirmed the theoretical basis from which the ASCA method
had the initial purpose of statistical assessment of factors in experimental design and
data exploration by SCA. However, the newly developed methods such as rMANOVA or
GASCA showed advantages when the aim of the study was to perform feature detection to
characterize the experimental design factors.
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Figure 4. Comparison of the number of coincident variables detected by PLS–DA and the considered
ANOVA–based methods. Maximum possible number of coincidences is 50.

3. Materials and Methods
3.1. Chemicals and Reagents

Bisphenol A (BPA, ≥99.0%), 17-β-estradiol (E2, ≥98.0%) methylene blue (certified
by the Biological Stain Commission, ≥82.0%), calcium sulphate (CaSO4·2H2O, ≥99.0%),
dimethyl sulfoxide (DMSO, for molecular biology, ≥99.9%), potassium hydroxide (KOH,
≥85.0%), ammonium acetate (NH4Ac, ≥99.0%), formic acid (HForm, ≥95.0%), acetic acid
(HAc, ≥95.0%), phosphate buffered saline (PBS), yeast extract, bacteriological peptone, and
D-glucose were purchased from Sigma-Aldrich (Merck, Darmstadt, Germany). Ammonium
formate (NH4Form, ≥99%) was obtained from Fluka Analytical (Honeywell, Muskegon,
MI, USA). Chloroform (CHCl3, ≥99.0%) was provided by Carlo-Erba reagents (Dasti Group,
Milan, Italy). Instant Ocean sea salt was purchased from Aquarium Systems (Sarrebourg,
France), whereas dried flakes were obtained from TetraMin (Tetra, Melle, Germany). HPLC
grade water and acetonitrile (AcN) were supplied by Merck KGaA (Merck, Darmstadt,
Germany), and methanol (MeOH) HPLC grade from Fisher Chemical (Thermo Fisher Sci-
entific, Fair Lawn, NJ, USA). L-methionine sulfone was purchased from Sigma-Aldrich (St.
Louis, MI, USA). Lipid standards used were purchased from Avanti Polar Lipids (Alabaster,
AL, US). The glycerophospholipids and triacylglycerides (PL) standards mix included:
1,2,3-17:0 triglyceride (TG), 1,3-17:0 (d5) diglyceride (DG), 17:0 cholesteryl ester (CE), 16:0
D31-18:1 phosphatidylethanolamine (PE), 16:0 D31-18:1 phosphatidylserine (PS), 16:0 D31-
18:1 phosphatidylglycerol (PG), 16:0 D31-18:1 phosphatidylcholine (PC), 17:1 lyso PC (LPC),
17:1 lyso PE (LPE), 17:1 lyso PG (LPG), and 17:1 lyso PS (LPS). The sphigolipids (SL) stan-
dards mix included: N-dodecanoylsphingosine, N-dodecanoylglucosyl-sphingosine, and
N-dodecanoylsphingosylphosphorylcholine.

3.2. Yeast Experiments

First, the performance of the different statistical methods was explored by studying
the growth of yeast culture and considering the method used for lipid extraction (either
for glycerophospholipids or sphingolipids) as an experimental factor. Therefore, results
obtained from the two lipid types of extractions are compared.
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3.2.1. Culture Growth

A preculture of Saccharomyces cerevisiae (BY4741 strain) was kept at 30 ◦C and agitated
at 150 rpm in yeast extract peptone dextrose (YPD) medium (composed of 20 g·L−1 bacteri-
ological peptone, 10 g·L−1 yeast extract, 20 g·L−1 glucose at 40%) for 48 h [25]. Inoculation
with the preculture was performed with a fresh YPD medium to an absorbance of 0.1
at 600 nm (A600). When an A600 of 0.6 was reached, 20 mL of each culture were taken,
including five biological replicates for each condition. Fractions were centrifuged (3 min at
3000 rpm at 4 ◦C) and washed twice with PBS. The supernatant was discarded, and pellets
transferred to Eppendorf tubes were kept at −80 ◦C until extraction.

3.2.2. Lipid Extractions

Lipids from yeast samples were extracted by two different procedures, based on
the previous work from Puig-Castellví [25] and Dalmau [26], with minor modifications.
The first approach was a general lipid extraction, mainly targeting glycerophospholipids
and triacylglycerides (Extraction A). The second extraction included a saponification step
focused on the analysis of sphingolipids (Extraction B).

Extraction A started with the addition of 400 µL of Milli-Q water to the frozen samples.
Then, samples were vortexed and transferred to glass vials. Next, 1 mL of MeOH, 2 mL of
CHCl3, and 40 µL of PL standard mix at a concentration of 20 µM were added. Vortex and
ultrasonication steps were applied to the vials in cycles of 3 min and 15 min, respectively.
Glass beads were added, and the previous step was repeated twice. Samples were left
overnight at 48 ◦C in a thermostatic bath, then evaporated to dryness under nitrogen gas
and stored at −80 ◦C until use. Before analysis, extracts were re-suspended in 800 µL of
MeOH, centrifuged 3 min at 10,000 rpm at 4 ◦C, and aliquots of 200 µL were transferred to
chromatographic vials, where a 10 µL aliquote of SL standards mix was added to each vial.

Extraction B differed in the initial proportion of the employed MeOH/CHCl3 mixture,
which was 2/1 in this case. The SL standard mix was added at the beginning in the same
proportion as PL for set A. After overnight incubation, 75 µL of KOH of 1 M in MeOH were
added to the samples, that were then sonicated for 15 min and kept for 2 h at 37 ◦C (i.e., a
saponification step). Next, KOH was neutralized by adding 75 µL of 1 M HAc, and samples
were evaporated until dryness under nitrogen gas and stored at −80 ◦C until further use.
Before analysis, samples were resuspended as for set A, adding 10 µL of PL standards mix
instead of the SL standards mix.

Quality controls samples (QCs) were composed of 25 µL of each biological replicate
from each set of samples (extracted samples A and B).

3.2.3. LC-MS Analysis

A total of five samples (biological replicates) of each extraction were randomly an-
alyzed; one sample per set of extraction was also analyzed in triplicate (instrumental
replicates). In total, 16 chromatograms were obtained (eight for each extraction batch).
QCs and blanks were also interspersed in the chromatographic sequence. LC-MS analysis
was carried out with a Waters Acquity UPLC system coupled to a Waters LCT Premier
orthogonal accelerated time-of-flight mass spectrometer (Waters), operated in both positive
(ESI+) and negative (ESI-) electrospray ionization modes. Full-scan spectra from 50 to
1500 Da were acquired at a scan cycle time of 0.3 s. The chromatographic method employed
was described previously [25]. Briefly, an RP C8 Acquity UPLC bridged ethylene hybrid
(Waters) column of 100 mm × 2.1 mm i.d. (1.7 µm) was employed. Mobile phases were:
(A) MeOH 1 mM NH4Form and 0.2% HForm; (B) H2O 2 mM NH4Form and 0.2% HForm.
The solvent elution gradient started at 80%A, increased until 90%A at 3 min, held at 90%A
until minute 6 min, increased to 99%A at 15 min, and held at 99% until 18 min. Then,
the column was re-equilibrated during 2 min. Flow rate, injection volume and column
temperature were set at 0.3 mL min−1, 10 µL and 30 ◦C, respectively.
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3.3. Zebrafish Embryos Experiments

The second dataset aimed to evaluate of the effects caused by two endocrine-disrupting
chemicals (BPA and E2) in zebrafish embryos. In this study, we assessed the impact of
the different concentration exposure levels in the development of zebrafish embryos by
considering the changes in the metabolome.

3.3.1. Zebrafish Maintenance

Adult wild-type zebrafish (Danio rerio) were fed twice a day with dried flakes and
maintained at a temperature of 28 ± 1 ◦C, with photoperiods (light-night) of 12 h. Fish
water, prepared in Milli-Q water, contained 90 µg·mL−1 of Instant Ocean sea salt and
calcium sulphate (100 µg·mL−1), as previously reported [27]. Zebrafish embryos were
obtained by natural mating placing five females and three males in 4-L breeding tanks. Eggs
were separated from adults through a bottom mesh. At 2 h post-fertilization (hpf), eggs
were collected and rinsed. At 24 hpf, fertilized eggs were washed three times with 0.0002%
methylene blue and randomly distributed in 6-well multiplates as follows: 15 individuals
per 5.0 mL of fish water, 8 replicates of each condition, in different plates, to account for
possible “tank” effects.

All experiments were approved by the Institutional Animal Care and Use Committees
at the Research and Development Centre of the Spanish National Research Council (CID-
CSIC) and were also conducted under the institutional guidelines under a license from the
local government (DAMM 7669, 7964).

3.3.2. Exposure Protocols

BPA and E2 working solutions were prepared daily in fish water at a final concentra-
tion of 0.2% DMSO by diluting from stock solutions at higher concentrations in DMSO,
previously prepared and kept at 4 ◦C until use. Exposure concentrations were chosen by a
preliminary range-finding test and based on previous studies [27,28].

Until 48 hpf, embryos were kept in fish water to avoid early embryonic processes.
Then, exposure started, and solutions were changed daily to ensure continuous exposure
to the contaminant until embryo collection at 120 hpf. Control samples in 0.2% DMSO
(without treatment) were also included in the multiplates. The following concentrations
were used as low and high nominal exposure concentrations and using DMSO as a vehicle;
BPA concentration levels were set to 4.4 and 17.5 µM, respectively, whereas, for E2, 1 and
4 µM concentrations were used, respectively. Pools of 30 zebrafish embryos were gathered
(15 + 15 from different wells from the same plate) for each biological replicate. A total
number of three biological replicates per treatment were used for LC-MS.

3.3.3. Metabolite Extraction

The frozen Eppendorf tubes containing the embryos were kept in dry ice. Then,
0.900 mL of methanol and 90 µL of L-methionine sulfone at 50 mg L−1 were added to each
sample. Samples were vortexed, sonicated for 15 min, and centrifuged at 14,500 rpm for
10 min at 4 ◦C. Next, the supernatant was isolated, and 500 µL of water and 300 µL of
CHCl3 were added. Samples were vortexed again, placed on ice at 4 ◦C, and centrifuged
under the same conditions. Aqueous fractions (upper layer) were collected and evaporated
to dryness under nitrogen gas. Samples were re-suspended in 100 µL of AcN:H2O (1:1),
centrifuged, and transferred to a chromatographic vial, where they were evaporated until
dryness and kept at −80 ◦C. Finally, extracts were re-suspended before injection with
100 µL of AcN:H2O (1:1).

Quality control (QC) samples were generated by pooling 10 µL of an extract from
each condition studied (two concentration levels of both compounds, BPA and E2, plus
control samples).
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3.3.4. LC-MS Analysis

Three biological replicates were analyzed for each sample condition (control, low, and
high exposure concentrations) and each treatment (BPA or E2). In total, 18 samples were
randomly analyzed, with QCs and blanks added in the sequence.

Chromatographic separation was carried on a 1290 Infinity II HPLC system (Agilent
Technologies, Santa Clara, CA, USA), using a HILIC column (TSK Gel Amide-80 column:
250×, 2.1 mm; 5 µm) from Tosoh Bioscience (Tokyo, Japan) at room temperature. The
chromatographic method was adapted from a previous work [27]. Briefly, mobile phases
composition were: (A) 5 mM of NH4Ac adjusted to pH 5.5 with HAc, and (B) AcN. The
solvent elution gradient started at 25% of A, increased to 30% of A at 8 min, then to 60%
A at 10 min, and held until 12 min. Then, the column was re-equilibrated for 8 min. The
flow rate was set at 0.15 mL min−1, the injection volume was 5 µL, and the autosampler
temperature was 4 ◦C.

A 6545XT AdvanceBio LC/Q-TOF (Agilent Technologies, Santa Clara, CA, USA)
with a Dual AJS ESI source was employed in negative ionization mode. High-resolution
mass spectrometry conditions were set as follows: gas temperature, 250 ◦C; drying gas,
13 L min−1; nebulizer, 35 psi; shealth gas temperature and flow, 350 ◦C and 12 L min−1,
respectively. Mass range was set from 50 to 1700 Da, with an acquisition frequency of
333.33 ms/spectrum. An auto MS/MS protocol was set for obtaining iterative MS/MS
fragmentations of the QCs and collision energy was set to 20 eV.

3.4. Data Analysis

Figure 5 summarizes the main steps of the strategy followed to analyze the LC-MS
data sets and is described in detail in the subsections below.
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Figure 5. Workflow of the data analysis strategy from the MS raw data acquisition to the
statistical assessment.

3.4.1. Data Import and Compression

First, LC-MS raw data acquired using the vendor software was transformed into
MS open data formats (the first step in the workflow from Figure 5). Waters LC-MS
chromatograms (.raw) from yeast samples were transformed into the CDF format using the
Databridge function (MassLynx 4.1 software, Waters, Milford, MA, USA). However, Agilent
LC-HRMS chromatograms (.d) from zebrafish embryos exposure study were transformed
into the mzXML format in centroid mode using the MSConvert tool from the ProteoWizard
suite (64-bit, 3.0.20361 version) [29].

The next step consisted of importing these files into the selected computing platform
(MATLAB, Release 2020b, The Mathworks Inc., Natick, MA, USA). Here, total ion current
(TIC) chromatograms were directly obtained. In addition, a features matrix containing
only those signals with intensity over a pre-defined threshold was also generated. In this
work (the second step of Figure 5), the MSROI approach was applied to perform this data
importing procedure and, simultaneously, spectral compression [30,31]. Regions of interest
(ROI) parameters used in each case are shown in Table S3.

After this procedure, the matrices to be analyzed were built up (third step of Figure 5).
On the one hand, the TIC chromatogram for every sample allowed to build up a matrix
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including all TIC information (size of this matrix was the number of samples by the number
of points in the time axis, i.e., retention times). On the other hand, the MSROI procedure
generated a features matrix containing the peak areas of the detected features (defined by a
m/z value) for each sample [32].

Then, these TIC chromatograms and feature matrices were independently normalized
to correct the instrumental intensity drifts among injections. This normalization proce-
dure was performed by dividing all the variables’ areas (by sample) by the mean area of
surrogates and internal standards for each sample (SL and PL lipid standards mixture for
the yeast and L-methionine for the zebrafish embryos studies) and the amount of sample
considered (A600 values for yeast and number of embryos for zebrafish studies).

3.4.2. Statistical Assessment

The statistical evaluation of the TIC and features matrices followed a common work-
flow (the last step of the workflow depicted in Figure 5).

First, principal component analysis (PCA) was applied to perform a preliminary data
exploration. PCA scores enabled a visual comparison of the samples according to the
experimental design employed in each study (i.e., the family of lipids considered in the
case of yeast samples and exposure level in the case of zebrafish embryo samples) and
detection of potential outliers. In addition, the evaluation of PCA loadings can also provide
preliminary insights regarding the variables more related to a particular sample type.
However, in general, the determination of these variables is somewhat arbitrary and analyst-
dependent. PCA was applied to mean-centered (TICs) and autoscaled (features) matrices.

Next, different approaches were tested to identify the most relevant features linked to
the experimental design. In the omics field (and, in particular, metabolomics), the determi-
nation of these most relevant features (i.e., potential biomarkers) has been widely carried
out using univariate techniques based on statistical hypothesis testing. Depending on the
experimental design (i.e., number of groups) and the properties of the data, parametric
(i.e., Student’s t and univariate ANOVA) or non-parametric tests (i.e., Wilcoxon test or
Kruskal-Wallis) are used. However, when many features are considered, multiple hypothe-
ses testing can lead to an uncontrolled number of false-positives [33]. To overcome this
problem, different approaches have been proposed to minimize the number of false-positives
in the selection of these potential markers. Here, t-tests were performed for binary (two
types of samples) comparison whereas ANOVA tests were employed for studies involving
ternary comparisons. The list of variables selected by these statistical hypothesis approaches
was corrected in this work by the Benjamini-Hochberg procedure [34]. Only these variables
with a corrected p-value lower than 0.05 were considered statistically significant.

An alternative to multiple hypothesis tests (i.e., one test for each feature) is to adopt a
multivariate approach. The standard approach in MS-based metabolomics is the application
of partial least squares discriminant analysis (PLS-DA). The most relevant variables were
identified from the generated model using approaches such as the selectivity ratio (SR) [8]
or VIP scores [9]. SR method is based on calculating the ratio between explained and
unexplained variances for each variable in the target projection vector. This approach
combines the regression vector and the variance/covariance of the data matrix to identify
which variables are more relevant in the classification model. In contrast, VIP scores are
calculated as the weighted sum of the squares of the PLS weights relating each latent
variable with the amount of explained variance for the correct class classification. Therefore,
variables with a large VIP score were associated with a better description of the class
belonging. Usually, variables with a VIP score greater than one are selected as relevant,
considering that the average of the squared VIP scores equals one. However, in the
literature, several papers describe the benefits of this approach, as well as its potential
limitations [5,11,35]. In this work, PLS-DA models were built on the mean-centered total
ion current chromatograms (TICs) and autoscaled for features (i.e., defined by a particular
m/z value from the MSROI approach) matrices. The reliability of the obtained features was
assessed by means of the calculation of 1000 replicate PLS-DA models, randomly removing
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between 1% and 10% of the total number of variables as described in Deng et al. [36].
Selected variables after VIP scores or selectivity ratio determination were almost the same
for the different considered conditions (see Supplementary Materials for more details).

Since many omic studies are based on statistically designed experiments, several
chemometric methods have been proposed in recent years to extract the statistically relevant
information related to the factors used in the experimental design. Here, three different
approaches were evaluated.

First, ASCA analysis was applied to statistically assess the significance of the design
factors used in both studies and to determine the most relevant variables associated with
these factors. ASCA combines the variance decomposition power of ANOVA according
to the experimental design, with the ability to explore the effects caused for all variables
through Simultaneous Component Analysis (SCA) [37]. This analysis strategy enables
independent evaluation of the statistical significance of each experimental factor (and
possible factor interactions). It is recommended that ASCA is applied to well-balanced
sample designs [15,19]. Only in this case, the sum of squares (SSQ) of elements of the
ANOVA decomposed matrices represents appropriately the amount of variance of the
original matrix explained by each factor and by their interaction. When the experimental
design is unbalanced, corrections for the calculation of these sums of squares are required
to define the type II SSQ and type III SSQ. Next, the statistical significance of each factor
(and of their interaction) is estimated by means of a permutation test, evaluating the null
hypothesis H0 (no experimental effect) against the alternative hypothesis H1 (experimental
effect). This test is performed by calculating the SSQ of the data in the considered matrix
and of the SSQ values obtained when rows of the matrix are permuted [15]. A p-value was
then calculated by considering the number of permuted SSQ values larger than the original
SSQ and the total number of permutations performed. In addition, the evaluation of
SCA scores and loadings provide information regarding sample and variable distribution
and the importance for each considered factor. The ASCA loadings obtained for each
factor show the more relevant variables for its modelling. Here, TICs and features’ area
matrices were mean-centered before ASCA analysis, and the number of iterations for the
permutation test was set to 10,000.

The assumption of non-correlation between variables means that ASCA might not be
a reliable option for feature detection in metabolomics studies, since the behavior of some
of the studied variables (metabolite concentrations) might be correlated.

Next, rMANOVA was used to evaluate TIC and features data matrices for both studies.
This method proposed by Engel in 2015 [21] overcomes the limitations of sample size
(MANOVA) and the correlation between variables (ASCA). The critical step of rMANOVA
is determining the optimal regularization factor (δ, in a range between 0 and 1) that is
calculated according to the Ledoit-Wolf theorem [38]. Depending on the value of this
regularization factor, the rMANOVA model will be equal to a MANOVA model (δ = 0)
or to an ASCA model (δ = 1). However, the most common situation is that this factor
adopts intermediate values in which the advantages of rMANOVA models are more
relevant. Finally, the statistical assessment of the experimental factors is performed using
a permutation test, as described above for ASCA. However, compared with ASCA, in
some circumstances, rMANOVA can allow more straightforward determination of the most
relevant features. Engel’s implementation of the rMANOVA algorithm has been used in
this work. TICs and features matrices were mean-centered before the analysis, and the
number of permutations for the permutation test was set to 10,000.

Finally, the last method used in this work is group-wise ANOVA simultaneous com-
ponent analysis (GASCA) proposed by Saccenti [22]. GASCA attempts to overcome some
ASCA limitations by applying the group-wise PCA (GPCA) [39] in the second step after
ANOVA decomposition. The GPCA algorithm relies on the sparsity of loadings to increase
the simplicity and interpretation of the generated model by considering relationships
between variables (metabolites). Due to the impact of the GPCA model on the obtained
loadings for each factor, the potential usefulness of this approach for feature detection
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should be tested. As in the previous cases, balanced experimental designs are preferred to
simplify the analysis, and the statistical assessment is performed through a permutation
test (10,000 permutations used). Data were mean-centered before the analysis.

3.4.3. Software Used

Univariate statistical tests were performed by using t-test and anova1 functions avail-
able at the MATLAB Statistics and Machine Learning Toolbox (MATLAB 2020b, The Math-
works Inc, Natick, MA, USA). Obtained p-values were adjusted by the Benjamini-Hochberg
algorithm available at the FalseDiscovery library published at the github.com/carbocation/
falsediscovery (accessed on 9 May 2022). ANOVA PLS-DA and ASCA were performed
using PLS Toolbox 8.9.1 (Eigenvector Research Inc, Wenatchee, WA, USA), working under
MATLAB 2020b. The MATLAB source code of the regularized MANOVA is available at
the following github repository: github.com/JasperE/regularized-MANOVA (accessed on
9 May 2022). The GASCA algorithm is also freely available in the MATLAB MEDA toolbox
and can be downloaded from the address: github.com/josecamachop/MEDA-Toolbox
(accessed on 9 May 2022). Venn diagrams were generated using the tool from the Bioin-
formatics & Evolutionary Genomics group at VIB/UGent (bioinformatics.psb.ugent.be/
webtools/Venn/, accessed on 9 May 2022).

3.4.4. Metabolite Identification

Metabolites in zebrafish QC samples were identified based on the MS/MS spectral
matches using public metabolite libraries from the MS-DIAL website [40]. The parameters
employed for MS-DIAL software are included in Table S4. The identified compounds, their
significance, and other relevant information (e.g., HMDB code, chemical formula, retention
time) are included in Table S5.

4. Conclusions

In this work, we have evaluated the ability of three multivariate ANOVA-based meth-
ods to determine the statistical significance of the experimental design factors (e.g., lipid
extraction protocol, pollutants dose of exposure) and their ability to select relevant variables
linked to these factors.

On the one hand, the evaluation of the statistical assessment indicated that ASCA
determined the statistical significance where it was expected to exist based on the previous
biological knowledge of the experiment and its experimental design. In contrast, GASCA
provided some inconsistent results as, in some cases, factors were not pointed as statistically
significant when they were expected to be. One possibility to improve these statistical
significance results and the interpretation of multivariate ANOVA-based methods could be
the use of resolved elution profiles (or areas derived from them) of the different sample
constituents resolved by chemometric methods, such as MCR-ALS.

On the other hand, GASCA was the ANOVA-based method that provided a list of
relevant variables most similar to the variable list provided, considering the VIP scores
obtained by the PLS-DA method. In addition, this variable selection step was the major
weakness of ASCA since the obtained variables list was the most dissimilar when compared
to variables pointed by all the other methods.

In both cases (i.e., considering the statistical significance and variable selection),
rMANOVA showed acceptable results. Therefore, rMANOVA could be an option if both
statistical assessment and feature detection studies are performed. In contrast, ASCA and
GASCA could be employed for only statistical assessment or variable selection, respectively.
Table 2 summarizes the main advantages and limitations of each multivariate ANOVA-
based method, as well as gives some recommendations regarding the use of each method.
In addition, a more comprehensive study to elucidate the impact of the different methods
will require an experimental design with a larger number of samples to reinforce the ob-
tained conclusions. Finally, it should be noted that the results obtained for each method are
dataset-dependent and, despite that the main trends should be conserved, different results

github.com/carbocation/falsediscovery
github.com/carbocation/falsediscovery
github.com/JasperE/regularized-MANOVA
github.com/josecamachop/MEDA-Toolbox
bioinformatics.psb.ugent.be/webtools/Venn/
bioinformatics.psb.ugent.be/webtools/Venn/
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regarding the statistical significance or variable selections could be obtained depending on
the data structure.

Table 2. Summary of the main advantages, limitations, and opportunities of the considered ANOVA-
based methods.

ASCA rMANOVA GASCA

Advantages

Widespread use in metabolomics
(reference multivariate

statistical method)
Best match between experimental

and expected significance

Best of both worlds (model
depending on data I MANOVA

and ASCA)

A good option for sparse data (i.e.,
metabolomic datasets)

Best match with VIPs from PLS-DA
for identifying significant variables

Limitations

Most dissimilar matches identifying
significant variables compared to

VIPs from PLS-DA
It assumes metabolites are not

correlated and that they all have the
same variance.

Dissimilar matches with VIPs
from PLS-DA in selection of

relevant variables

Very strict for determination of
significant factors (only factors with
very low p-values in other methods

will appear as significant)

Opportunities

Good choice when combined with
PLS-DA (VIPs) for the
determination of the
significant variables

Good choice when aiming one
method for statistical analysis

and selecting relevant variables
(but further validation on the

variables is desirable)

Good option for assessing the
significance of variables and factors

when big effects are encountered
(very significant factors in the DOE)

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27103304/s1; Table S1. Comparison of profiles obtained for
variable selection. Values are the correlation coefficient of the absolute values of the vector profiles.
Table S2. Logical relationships between the features detected by PLS-DA and FDR-corrected statistical
tests, Selectivity ratio, ASCA, rMANOVA and GASCA. Shadowed columns represent common
features between the two compared methods and Bold characters highlights those comparison with a
number of coincidences higher than 80%. Table S3. ROI parameters selected for each dataset. Table S4.
Parameters employed for MS-DIAL analysis. Table S5. Tentative identification of metabolites of
endocrine disruption on zebrafish embryos and their significance with the different statistical methods.
Figure S1. Zebrafish embryos exposed to a low-dose of estradiol. PCA analysis: PC1 vs. PC2 scores
plot. Figure S2. Venn diagrams summarizing the relationships on the variables detected for each data
set. (A) TICs matrix for yeast negative; (B) Features matrix for yeast negative; (C) Zebrafish embryos
exposed to low-dose estradiol; and (D) Zebrafish embryos exposed to high-dose estradiol.
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