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A large variety of methods exist to estimate brain coupling in the frequency domain

from electrophysiological data measured, e.g., by EEG and MEG. Those data are to

reasonable approximation, though certainly not perfectly, Gaussian distributed. This work

is based on the well-known fact that for Gaussian distributed data, the cross-spectrum

completely determines all statistical properties. In particular, for an infinite number of

data, all normalized coupling measures at a given frequency are a function of complex

coherency. However, it is largely unknown what the functional relations are. We here

present those functional relations for six different measures: the weighted phase lag

index, the phase lag index, the absolute value and imaginary part of the phase locking

value (PLV), power envelope correlation, and power envelope correlation with correction

for artifacts of volume conduction. With the exception of PLV, the final results are

simple closed form formulas. In an excursion we also discuss differences between short

time Fourier transformation and Hilbert transformation for estimations in the frequency

domain. We tested in simulations of linear and non-linear dynamical systems and for

empirical resting state EEG on sensor level to what extent a model, namely the respective

function of coherency, can explain the observed couplings. For empirical data we found

that for measures of phase-phase coupling deviations from the model are in general

minor, while power envelope correlations systematically deviate from the model for

all frequencies. For power envelope correlation with correction for artifacts of volume

conduction the model cannot explain the observed couplings at all. We also analyzed

power envelope correlation as a function of time and frequency in an event related

experiment using a stroop reaction task and found significant event related deviations

mostly in the alpha range.

Keywords: EEG, MEG, phase-phase coupling, amplitude-amplitude coupling, Gaussian distribution

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.577574
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.577574&domain=pdf&date_stamp=2020-11-10
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:g.nolte@uke.de
https://doi.org/10.3389/fnins.2020.577574
https://www.frontiersin.org/articles/10.3389/fnins.2020.577574/full


Nolte et al. Relations Between Coupling Measures

1. INTRODUCTION

Electrophysiological recordings like electroencephalography
(EEG) and magnetoencephalography (MEG) have a high
temporal resolution, but are also non-invasive measurements
with a low spatial resolution. The high temporal resolution allows
to study brain oscillations, which are a ubiquitous phenomenon
in many different frequency bands ranging from slow oscillations
(around 1 Hz) to the high gamma rhythm (up to around 150
Hz). It is argued by many researchers that the functional
role of these oscillations is a mechanism of communication
between different brain areas (Engel et al., 2001, 2013; Fries,
2005, 2015). However, it is largely unclear what features of these
oscillations are relevant for which specific communication within
the brain.

Oscillations at a given time point, or rather segment of
time, can be characterized by the frequency, the amplitude
and the phase. In principle, each of these features may
serve as an independent constituent of the mechanism of
the communication. It is, e.g., conceivable, that phases at
two neuronal sites are strongly coupled while the amplitudes
are completely independent of each other and vice versa. To
study the mechanisms, measures of functional dependence
have been developed which mainly focus on three kinds of
coupling: phase-phase-coupling, phase-amplitude coupling and
amplitude-amplitude coupling (Engel et al., 2013).

The question to be addressed here is whether the
corresponding measures really describe different phenomena as
it is also, at least mathematically, conceivable that, e.g., phase-
phase coupling determines amplitude-amplitude coupling even
if the actual values are not identical, which is indeed the case for
Gaussian distributed data as will be shown below. In such a case
the latter would be a function of the former; the estimation of the
latter would not add information on the brain dynamics and our
measures would be essentially redundant. Such a redundancy
occurs if the data are Gaussian distributed. In that case linear
statistics, i.e., means and cross-correlation matrices or means
and cross-spectra in the Fourier domain, completely determine
all statistical properties. Furthermore, all coupling measures
considered in this paper are normalized and independent of
global (i.e., time independent) scale transformations of the data,
and then all measures must be functions of complex coherency,
which is the normalized version of a cross-spectrum (Nunez
et al., 1997). Linear coupling measures are typically statistically
robust and can be calculated with relatively low computational
cost. The question then is whether the calculation of non-linear
coupling is worth the effort.

In general, data are Gaussian distributed if the underlying
dynamical system is linear and stationary. While, EEG and
MEG data are surely not perfectly Gaussian distributed,
assuming the data to be Gaussian distributed can still be a
reasonable approximation. The validity of such an approximation
is implicitly or explicitly assumed when estimating brain
connectivity from fitting a linear dynamical model to the data
as is done frequently for directed measures of connectivity like
for Granger Causality (Bressler and Seth, 2011), partial directed
coherence (Baccala and Sameshima, 2001), or the directed
transfer function (Kaminski, 1991).

EEG and MEG have a low spatial resolution, and as
consequence estimates of neuronal activities are in general
mixtures of the true sources. Non-vanishing functional
dependencies between such signals can be a result of such
mixtures even if the underlying sources themselves are
uncoupled (Nunez et al., 1997). This is apparent on sensor
level but the problem also persists on source level (Schoffelen
and Gross, 2009). To address this problem, usually referred
to as “artifact of volume conduction,” and to remove or at
least attenuate this artifact, several modifications of coupling
measures were suggested exploiting the fact that the mixing is
essentially instantaneous.

These two questions, what kind of coupling are we interested
in and how do we remove artifacts of volume conduction, led
to a large variety of coupling measures. Assuming Gaussian
distributed data, all non-linear measures must be functions of
coherency, and the main content of this paper is the derivation
of these functions. This allows to calculate a non-linear coupling
measure with a linear model, i.e., we can calculate from empirical
data complex coherency and use the respective function as a
prediction for the non-linear measure. The difference of the two
is then a measure of non-Gaussianity, and it has the potential
to detect new phenomena which could otherwise be masked by
linear effects.

We here analyze six of these measures plus some variations,
namely four non-linear measures of phase-phase coupling, the
weighted phase lag index (Vinck et al., 2011), the phase lag index
(Stam et al., 2007), the phase locking value, analyzing both the
absolute value (Lachaux et al., 1999) and the imaginary part
of it (Sadaghiani et al., 2012), and two measures of amplitude-
amplitude coupling, one without correction for artifacts of
volume conduction (Mehrkanoon et al., 2014) and one with
correction for artifacts of volume conduction (Brookes et al.,
2012; Hipp et al., 2012).

This paper is organized as follows. We first present
background information on linear methods, i.e., coherency and
basic functions of it, in section 2.1. In section 2.2 we present the
procedure to find or verify mathematical relations numerically.
The main part of this paper are sections 2.3 and 2.4 where
we present all theoretical findings for phase-phase coupling
and amplitude-amplitude coupling, respectively. In section 2.5
we make an excursion to discuss differences between Fourier
and Hilbert approach to estimate coupling measures in the
frequency domain. We finally present results for simulations,
resting state and event related EEG data in sections 3.1, 3.2,
and 3.3, respectively. A conclusion is presented in section 4. We
tried to keep the main body of the paper as simple as possible,
and we therefore moved all mathematical derivations, which are
technically quite involved, to an Supplementary Material.

2. THEORY

2.1. Background on Linear Coupling
Measures
A standard approach to estimate linear relations between
two electrophysiological recordings, which can be signals at
sensors or estimated sources, as a function of frequency is
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coherency (Nunez et al., 1997). Typically, data are divided
into segments, and for each segment the data are windowed,
e.g., using a Hanning window and the Fourier transformations
are calculated. Alternative approaches using wavelets or the
Hilbert transformation of filtered data are argued to be formally
equivalent (Bruns, 2004).

The results are complex numbers zi(f , k) for the recordings at
sensor i at frequency f and segment k. In the following, we will
drop the frequency as argument with the implicit understanding
that the analysis is done for some given frequency, and we will
also omit the segment index k with the implicit understanding
that expected values, denoted as < · >, are estimated for
empirical data by averaging over k.

For linear and stationary dynamical systems the cross-
spectrum contains complete statistical information about the
system. It is defined as

Sij =< ziz
∗
j > (1)

where ∗ denotes complex conjugate. Regardless of the details
of how data are defined in the frequency domain, for linear
and stationary dynamical systems they are always a linear
superposition of Gaussian distributed data, are hence themselves
Gaussian distributed in the complex domain. Due to stationarity
the distribution can only depend on phase differences and not on
the phases directly. This distribution is circular Gaussian defined
as (Aydore et al., 2013)

p(z) =
1

det(S)π2
exp

(

−z†S−1z
)

(2)

where for a fixed segment index z is the column vector with zi
being its ith element, and † denotes conjugate transpose. The
distribution will be used below for all analytic relations between
linear and non-linear relations.

The diagonal elements of S are the power values, and the
complex coherency Cij is calculated as

Cij =
Sij

(

SiiSjj
)1/2

(3)

Coherency, like all other measures considered in this paper,
can be calculated pairwise. To study relations between different
coupling measures it is sufficient to consider only two recordings.
For ease of notation, we will therefore omit the sensor index and
define coherency c as

c = C12 = C∗
21 (4)

Coherency is a complex number. Its absolute value, usually called
coherence, is a measure of the strength of the coupling, while its
phase is a measure of the average time delay between the peaks of
the oscillations. Coherency is a measure of phase-phase coupling,
which, however, also depends on amplitude variations because
segments of high amplitudes are weighted higher than those with
lower amplitude.

The estimation of coupling using EEG and MEG sensor data,
and also using respective source estimates, is prone to artifacts

of volume conduction. This means that the recordings are
mixtures of the true brain activities, and an estimated coupling
is likely to be caused by this mixing rather than true coupling
between different neuronal sites. To address this problem it was
suggested to use the imaginary part of coherency, usually called
“imaginary coherence”

cI = ℑ(c) (5)

where ℑ(c) denotes imaginary part of c. It can be shown that cI ,
also denoted as ImCoh, vanishes for an infinite number of data
if all brain sources are independent provided that the quasi-static
approximation of the forward model is valid, i.e., the mapping of
sources to sensors is instantaneous (Nolte et al., 2004). It should
be emphasized that for interacting sources the value of cI , if
non-vanishing, depends on how sources aremapped into sensors.

An important measure for our analysis is lagged coherence
(Pascual-Marqui, 2007; Pascual-Marqui et al., 2011), which was
proposed both as a signed and unsigned version. We here use the
signed version

c̃I =
ℑ(c)

√

1−ℜ(c)2
(6)

where ℜ(c) denotes real part of c.
Lagged coherence, also denoted as LagCoh, has the property

that, in contrast to imaginary coherence, its value, apart from
sign, does not depend on how the sources are mapped into
sources provided that there are only two sources. Also, the
possible sign flip is only present in the signed version of lagged
coherence and obviously disappears if the absolute value (or
square) of c̃I is taken. We emphasize that this property of being
invariant to mixing does not hold for more than two sources. For
a proof and simulations of this for two or more sources we refer
to Ewald et al. (2012). Therefore, the practical value of this might
be limited, because for typical EEG or MEG measurements more
than two sources (including all noise sources) are mapped into
sensors. In spite of these practical limitations of its interpretation,
this quantity seems to play an important and almost universal
role for the relation between linear and non-linear coupling
measures as we will see below.

2.2. General Remarks on Numerical
Evaluation of Coupling Measures
The purpose of simulations is usually to demonstrate the
performance of a method under realistic conditions, which we
will do below in section 3.1. However, our purpose is to validate
mathematical relations with very high accuracy which we would
like to illustrate together with theory. To verify analytical results
we simulate Gaussian distributed pairs of complex numbers with
a random cross-spectral matrix. For each cross-spectral matrix
we use 107 pairs of complex numbers. Such a simulation is not
meant to represent a realistic measurement but merely to be a
tool to find or verify relations with extremely high accuracy. The
cross-spectra are constructed as follows. Let

x =

(

x1
x2

)

=

(

η11 + iη12
η21 + iη22

)

(7)
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where ηnm are independent Gaussian distributed real numbers
with zero mean and unit standard deviation and i denotes
imaginary unit. Then these numbers are mixed using a random
complex mixing matrix A

A = AR + iAI (8)

where all elements of AR and AI are independent Gaussian
distributed numbers of zero mean and unit variance. For each
mixing matrix A we simulate 107 realizations of observations z as

(

z1
z2

)

= z = Ax (9)

The cross-spectrum of z is then given by

S =< zz† >= 2AA† (10)

Note that in the above formula a factor 2 arises because the unit
variances of real and imaginary parts of x add up. Also, S is in
general complex because the mixing matrix A is complex which
should not be confused with real valued mixing like a mixing
artifact occurring in EEG and MEG measurements.

All coupling measures to be analyzed are constructed from
expected values of the general form < g(z1, z2) >, with the
functions g varying across measures, and where those expected
values are estimated as averages over all realizations of z.

2.3. Phase-Phase Coupling
2.3.1. wPLI and PLI

Like coherency, the weighted phase lag index (wPLI) is a measure
of phase-phase coupling, with averages of phase differences
weighted by the amplitudes of individual segments. It is defined
here as

wPLI =
< ℑ(z1z

∗
2 ) >

< |ℑ(z1z
∗
2 )| >

(11)

Our definition differs slightly from the original definition where
in the end the absolute value is taken. Like for lagged coherence,
we prefer to keep the sign because the signmight contain relevant
information and in general it also simplifies statistics because
the absolute value introduces a bias toward positive values. Like
lagged coherence, wPLI is invariant to mixing of two sources.
This is strictly true only if the absolute value is taken, but the sign
may flip using our definition.

We started our tour across a series of coupling measures
with wPLI because the relationship to coherency for Gaussian
distributed data is known already (Ewald et al., 2012), it has a
simple closed form solution, and it illustrates the typical aspects
of such relations in general. The relation reads

wPLI =
2c̃I

1+ c̃2I
(12)

where c̃I is the lagged coherence defined in Equation (6). We
consider c̃I as equivalent to wPLI for Gaussian distributed data in
the sense that the latter can be calculated from the former. This

is exactly true only for an infinite number of data. For a finite
number of data, there are, of course, statistical variations.

We emphasize two important points. First, the equivalence
is not trivial, e.g., wPLI is equivalent to c̃I but not to imaginary
coherence cI . Second, equivalent does not mean identical. The
functional relation is simple here, but below we will also see other
examples where we observe equivalence clearly from numerical
evaluations but the precise functional relation is unclear to us.
Numerical results to illustrate these findings are presented in the
upper row of Figure 1.

The phase lag index (PLI) is defined as (Stam et al., 2007)

PLI =< sign(ℑ(z1z
∗
2 )) > (13)

In spite of its name, it is conceptually only loosely related to wPLI.
The idea of PLI, using only the sign of the phase differences, is
that the resulting coupling should be made less dependent on
the actual phase difference. In practice, however, this is hardly
the case because for small phase differences a sign flip is more
likely than for large phase differences. In contrast to wPLI, PLI is a
pure phase measure: any dependence on amplitude was removed
in its definition.

As was shown by Pascual-Marqui et al. (2018), PLI, like wPLI,
is invariant tomixing the signals within two sensors (or estimated
sources) implying that it is invariant of the mixing of sources into
sensors provided that there are not more than two sources. This
can be used to analytically derive the relation between PLI and
linear connectivity measures

PLI = c̃I (14)

The derivation of this is presented in the
Supplementary Material. Numerical results to illustrate
these findings are presented in the lower row of Figure 1. We
emphasize that such an identity is (apparently) true for an
infinite number of Gaussian distributed data. For a finite data
size, different measures have different statistical properties. The
analysis of that is beyond the scope of this paper.

2.3.2. PLV

The phase locking value (PLV) is a classical measure of phase-
phase coupling (Lachaux et al., 1999). We here slightly deviate
from the original definition, where the absolute value is taken in
the end, and define PLV as a complex number:

PLV =< exp(i(81 − 82)) >=<
z1z

∗
2

|z1||z2|
> (15)

with zk = rk exp(i8k). Like PLI and in contrast to wPLI it
only depends on phase differences and all amplitude variations
are ignored.

In Sadaghiani et al. (2012), Bruna et al. (2018), and Palva et al.
(2018) it was suggested to use the imaginary part of the complex
definition of PLV, referred to as ImPLV in corresponding figures,
to construct a measure robust to artifacts of volume conduction.
We therefore prefer to keep the complex formulation and present
the theory as a whole.
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FIGURE 1 | Upper row: wPLI as a function of linear measures as indicated for a 500 simulated Gaussian distributed random data sets each consisting of 107

realizations. Lower panels: the same for PLI.

In Aydore et al. (2013) the relation between PLV and
coherency was found in terms of hypergeometric functions
using Mathematica to solve some of the integrals. In the
Supplementary Materialwe present an explicit derivation which
we found numerically to be equivalent to the solution by
Aydore et al. (2013). We get the following relation for Gaussian
distributed data:

PLV = cf (|c|) (16)

introducing a “scaling function” f which only depends on the
absolute value of coherency. We could calculate f analytically
only as a series expansion, but not in closed form:

f (|c|) = π(1− |c|2)

∞
∑

k=1

k

(

(2k− 1)!!

k!2k

)2

|c|2k−2 (17)

This expansion converges poorly if |c| is close to 1. We refer the
reader to the Supplementary Material for an alternative (and
less compact) formulation with better convergence properties.
There we also give recommendations how to evaluate the
function numerically.

We found that f is approximately linear as a function of
√

1− |c|2, and f can be approximated very well by a function f̃
using such a linear function with exact values at the boundaries,
namely f (0) = π/4 and f (1) = 1, leading to

f (|c|) ≈ f̃ (|c|) = 1−
(

1−
π

4

)

√

1− |c|2 (18)

Using this approximate function, errors for PLV are smaller than
0.012 which we consider as negligible for practical applications.

The functions f and f̃ are shown in Figure 2. For all further

analysis we will use the approximate scaling function f̃ .
Numerical results showing the absolute value of PLV as

a function of coherence and its scaled version, and also the
imaginary part of PLV as a function of imaginary coherence and
its scaled version are shown in Figure 3. We observe nearly exact
identities for the two scaled versions.

2.4. Amplitude-Amplitude Coupling
For amplitude-amplitude coupling relative phase differences are,
in its original version, ignored, and the question is whether
the amplitudes of two oscillation are functionally related.
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FIGURE 2 | Scaling functions f and f̃ as a function of coherence. For the

calculation of f (|c|) we used the first 500 terms of the expansion given in

Equation (78) of the Appendix.

In principle, the two oscillations can have different frequencies.
In such a case we observe cross-frequency coupling, which is
always inconsistent with linear dynamical systems. Therefore,
we here only consider amplitude-amplitude coupling within a
specific frequency.

A functional relation between amplitudes can be measured
by a correlation, but details can vary depending on what exactly
is correlated. We here consider three different versions: (a)
the correlation between powers (the square of the amplitudes),
denoted as corr(|z1|

2, |z2|
2) (Mehrkanoon et al., 2014; Soto

et al., 2016), (b) the correlation of amplitudes, i.e., corr(|z1|, |z2|)
(Brookes et al., 2012), and (c) the correlation of the logarithms
of the amplitudes, i.e., corr(log |z1|, log |z2|) (Hipp et al., 2012).
Note, that the latter is equivalent to the correlation of the
logarithm of the powers. We here use the term power envelope
correlation (PEC) for all these three variants.

We have an analytic solution for Gaussian distributed data
only for the first version, which reads

corr(|z1|
2, |z2|

2) = |c|2 (19)

where |c| is the coherence of the two signals. A proof is given
in the Supplementary Material. A specific consequence is that
powers cannot be negatively correlated for linear dynamical
systems. Note, that means are subtracted for the calculation of
a correlation, and this non-negativity is not a trivial consequence
of the positivity of the powers.

Like PLV and coherence, PEC is prone to artifacts of volume
conduction. To address this problem it was suggested to replace
z2 by z2 − αz1 where the real valued coefficient α is found from
fitting αz1 to z2 (Brookes et al., 2012, 2014). In the language
of the original time series, this means that only that part of
the second time series is evaluated which is orthogonal to the

first. Without loss of generality, z1 and z2 can be normalized
such that

< |z1|
2 >=< |z2|

2 >= 1 (20)

and then it is straightforward to show that

α = cR (21)

i.e., α is equal to the real part of coherency.
A different approach was proposed by Hipp et al. (2012)

where it was suggested to replace |z2| by |ℑ(z2z
∗
1 )/|z1||. The

essential difference between these two approaches is that in the
first approach α is found globally, i.e., it is the same coefficient for
all segments, whereas the second approach is equivalent to fitting
a coefficient α separately for each segment. We refer here to the
latter approach as a local orthogonalization, and for all of these
variants we use the generic term “orthogonalized power envelope
correlation” (OPEC).

Similar to PEC, also for OPEC the correlation can refer to
power, amplitude or logarithm of the amplitude. We have an
analytic solution only for OPEC using power and for global
orthogonalization. For normalized signals it reads

corr(|z1|
2, |z2 − cRz1|

2) = c̃2I (22)

with c̃I being lagged coherence given in Equation (6). The
derivation of this is given in the Supplementary Material.

Numerical results for all nine combinations (three for PEC,
three for OPEC with global orthogonalization, and three for
OPEC with local orthogonalization) are shown in Figure 4.
Remarkably, for all six OPEC variants, the coupling is apparently
a unique function of lagged coherence (and then not of imaginary
coherence). We also found that correlations of amplitudes are
almost identical to those of powers, while the logarithmic
transformation has a larger impact.

2.5. Excursion: Hilbert Transformation vs.
Fourier Transformation
In this paper we used the Fourier transformation of windowed
time segments to estimate in particular amplitudes as a function
of time. A different common practice is to filter the data and
then to apply a Hilbert transform to get a complex representation
with its absolute value defining the amplitude of the signal.
If the original data are Gaussian distributed and stationary,
both approaches, being linear and stationary operations, lead
to circular Gaussian distributions as discussed, and the theory
applies to either approach. On the other hand, explicit results of
the two approaches are not identical, and we therefore make a
slight excursion to discuss the differences. In Bruns (2004) it is
argued that the two approaches are formally equivalent, and any
differences are due to typical choices for the windows or filters
in either approach. Even though we disagree with this claim as
an accurate theorem, we argue that differences between the two
approaches are negligible for practical purposes.

The theory for this can be found in Zandvoort and Nolte
(2020) and is presented here in more detail. In the Fourier
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FIGURE 3 | Upper row: the absolute value of PLV as a function of coherence (upper left) and as a function of scaled coherence (upper right) for a 500 simulated

Gaussian distributed random data sets each consisting of 107 realizations. Lower row: ImPLV as a function of ImCoh (left) and scaled ImCoh (right) for the same

random data sets.

approach the complex signal at frequency f0 and time t, the time
of the center of a corresponding segment, is calculated as

y(t, f0) = (x ∗ h(·, f0))(t) (23)

where ∗ denotes convolution and h(t, f0) is a wavelet. A remark
on notation: h(·, f0) refers to h as the function of time for a specific
frequency f0 to be distinguished from the function value h(t, f0).

To simplify the notation, we consider an odd number of
discrete time points running from −N to N, and the Fourier
transforms, to be used below, are defined for discrete frequencies
f also running from−N to N. We also assume that the data have
zero mean. With such a convention the wavelet is defined as

h(t, f0) = h0(t) exp(−i2π f0t/(2N + 1)) (24)

with h0(t) being, e.g., the Hanning window. Now, let ĥ0(f ) be the
Fourier transform of the window, which is substantially different
from zero only for small frequencies. Then the Fourier transform
of the wavelet reads

ĥ(f , f0) = ĥ0(f − f0) (25)

with the understanding that we have periodic boundary

conditions in the Fourier domain such that ĥ0(f − f0) is defined

for any value of f − f0. The convolution in Equation (23) is a
product in the Fourier domain, and hence

y(t, f0) =
1

2N + 1

∑

f

ĥ0(f − f0)x̂(f ) exp(i2π ft/(2N + 1)) (26)

where x̂(f ) is the Fourier transform of x(t). The crucial point

now is that, while ĥ0(f ) does not vanish for negative frequencies,

ĥ0(f − f0) is negligible for negative frequencies provided that the
high frequency f0 is remote from zero and the Nyquist frequency
relative to the width of the wavelet in the frequency domain.
In this approximation y(t, f0) is expressed as an inverse Fourier
transform with only positive frequencies as is the case for the
Hilbert transform.

In the approach using a Hilbert transform, data are first
filtered using a real valued filter. We here focus on conceptual
differences between the Fourier and Hilbert approach rather
than differences introduced by different filter choices. We hence
choose for the Hilbert approach as filter, F(t, f0), the real
part of h(t, f0)

F(t, f0) =
1

2
h0(t)

(

exp(−i2π f0t/(2N + 1))

+ exp(i2π f0t/(2N + 1))
)

(27)

Frontiers in Neuroscience | www.frontiersin.org 7 November 2020 | Volume 14 | Article 577574

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Nolte et al. Relations Between Coupling Measures

FIGURE 4 | Upper row: three different versions of PEC as a function of the square of coherence for a 500 simulated Gaussian distributed random data sets each

consisting of 107 realizations. Middle and lower row: different versions of OPEC as indicated as a function of squared lagged coherence for the same data sets.

and the filtered data, xF(t, f0) = (F(·, f0) ∗ x(·))(t), can be written
as an inverse Fourier transform

xF(t, f0) =
1

2(2N + 1)

∑

f

(ĥ0(f − f0)

+ ĥ0(f + f0))x̂(f ) exp(i2π ft/(2N + 1)) (28)

We get the (complex) Hilbert transform of xF(t, f0) by summing
only over positive frequencies and multiplying the Fourier
coefficients with a factor 2:

xH(t, f0) =
1

2N + 1

∑

f>0

(ĥ0(f − f0)

+ ĥ0(f + f0))x̂(f ) exp(i2π ft/(2N + 1)) (29)

We observe, that the Hilbert transform xH(t, f0) is identical to the
Fourier formulation y(t, f0) if the frequency f0 is remote from zero

and the Nyquist frequency relative to the width of the filter, i.e.,

ĥ0(f − f0) = 0 for f < 0 and ĥ0(f + f0) = 0 for f > 0. In practice,
this is usually the case to very good approximation.

To illustrate that, we have analyzed empirical resting state
EEG data (see below for a description of these data), using both

the Hilbert and the Fourier approach to estimate the envelopes.

One channel of EEG data containing a strong alpha rhythm

at 11 Hz was narrow band filtered at 11 Hz with a FIR filter
and its envelope was calculated from the Hilbert transform of

the filtered signal. For the Fourier approach we used segments

of 1 s duration, windowed the data with a Hanning window,

and calculated the Fourier transform for each segment. For this

comparison, segments had a maximal overlap, i.e., neighboring

segments differed by 1 sample. The Fourier and Hilbert approach
can differ in absolute scale depending on the choice of windows

and the normalization convention of the Fourier transformation.
For simplicity we here have normalized the envelope calculated
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FIGURE 5 | (Left) Estimated amplitudes for Hilbert and Fourier approach for an illustrative example. (Middle) Illustration for the same data showing that real and

imaginary parts of the Fourier approach are almost perfectly linked by the Hilbert transformation. Non-negligible deviations can be observed in the first and last second

of the data, which were taken out from the illustration. (Right) Deviation 1(f ), defined in Equation (30), as a function of the center frequency f of a filter with 1 Hz width

applied on white noise. The deviation measures to what accuracy real and imaginary parts of the complex Fourier signals are linked by the Hilbert transformation.

from the Fourier approach to adjust to the Hilbert envelope.
Such global scale factors are irrelevant for all coupling measures
studied in this paper. In the left panel of Figure 5 we see for
this example that the envelopes for the two approaches are
almost identical.

The Hilbert transform links real and imaginary parts of
the complex signal. If H denotes the Hilbert transform, then
ℑ(H(ℜ(x))) = ℑ(x), if x(t) is the complex signal calculated as
the Hilbert transform of some real valued signal. In the Fourier
approach we didn’t calculate the complex signal with a Hilbert
transform, and we check whether real and imaginary parts of
the complex Fourier representation are linked by a Hilbert
transformation. In the middle column we show ℑ(H(ℜ(y)))
vs. ℑ(y) with y(t) being the complex signal found with the
Fourier approach. We observe that those functions are almost
identical. Differences can be found at the boundaries of the
data set, here the first and last second, which were taken out
from the illustration.

As a more general analysis, we calculated the Fourier
representation as a function of time for white noise for all
frequencies, again using a Hanning window of 1 s duration for all
possible temporal positions of the window. To avoid boundary
effects, we now strictly imposed periodic boundary conditions
such that, e.g., the segment for the Fourier coefficient of the
first time point includes data from the end of the whole data
set. Let y(t, f ) be the Fourier coefficient for frequency f and
for the segment with center at time t, then we calculated a
deviation 1(f ) as

1(f ) =
||ℑ(y(·, f ))− ℑ(H(ℜ(y(·, f ))))||F

||ℑ(y(·, f ))||F
(30)

with || · ||F being the Frobenius norm of the corresponding time
series. In the right panel of Figure 5 we show 1(f ) as a function
of frequency. We generally observe very small deviations apart
from moderate deviations for cases where the center frequency
of the filter is close to zero or the Nyquist frequency.

3. RESULTS

3.1. Simulations
We simulated both linear and non-linear dynamical systems.
Linear dynamics was modeled with an autoregressive model as

x(t) =

P
∑

τ=1

A(τ )x(t − τ )+ η(t) (31)

where for each discrete time point x(t) is a 2 × 1-vector for
two channels, the order P was set to 5 and η was independent
and white Gaussian distributed noise with zero mean and unit
variance. For each data set, all coefficients of the 2 × 2 AR-
matrices were set to fixed numbers randomly set from a Gaussian
distribution with zero mean and a standard deviation of 0.25.
Also, for each set of AR-matrices we checked analytically whether
the system was stable and excluded sets with unstable dynamics.
The physical units can be arbitrarily set, and we defined the
sampling rate to be 100 Hz. Also, to concentrate on systematic
effects, we simulated rather long data sets of 30 min. For a total of
100 data sets we analyzed coupling always at 10 Hz. Here and in
the following, data were divided onto segments of 1 s duration
with 50% overlap. The data in each segment were Hanning-
windowed, and Fourier coefficients at 10 Hz were used as input
for all coupling estimates.
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As a non-linear dynamical system we used the Kuramoto-
model chosen here with stochastic input, random coupling
parameters and random delays. Specifically, the dynamics was
defined for discrete time t for two channels i as

θ(t + 1, i) = θ(t, i)+ dt
(

ω + ση(t, i)+

2
∑

j=1

a(i, j) sin
(

θ(t, i)

− θ(t − τ (i, j), j)
))

(32)

with the settings dt = 1/100 corresponding to a sampling rate
of 100 Hz, ω = 20π resulting in 10 Hz oscillations, and σ = 5.
The delays τ (i, j) were set at (time-independent) random integer
numbers corresponding to delays up to 100 ms. The coupling
parameters were set to a(i, i) = 0, and a(i, j) for i 6= j was
set to a random number from a Gaussian distribution with zero
mean and standard deviation 0.5. Results are not crucial with
respect to details of the simulations, but our choice resulted
into a roughly even coverage of all possible outcomes for the
linear coupling measures. From the phases the time series were
finally calculated as

x(t, i) = sin(θ(t, i)) (33)

for time t and channel i. We note that even though we did not
introduce an explicit time dependent amplitude, the amplitude
estimate varied in time because the phases were not linear
functions of time leading to variations of the instantaneous
frequency and then to variations of the amplitude estimate at a
specific frequency. As for the linear dynamics we simulated 100
data sets with 30 min of data each.

Results for both the linear and non-linear dynamics are shown
in Figure 6where we display the non-linear coupling value for six
different coupling measures as a function of the corresponding
value calculated from the linear coupling values using the derived
equations for Gaussian distributed data. For the linear dynamical
systems we observe nearly perfect correspondence between the
two. For the non-linear systems and for phase-phase coupling
we observe only minor but clearly systematic deviations. For the
non-linear systems, amplitudes are almost not coupled at all and
a prediction of that coupling assuming Gaussian distributed data
fails completely.

3.2. Resting State EEG
We analyzed cleaned resting state EEG data measured
with eyes closed for 10 subjects publicly available at
http://clopinet.com/causality/data/nolte/. The data consist
of around 10 min recordings in 19 channels with mathematically
linked ears reference. The data are used here such that our
results can be reproduced. Our complete code for the analysis
is available upon request. The data are a subset of data for 88
subjects, which are described in more detail in Nolte et al. (2008).
Only this subset is publicly available.

First of all, for these data sets we analyzed how well non-
linear coupling matrices can be explained by the respective linear
models. LetD(f , k) be a connectivitymatrix for all pairs of sensors
calculated with a specific measure for frequency f and subject
k, and let DM(f , k) be the corresponding model connectivity

matrix calculated from the coherency matrix. In Figures 7, 8 we
show two illustrative examples, calculated from the first subject
at frequencies 10 and 15 Hz, respectively. For each pair of
sensors we show the actual non-linear measure and the result
of the corresponding model. Resting state with eyes closed is
known to show a strong 10 Hz rhythm (the alpha rhythm)
consisting of interacting sources with substantial phase delays.
Such interactions are also observable at other frequencies, but
typically to a much lesser extent.

We consider the following observations as most relevant. The
wPLI can be explained by the model almost perfectly, regardless
of whether there are substantial interactions (with delay) or not,
amplitude-amplitude coupling (i.e., PEC) is systematically larger
than the model prediction, and amplitude-amplitude coupling
with attenuation of artifacts of volume conduction (i.e., OPEC)
cannot be explained by the model at all. This could be a problem
when interpretingOPEC as a couplingmeasure robust to artifacts
of volume conduction as will be discussed in the conclusion
in section 4.

In the following we present a systematic analysis including
results for all subjects and frequencies. For K subjects we define
an average model error for each frequency as

EM(f ) =
1

K

K
∑

k=1

||D(f , k)− DM(f , k)||F

||D(f , k)||F
(34)

where || · ||F denotes Frobenius norm.
Non-vanishing model errors can have two causes: (a) the

data are non-Gaussian distributed, and (b) they are caused
by statistical fluctuations. To assess the magnitude of the
statistical fluctuation we also calculated a statistical error. For
this we replaced the model connectivity by a connectivity matrix
calculated with the non-linear measure with resampled data
using the bootstrap procedure where we constructed new data
of the same size by randomly picking segments of the original
data with repetition. The bootstrap resampling generates data
from approximately the same distribution as the original data
without destroying any coupling and then serves to estimate
statistical variations in a generic way. For the k.th subject and
frequency f we calculated N = 20 such connectivity matrices
denoted as DS(f , k, n) for n = 1..N, and a statistical error was
calculated as

ES(f ) =
1

KN

∑

k,n

||D(f , k)− DS(f , k, n)||F

||D(f , k)||F
(35)

If this statistical error is larger than or of similar size as the
model error, this model error should not be interpreted as an
indicator of non-Gaussianity of the data. Results for six different
non-linear couplingmeasures are shown in Figure 9. In addition,
we also calculated the statistical errors for the linear measures.
We observe that generally for phase-phase coupling all methods
with correction for artifacts of conduction are similar: results are
statistically unstable for frequencies outside the alpha band. For
the frequencies outside the alpha band the models are typically
poor which is probably not surprising as coupling measures
robust to artifacts of volume conduction are relatively weak and
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FIGURE 6 | Illustration of non-linear coupling measures as a function of their corresponding model values calculated from complex coherency and assuming Gaussian

distributed data for simulated data. Blue dots refer to linear dynamical systems, and red dots to the Kuramoto models each for a different specification of parameters.

can hardly be reproduced with different methods. An exception
is wPLI which can always be explained very well with the linear
model, indicating that wPLI depends very little on non-linear
properties of the data. The absolute value of PLV can typically
be explained very well with the linear model, but to lesser extent
in the alpha band. This is the only phenomenon for phase-phase
coupling, where we can clearly observe deviations of the model
and actual coupling larger than the statistical error.

Systematic deviations of the model predictions larger than
statistical errors can be observed for PEC and OPEC for all
frequencies. While for PEC the model (which is the square
of coherence) explains around 80% of the observation (model
error is around 0.2), the model error for OPEC is nearly 100%
which is not surprising when inspecting the examples shown in
Figures 7, 8.

3.3. Reaction Task With and Without
Conflict
We now present results for an event related paradigm. The
purpose here is merely an illustration to show that we can get
non-trivial results also in such a case. Details of the experiment
can be found in Li et al. (2015), and we here only give a short
description. In this paradigm, the stimulus was an upward or
downward arrow presented at one of four possible locations of
the screen: top left, top right, bottom left, and bottom right.
Participants were asked to respond to the direction of the
arrow as soon as possible by pressing the “F” key or the “J”
key on a keyboard, while ignoring the location of the arrow,
which was either congruent or incongruent with the direction
of the arrow. The mapping of arrow direction and response key
was counterbalanced between participants. EEG was measured
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FIGURE 7 | Illustration of non-linear coupling measures as a function of their corresponding model values calculated from complex coherency and assuming

Gaussian distributed data. Each dot refers to one pair of sensors for one subject with coupling values calculated at 10 Hz. For PEC and OPEC, the non-linear

measures can also come out negative, but that’s very rare, values are typically only slightly below zero, and such a case did not occur in this example.

in 62 channels (plus 2 mastoids, which were not included in
the connectivity analysis) and referenced to the mathematically
linked mastoids. In total, we analyzed 33 subjects with an average
of 228 trials per condition. For each trial, 1,200 ms of data
from 200 ms before the stimulus until 1 s after the stimulus
were analyzed further. ERPs were subtracted from the raw data
such that a connectivity analysis corresponds to the analysis
of fluctuations around the ERPs. Each trial was divided into
segments of 200 ms duration with an overlap of 180 ms such that
we could calculate connectivity for 51 different time points. Of
course, such short segments of 200 ms result in a poor frequency
resolution of 1f ≈ 5 Hz, but with a high frequency resolution
time dependence cannot be analyzed anymore.

For these data, we only analyzed PEC and calculated the
correlations of the squares of the amplitudes. We recall that the

model assuming Gaussian distributed data predicts that PEC is
the square of coherence. Similar to the analysis of the resting state
data we calculated a model error with Equation (34), which now
also depends on the time of the segments relative to the stimulus.
We observed that results are very similar for conflict and non-
conflict trials (not shown), and we therefore present only results
where we combined the conditions. The model error is shown in
the upper left panel of Figure 10. The model error is relatively
large (around 0.2) for the alpha range before the stimulus and at
the end of trials. It drops substantially in the center of the trials.

The question here is whether changes in time can be detected
significantly. Therefore, we calculated the difference of the model
error to the baseline, which we set to be the results at the first
time point, i.e., the segments before the stimulus. Significance
was tested using a paired permutation test: for each subject
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FIGURE 8 | Same as Figure 7 but now for coupling measures calculated at 15 Hz. We note again that PEC and OPEC can be negative, but such a case did not

occur in this example.

and for each time point, results (at the same frequency) were
randomly switched between the baseline and the actual time
point. We constructed 10,000 such surrogates and the p-value
was calculated as the fraction of cases for which the surrogates
showed a larger difference of baseline and actual time point than
the original data. We analyzed nine frequencies from 5 to 45 Hz.
Using the Bonferroni correction for 51 time points and these
nine frequencies we considered results as significant if the p-
value was lower than 0.05/(51 ∗ 9). In the upper right panel
of Figure 10 we show the model error with baseline subtracted
and after setting non-significant differences to zero. We observe
significant time variation of the model error mainly in the
alpha range.

In the lower panels of Figure 10 we show analogous results
for power, here always showing the power ratio of the power for
each time point and the corresponding power at baseline. While

we observe a drop in alpha power (lower left panel), this drop is
not significant.

4. CONCLUSION

In this paper we presented mathematical relations between linear
and non-linear measures of brain coupling assuming Gaussian
distributed data. All relations were verified in simulations.
Let us recall the main theoretical results. We considered four
different non-linear measures of phase-phase coupling: wPLI,
PLI, and absolute value and imaginary part of PLV. The
functional relations could be proven for all of these measures.
For amplitude-amplitude coupling we could solve the problem
analytically in closed form only if powers (rather than amplitudes
or the logarithm of powers) are correlated and if artifacts
of volume conduction are corrected for globally (i.e., time
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FIGURE 9 | Upper and middle row: relative model errors (full lines) averaged over 10 subjects for six different non-linear coupling measures each of them modeled by

the corresponding function of coherency assuming Gaussian distributed data. Estimated statistical errors are shown as dashed lines. Lower row: statistical errors for

three different linear measures. We emphasize that scales for the y-axis vary across subplots.

independent) or not at all. All other variants could only be
analyzed numerically. To our own surprise we found that
all considered versions of amplitude-amplitude coupling with
correction for mixing artifacts turned out to be functions of
lagged coherence. Except for the one case we could solve
analytically, we must leave the mathematical proof of this as
an open question. In total, with the exception of the imaginary
part of PLV, all considered measures with correction for mixing
artifacts turned out to be functions of lagged coherence for
Gaussian distributed data, and hence lagged coherence plays a
quite universal role.

In general, calculating linear measures from the cross-
spectrum has a couple of computational advantages. First, if
the data are Gaussian distributed, then the cross-spectrum
is a maximum likelihood estimator of the parameters of the
distribution and then the estimation has the smallest statistical
error. Second, when using a linear inverse method (or a

quasi-linear method like a beamformer) the cross-spectrum in
source space can easily be calculated from the cross-spectrum in
sensor space by multiplying the latter with the spatial filter from
the left and right. In contrast, when using a non-linear method,
the entire raw data need to be mapped into source space. Third,
in case of amplitude-amplitude coupling phase information
contained in complex coherency gets lost. The question then
is whether for empirical data the calculation of non-linear
measures in particular in source space is worth the effort and
adds any useful information. Empirical electrophysiological data
are certainly not Gaussian distributed, even if the deviation
of Gaussianity is usually weak. The mathematical relations
presented here may serve as a tool to isolate non-linear effects
by subtracting from the non-linear measure the corresponding
model results assuming a Gaussian distribution. Such a difference
cannot be explained by any linear dynamical model. If, e.g.,
a substantial non-vanishing difference is observed, this could
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FIGURE 10 | Upper row: model errors as a function of time and frequency for PEC using correlation of powers. The stimulus was at t = 0ms. In the left panel we

show original model errors, and in the right panel we show model errors with results at baseline (the first 200 ms) subtracted, and with non-significant values set to

zero. Lower panels: the same for powers, but here we always normalize power values by the power values at the baseline.

indicate that a linear autoregressive model is inadequate to
calculate Granger Causality.

For empirical data we analyzed how well observed non-linear
coupling measures could be explained by calculating coherency
from these data and then predicting the non-linear coupling
measure assuming Gaussian distributed data and using the
theoretical relations. For event related data, we only illustrated
the procedure and could show that deviations of the model for
amplitude-amplitude coupling are in general time dependent. A
more complete analysis was given for resting state EEG data.
For phase-phase coupling we found that deviations are minor,
i.e., essentially within statistical errors, with the exception of
the absolute value of PLV at 10 Hz. Deviations were quite
substantial for amplitude-amplitude coupling, in particular when
a correction for artifacts of volume conduction is included.
That measure is known to be robust to artifacts of volume
conduction in general only for Gaussian distributed data, asmade
clear in much detail by the authors themselves (Brookes et al.,
2014). To give an independent explanation of this we shortly
discuss conceptual relations between OPEC and independent
component analysis (ICA). The ICA model assumes that any

coupling between sensors is a mixing artifact and ICA attempts
to demix to independent components. ICA gives a unique
decomposition only when sources are non-Gaussian distributed.
OPEC fails for non-Gaussian distributed data and ICA works
only for non-Gaussian distributed for the same reason: for non-
Gaussian distributed data, removing linear dependencies is not
sufficient to get rid of mixing artifacts from coupling measures.
This is the problem for OPEC but it is exploited in ICA to
get additional information on coupling to finally arrive at a
unique decomposition.

These conceptual issues raises the question how to justify the
usage of OPEC. If we need to assume that data are Gaussian
distributed to reasonable approximation to justify a specific
conclusion wemight as well calculate the linear couplingmeasure
in the first place. In any event, whether the large deviations
from the Gaussian model observed for OPEC are artifacts
of volume conduction or correspond to genuine non-linear
brain interactions remains an open question which needs to be
addressed in the future.

This paper leaves many other questions open. Apart from
the lack of mathematical proofs for some cases, the analysis of
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empirical data was rather coarse. We estimated model errors as
averages over all sensor pairs. Interesting effects, e.g., delayed
brain interactions at other frequencies than 10 Hz, certainly
exist but can easily be masked by such averages if those effects
are relatively weak and/or occur only in a few sensor pairs.
Also, our analysis was done completely in sensor space, and the
question remains open where in the brain we observe large or
small deviations from the linear model, and, most importantly,
whether those differences can be explained by a reasonable model
of brain dynamics. Finally, the question is whether we can
observe differences of these deviations for different experimental
conditions or brain pathologies. All these questions are beyond
the scope of this paper and need to be addressed in the future.
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