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Background: To determine whether childhood infections were associated with the development of childhood acute
lymphoblastic leukaemia (ALL).

Methods: We included studies that assessed any infection in childhood prior to the diagnosis of ALL in children aged 0–19 years
compared to children without cancer. The primary analysis synthesised any infection against the odds of ALL, and secondary
analyses assessed the frequency, severity, timing of infections, and specific infectious agents against the odds of ALL. Subgroup
analyses by data source were investigated.

Results: In our primary analysis of 12 496 children with ALL and 2 356 288 children without ALL from 38 studies, we found that any
infection was not associated with ALL (odds ratio (OR)¼ 1.10, 95% CI: 0.95–1.28). Among studies with laboratory-confirmed
infections, the presence of infections increased the odds of ALL by 2.4-fold (OR¼ 2.42, 95% CI: 1.54–3.82). Frequency, severity, and
timing of infection were not associated with ALL.

Conclusions: The hypothesis put forward by Greaves and others about an infectious aetiology are neither confirmed nor refuted
and the overall evidence remains inadequate for good judgement. The qualitative difference in the subgroup effects require
further study, and future research will need to address the challenges in measuring infectious exposures.

The aetiology of childhood acute lymphoblastic leukaemia (ALL) is
largely unknown, and likely arises from interactions between
exogenous and/or endogenous exposures, genetic susceptibility,
and chance. Genetic causes of ALL account for a small proportion

of cases, and while the disease is usually initiated in utero, other
promotional exposures are probably necessary for disease emer-
gence (Greaves et al, 2003). There are two key hypotheses on
infections and the development of ALL. Kinlen proposed the
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‘population mixing’ hypothesis to describe the observed increased
rates of childhood ALL following an influx of migrants into rural
areas (Kinlen, 1988, 2012). Briefly, the mixing of rural, isolated
individuals with the influx of mostly urban individuals into a rural
area would create a localised epidemic of an underlying infection
due to the increased level of contact between susceptible and
infected individuals that may produce the rare response of ALL.
Studies from Kinlen and others have found evidence to support the
hypothesis (Kinlen, 1988, 2006, 2012; Alexander et al, 1998; Kinlen
and Doll, 2004). The hypothesis suggests a direct pathological role
of a specific infection, presumed to be viral, in the development of
ALL and that a protective effect may be acquired from previous
exposure. Currently, there is limited molecular evidence that
implicates a specific infection (Martin-Lorenzo et al, 2015; da
Conceicao Nunes et al, 2016). Greaves’ ‘delayed infection’
hypothesis for childhood ALL suggests a two-hit model that
emphasises the timing of exposure and the child’s immune
system (Greaves, 1997, 2006). The first hit occurs in utero through
one’s genetic makeup that produces a pre-leukaemic clone. In a
small number of pre-leukaemia carriers, it is the absence of
exposure to infections in early life, and a postnatal secondary
genetic event caused by a delayed, stress-induced infection
(second hit) on the developing, ‘unprepared’ immune system
that may increase the risk of childhood ALL. Although the
mechanisms differ, both hypotheses suggest that ALL is a rare
response to one or more common infections acquired through
personal contact.

The difficulties in measuring exposure to infectious agents and
subsequent responses make it challenging to directly test the
hypotheses, especially since no specific leukaemogenic agent has
been identified. Several previous epidemiological studies have used
a history of infections as an indicator for early exposure to
infections. Establishing the timing of the infections is critical to
testing the hypotheses; however, birth cohort studies are not
feasible given the rarity of childhood ALL. Thus, most studies used
a case–control design and interviews to measure infections.
Assessing a history of infections through interviews can be
problematic due to the potential for recall bias and misclassifica-
tion of children who had asymptomatic infections (Simpson et al,
2007). Other methods for measuring infections such as using
administrative data overcome these limitations, but may lack
information on important confounders. Other than narrative
summaries (McNally and Eden, 2004; Buffler et al, 2005; Ma et al,
2009; Maia Rda and Wunsch Filho, 2013), no study has attempted
to synthesise and quantitatively pool studies examining the
relationship using a history of infections, or tried to explain the
differences between the studies. The aim of this systematic review
and meta-analysis was to assess the relationship between childhood
infections, and the development childhood ALL by summarising
the findings for an overall measure of infections, the frequency,
severity, timing of infections, and examining specific infectious
agents and syndromes.

MATERIALS AND METHODS

The Meta-analysis of Observational Studies in Epidemiology
(MOOSE) was developed as a guideline for the reporting of
meta-analyses of observational studies in epidemiology and was
used for the current study (Stroup et al, 2000).

Data sources and searches. We performed electronic searches
from inception to 21 February 2017 in Ovid MEDLINE,
MEDLINE In-Process and Other Non-Indexed Citations,
EMBASE, Web of Science (Science Citation Index Expanded,
Social Sciences Citation Index, Conference Proceedings Citation
Index for both Science and Social Science & Humanities), and

Scopus. Supplementary Table 1 shows the search strategies used.
Text words used included acute lymphoblastic leukaemia, acute
leukaemia, infection, virus, and bacteria. We limited the search to
subjects 0–19 years old, and did not restrict the search by language.
References of the included studies were searched, and the first four
pages of a Google search using the same keywords were used to
search for grey literature.

Study selection. We defined the inclusion and exclusion criteria a
priori as studies of any design excluding editorials, reviews, and
case reports. Studies were included if: (1) the primary exposure of
interest included a prior history of any infection before the
diagnosis of childhood ALL; (2) the primary outcome of interest
was defined as clinically diagnosed ALL in children aged p19
years; (3) comparisons were made against a control or comparison
group; and (4) testing samples must have been collected and
assessed prior to treatment, if laboratory investigations were used
to determine past infections. Infections must have been reported by
the parent or guardian, or obtained through other data sources
such as medical records.

We excluded studies based on the following order: (1) definition
for infections was not at the individual level, for example, at an
ecological level that examines infections aggregated for a region;
(2) definition for infections that examined population mixing; (3)
infections were not explicitly infections during childhood (e.g.,
infections during pregnancy); (4) outcomes was not childhood ALL
in children aged p19 years; (5) absence of a comparison group; (6)
it was a review article; and (7) duplicate publication with the
same study population. When more than one publication from a
study was available, the most recent version, or the version with
the exposure or outcome of interest that was closest to the
objectives of this review was included. Studies were not restricted
by publication status, and relevant studies in other languages were
translated.

Two reviewers (JH and CT) independently evaluated the titles
and abstracts of publications identified by the search strategy, and
any publication thought to be potentially relevant by either
reviewer was retrieved in full. Final inclusion of studies in the
systematic review was determined by agreement of both reviewers.
Agreement between reviewers was evaluated using the kappa
statistic (k). Strength of agreement was defined as slight (k¼ 0.00–
0.20), fair (k¼ 0.21–0.40), moderate (k¼ 0.41–0.60), substantial
(k¼ 0.61–0.80), or almost perfect (k¼ 0.81–1.00) (Landis and
Koch, 1977).

Data extraction and quality assessment. Data extraction was
conducted in duplicate (JH and CT) using a standard form, which
collected information on: the primary exposure of ‘common
infections’, defined as any infection occurring from birth to the
diagnosis of ALL; secondary exposures of infection frequency,
severity of infections; and study design, region, publication era, and
source of controls. In studies that used laboratory investigations for
identification of infectious agents, we extracted IgG antibody
estimates to represent past infections, and if that was not available,
the polymerase chain reactions (PCR) method was extracted to
assess for the presence of the agent. We extracted infections
occurring in the first year of life or similar time windows in cases
with multiple time windows, as we felt this best represented early
exposure to infections. We extracted infection frequency levels for
common infections, and defined severity based on admission to
hospital. The adjusted models that incorporated the most
confounders for our primary outcome ALL were extracted.
Authors were contacted for further information regarding results
that were not presented. Five authors were contacted (Nishi and
Miyake, 1989; Schlehofer et al, 1996; Neglia et al, 2000; Rosenbaum
et al, 2005; MacArthur et al, 2008), and three responded with no
additional information (Nishi and Miyake, 1989; Neglia et al, 2000;
Rosenbaum et al, 2005).
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Study quality was assessed using the Meta Quality Appraisal
Tool (MetaQAT) (Rosella et al, 2015) and the Critical Appraisal
Skills Programme (CASP) for case–control (Programme CAS,
2014a), and cohort studies (Programme CAS, 2014b). Two
reviewers (JH and CT) assessed each study. For case–control
studies, we considered CASP scores of 1–3, 4–6, and 7–9 to be
high, moderate, and low-risk of bias, respectively; for cohort
studies, we considered CASP scores of 1–4, 5–8, and 9–11 to be
high, moderate and low-risk of bias, respectively.

Data synthesis and analysis methods. Our analysis combined
data at the study level. Our primary analysis sought to assess
exposure to common infections vs no common infections (referent
group) on the risk of developing ALL, relying on each study’s
definition. The most frequent infection was used when studies did
not report a common infection variable. We used the adjusted odds
ratio (OR) or rate ratio (RR) to calculate a pooled overall effect,
and assumed OR and RR were equivalent due to the rarity of the
outcome (Greenland, 1987); ORs or RRs o1 suggest infections
are protective against ALL. If a study presented multiple
frequency categories, we used the lowest vs the highest category,
a method commonly used in meta-analyses (Bae, 2016). The
method described by Greenland was used to calculate the variance
using the reported 95% confidence intervals (CI) (Greenland,
1987). We calculated a crude OR for studies not reporting one,
and to facilitate the calculation we added 0.5 to all cells if one
of the four cells reported a zero (Gart and Nam, 1988). In
secondary analyses, we used the different exposure levels of
infection to compute a regression slope (Greenland and
Longnecker, 1992). If an exposure level was defined using a range,
we used the midpoint of the range (e.g., 1–3 infections was
assigned a frequency of 2), and if the level was X4, we assigned a
frequency of 4. For infection severity, a dichotomous variable (yes
vs no) was used to determine the relationship with ALL. Post hoc
analyses examined the timing of infections in the first year of life
compared to infections that occurred after the first year of life, and
putative infectious agents was conducted if X3 studies reported
the agent.

As we anticipated heterogeneity between the studies, we used an
inverse variance weighted average, random-effects model where the
Wald-type tests and confidence intervals were estimated under a
normal distribution (DerSimonian and Laird, 1986). We investi-
gated potential sources of heterogeneity using subgroup analyses
and mixed-effects meta-regression. To examine the association of
study-level characteristics and infection effect, we fitted mixed-
effects meta-regression models to the natural logarithm of the OR.
The natural logarithm of the OR was assumed to have a normal
distribution, and a method-of-moments-based estimator to
estimate model variables. The mixed-effects model included fixed
effects for the covariates, and a random intercept term was
specified to model residual heterogeneity not accounted for by the
covariates. We corrected for multiple testing using a Bonferroni
correction that divides the P-value by the number of tests (Lagakos,
2006). Because of methodological differences (Wiemels, 2012), we
tested for interactions to assess the differences between studies that
used administrative/medical records, self-reported, and laboratory
investigation data (Altman and Bland, 2003). We stratified
infections in the first year of life by self-reported data and
administrative/medical records data. We explored clinical hetero-
geneity by conducting a subgroup analysis limiting cases of ALL to
B-cell precursor ALL (Wiemels, 2012). We also explored the extent
to which region (North America, Europe, Asia, or other),
publication era (p1999, 2000–2009, X2010), source of controls
(general population, general practitioner list, or hospital controls),
and risk of bias influenced the magnitude of the average effect
estimate in the meta-analysis. Publication bias was assessed by
funnel plot and the Egger’s test (Egger et al, 1997; Peters et al,

2008). The meta-analysis was performed using the metafor package
in R, version 3.3 (Viechtbauer, 2010).

RESULTS

Titles and abstracts of 9445 records were reviewed and 314 full-text
articles were retrieved (Figure 1). There were 39 studies that
satisfied the inclusion criteria (Till et al, 1979; van Steensel-Moll
et al, 1986; Nishi and Miyake, 1989; Schlehofer et al, 1996;
Dockerty et al, 1999; McKinney et al, 1999; Schuz et al, 1999;
Neglia et al, 2000; Mackenzie et al, 2001; Petridou et al, 2001; Chan
et al, 2002; Perrillat et al, 2002; Salonen et al, 2002; Kerr et al, 2003;
Canfield et al, 2004; Jourdan-Da Silva et al, 2004; Ma et al, 2005;
Rosenbaum et al, 2005; Surico and Muggeo, 2005; Loutfy et al,
2006; Paltiel et al, 2006; Zaki et al, 2006; Roman et al, 2007;
Cardwell et al, 2008; MacArthur et al, 2008; Flores-Lujano et al,
2009; Tesse et al, 2009; Rudant et al, 2010; Zaki and Ashray, 2010;
Mahjour et al, 2010; Ahmed et al, 2012; Chang et al, 2012;
Vestergaard et al, 2013; Ibrahem et al, 2014; Ajrouche et al, 2015;
Lin et al, 2015; Rudant et al, 2015; da Conceicao Nunes et al, 2016;
Ateyah et al, 2017), and of those, 38 were included in the meta-
analysis. One study did not report infections and the effect estimate
could not be calculated (Paltiel et al, 2006). The reviewers had
almost perfect agreement on the articles for inclusion (k¼ 0.85,
95% CI: 0.75, 0.95). Characteristics of the included studies are
presented in Table 1. The exposure definitions are presented in
Supplementary Table 2. The reviewers had moderate agreement on
the judgement of the risk of bias for each study (k¼ 0.50, 95% CI:
0.28, 0.72). Thirteen studies were judged as being low-risk of bias, 7
as being moderate-risk of bias, and 19 as being high-risk of bias
(Supplementary Table 3a and b). We found evidence of publication
bias (bias coefficient¼ 1.19, 95% CI: 0.30, 2.08; Supplementary
Figure 1).

Our analysis included 12 496 children with ALL and 2 356 288
children without ALL. There was no association between infections
and ALL, OR¼ 1.10, 95% CI: 0.95, 1.28; P¼ 0.187 (Figure 2). We
observed considerable heterogeneity between the studies
(I2¼ 76.5%; Q-statistic Po0.001). The trend analysis included 13
studies and we did not find frequency of infections to be associated
with ALL (OR¼ 1.00, 95% CI: 0.95, 1.05; P¼ 0.967). In the four
studies that assessed the infection severity, the combined average
effect of hospitalisations for infections was not associated with ALL
(OR¼ 1.22, 95% CI: 0.85, 1.75; P¼ 0.239). Infections that occurred
in the first year of life was not associated with ALL (OR¼ 0.99,
95% CI: 0.85, 1.16, P¼ 0.920). Infections that occurred after the
first year of life suggested an association with ALL (OR¼ 1.45, 95%
CI: 0.71, 2.96, P¼ 0.313), but did not differ compared to infections
in the first year of life (interaction effect OR¼ 0.69, 95% CI: 0.32,
1.43, P¼ 0.314) (Supplementary Figure 2). Parvovirus B19
(OR¼ 2.69, 95% CI: 1.16, 6.22, P¼ 0.020) was found to be
associated with ALL (Figure 2). No associations were observed for
human herpesvirus-6 (OR¼ 0.89, 95% CI: 0.42, 1.87, P¼ 0.752),
however Epstein–Barr virus (OR¼ 1.39, 95% CI: 0.83, 2.33,
P¼ 0.208), cytomegalovirus (OR¼ 1.95, 95% CI: 0.64, 5.96,
P¼ 0.242), influenza (OR¼ 1.97, 95% CI: 0.97, 3.98, P¼ 0.061),
and herpes simplex virus (OR¼ 2.04, 95% CI: 0.66, 6.23, P¼ 0.214)
showed a strong association to ALL, but lacked precision. Varicella,
rubella, mumps, measles, and pertussis were not associated with
ALL (Supplementary Figure 3).

Subgroup and sensitivity analyses. After applying the Bonferroni
correction, the P-value to indicate statistical significance for the
additional analyses was o0.005. The data sources for the studies
can be found in Table 1. Among the studies that used self-reported
data, we found no association between infections and ALL
(OR¼ 0.89, 95% CI: 0.79, 1.00, P¼ 0.049; I2¼ 50.5%). Among
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studies that used administrative/medical record data, we found no
association between infections and ALL (OR¼ 1.00, 95% CI: 0.61,
1.63, P¼ 0.994; I2¼ 90.8%). Among studies that used laboratory
data, we found infections to be associated with ALL (OR¼ 2.42,
95% CI: 1.54, 3.82, Po0.001, I2¼ 54.2%). The interaction effect
showed no difference between self-reported and administrative/
medical records data sources (OR¼ 0.89, 95% CI: 0.54, 1.48,
P¼ 0.656). Infections identified through laboratory data increased
the risk of ALL compared to infections captured through self-
reported data (interaction effect OR¼ 2.73, 95% CI: 1.71, 4.36,
Po0.001), but not administrative/medical records data sources
(interaction effect OR¼ 2.43, 95% CI: 1.24, 4.75, P¼ 0.009).
Among studies that used self-reported data, every additional
infection reduced the odds of ALL by 4% (OR¼ 0.96, 95% CI: 0.94,
0.98; Po0.001), whereas among studies that used administrative/
medical records data, every additional infection increased the
odds of ALL by 11% (OR¼ 1.11, 95% CI: 1.07, 1.15; Po0.001).
We found self-reported and administrative/medical records
data sources qualitatively differed in the frequency of infections
(interaction effect OR¼ 0.86, 95% CI: 0.83, 0.90, Po0.001).
Severity of infections remained unchanged in studies with self-
reported data (OR¼ 1.51, 95% CI: 0.86, 2.65; P¼ 0.158;
I2¼ 70.2%). Among self-reported studies, infections in the first year
of life suggested a protective effect against ALL (OR¼ 0.88, 95% CI:
0.80, 0.98, P¼ 0.017). No association was found between infections
in the first year of life and ALL among administrative/medical
records data (OR¼ 0.93, 95% CI: 0.55, 1.56, P¼ 0.775), and did not
differ from self-reported studies (interaction effect OR¼ 0.95, 95%
CI: 0.56, 1.62, P¼ 0.862).

The results from our primary analysis remained unchanged
when we restricted the analysis to B-cell precursor ALL or B-cell
common ALL (OR¼ 0.87, 95% CI: 0.77, 0.98, P¼ 0.022). Meta-
regression models that assessed study level characteristics included
data source, region, publication era, source of controls, and risk of
bias. Data source and region accounted for the largest proportion
of heterogeneity between the studies (R2¼ 47.2%, see
Supplementary Table 4). Stratification by risk of bias indicated
studies of low-risk of bias showed similar results to our main

analysis (OR¼ 0.92, 95% CI: 0.76, 1.10, P¼ 0.349), whereas studies
of moderate-to-high-risk of bias suggested infections increased the
risk of ALL (OR¼ 1.45, 95% CI: 1.12–1.86, P¼ 0.005). Compared
to studies of moderate-to-high-risk of bias, studies of low-risk of
bias were more likely to suggest infections were protective against
ALL (OR¼ 0.63, 95% CI: 0.46, 0.87, P¼ 0.004).

DISCUSSION

In this systematic review of 39 studies, we found no association
between any common infections, frequency, severity of infections,
and timing of infections and childhood ALL. We did however, find
a qualitative difference in our subgroup analyses; infections
increased the odds of developing ALL by 2.4-fold in studies with
laboratory investigations. Further, infections identified through
laboratory investigations increased the odds of ALL by 2.7-fold and
2.4-fold compared to infections identified through self-reported
and administrative/medical records data, respectively. Among
studies that used self-reported data, we found each additional infection
reduced the odds of ALL by 4%, and this differed significantly from
studies that used administrative/medical records data that suggested
each additional infection increased the odds of ALL by 11%. The
heterogeneity between the studies remained a challenge and could
partly be explained by differences in the data sources.

We failed to demonstrate an association in our primary analysis,
but found associations in our secondary and subgroup analyses by
data source. There are three plausible explanations for the observed
findings. First, the apparent results may be a chance finding from
multiple testing. Second, the ascertainment of infections from
parental recall has been shown to under-report childhood
infections and may be inaccurate in both the timing and
occurrence of infections, compared to medical records
(McKinney et al, 1991; Simpson et al, 2007). Despite these
potential issues, studies that confirmed the self-reported infections
with medical records for accuracy and completeness still found an
inverse association (Dockerty et al, 1999; Ajrouche et al, 2015).
Although studies that used medical records were void of recall bias,
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EMBASE + EMBASE Classic
Web of Science
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100
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2158

9036 8803

8730
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267Total

306

39

38

Full-text articles assessed for
eligibility of inclusion
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synthesis
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Duplicate records removed

Excluded by review of
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Figure 1. Study selection flow diagram.
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Table 1. Characteristics of the included studies and associated references

Study
design Case ascertainment Control selection

Data source
and collection

Selected exposure
definition Matching variables

Ateyah et al, 2017
CC 45 ALL cases

Single hospital
40 controls without cancer
Same hospital as cases

Laboratory
investigation

EBV anti-VCA IgG 1 : 1 on age and sex

da Conceicao Nunes et al, 2016
CC 60 ALL cases

Single hospital
120 controls without cancer
Same hospital as cases

Laboratory
investigation

EBV anti-VCA IgG 1 : 2 on age and sex

Ajrouche et al, 2015
CC 617 cases

National cancer registry
1225 controls without cancer
Population controls

Self-report:
interviews

Common infections 1 : M on age and sex

Lin et al, 2015
Co 62 ALL cases

National cancer registry
564 573 children without
cancer from the national
administrative database

Administrative
database

Enterovirus infection 1 : 1 on sex, age, urbanisation
level, parental occupation, and
index year of enterovirus
infection

Rudant et al, 2015a

CC 4641 ALL cases
National, clinical cancer,
general physician registries,
and hospitals

7971 controls without cancer
Birth, general physician
registries, hospitals, and
population quotas

Self-report:
interviews, or
questionnaires

Common infections —

Ibrahem et al, 2014
CC 40 ALL cases

Single hospital
60 healthy controls from
same region

Laboratory
investigation

Parvovirus B19 IgG Age and sex

Vestergaard et al, 2013
Co 815 ALL cases

National cancer registry
1 777 314 children without
cancer from the national
database

Administrative
data

Hospitalisation for
infections

—

Ahmed et al, 2012
CC 54 ALL cases

Single hospital
20 controls without leukaemia
Single hospital

Laboratory
investigation

EBV PCR —

Chang et al, 2012
CC 1039 ALL cases

National cancer registry
4140 controls without cancer
National administrative
database

Administrative
data

Common infections 1 : M on date of birth, sex, and
time of case diagnosis

Mahjour et al, 2010
CC 90 ALL cases

Single hospital
90 controls without ongoing
cancer from single hospital

Laboratory
investigation

HSV IgG 1 : 1 on age and sex

Rudant et al, 2010
CC 634 ALL cases

National cancer registry
1494 controls without cancer
Population controls

Self-report:
interviews

Common infections 1 : M age and sex

Zaki and Ashray, 2010
CC 40 acute leukaemia

Single hospital
20 healthy controls from the
same hospital

Laboratory
investigation

Parvovirus B19 IgG Age and sex

Flores-Lujano et al, 2009
CC 45 ALL cases with Down

syndrome from six select
cancer institutions in Mexico
City

218 controls with Down
syndrome without leukaemia
Specialised institutions
exclusively for Down
syndrome

Self-report:
interview

Common infections —

Tesse et al, 2009
CC 40 ALL cases from a single

hospital
40 healthy controls from the
same hospital

Laboratory
investigation

EBV IgG 1 : 1 on ethnic origin and
socioeconomic status

Cardwell et al, 2008
CC 112 ALL cases

National population-based
medical records from general
physician offices

2125 controls without
leukaemia
Same database as cases

Medical records:
Chart abstraction

Common infections 1 : M on physician practice, sex,
and date of birth

MacArthur et al, 2008
CC 351 ALL cases

Population-based cancer
registries and oncology
centres

399 controls without cancer
Provincial health insurance
registration database

Self-report:
interviews

Varicella 1 : 1 on age, sex, and area of
residence
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Table 1. ( Continued )

Study
design Case ascertainment Control selection

Data source
and collection

Selected exposure
definition Matching variables

Roman et al, 2007
CC 425 ALL cases

National population-based
medical records from general
physician offices

1031 controls without cancer
Same database as cases

Medical records:
Chart abstraction

Common infections 1 : M on region of residence at
diagnosis, sex, month, and year
of birth

Loutfy et al, 2006
CC 68 ALL cases

Single hospital
20 controls
Siblings of cases

Laboratory
investigation

EBV anti-VCA IgG —

Zaki et al, 2006
CC 20 acute leukaemia

Single hospital
20 healthy controls from the
same hospital

Laboratory
investigation

Parvovirus B19 IgG Age and sex

Ma et al, 2005
CC 294 ALL cases

Hospital-based network
registry covering 35 counties
in Northern and Central
California

376 controls without cancer
Random selection from state-
wide birth files

Self-report:
interview

Stratified by non-Hispanic
white and Hispanic;
Common infections

1 : 1 and 1 : 2 on child’s date of
birth, sex, mother’s race,
Hispanic status, and mother’s
county of residence

Rosenbaum et al, 2005
CC 255 ALL cases

Institutional cancer registry at
4 major centres serving 31
counties

760 controls
State live birth registry

Self-report:
questionnaire

Colds 1 : M on sex, year of birth, and
race

Surico and Muggeo, 2005
CC 82 ALL cases

Single hospital
196 controls without cancer
From the same hospital
as cases

Laboratory
investigation

EBV anti-VCA IgG and
EBNA IgG latent infection

1 : 2 on age, sex, and
comparable socioeconomic
status

Jourdan-Da Silva et al, 2004
CC 393 ALL cases

National cancer registry
530 controls without
leukaemia or lymphoma
Population controls

Self-report:
questionnaire

Common infections 1 : M on age, sex, and region of
residence

Canfield et al, 2004
CC 97 ALL cases with Down

syndrome
Children’s Oncology Group
registration files

173 controls with Down
syndrome without leukaemia
From the same physician
practice as the cases

Self-report:
interview

Common infections 1 : M on age

Kerr et al, 2003
CC 16 acute leukaemia 23 controls with diseases

requiring cerebral spinal fluid
extraction

Laboratory
investigation

Parvovirus B19 PCR —

Chan et al, 2002
CC 80 ALL cases

Clinical database
228 controls without
leukaemia
Regional controls

Self-report:
interviews

Common infections —

Perrillat et al, 2002
CC 219 ALL cases

Hospital records from four
cities in France

237 controls without cancer
Controls were from the same
hospital and from same
catchment area of
the hospital

Self-report:
interview

Repeated common
infections

1 : M on sex, age, hospital,
hospital catchment area, and
ethnicity

Salonen et al, 2002
CC 40 acute leukaemia 39 hospital controls Laboratory

investigation
HHV-6 IgG 1 : 1 on age, sex, and season

MacKenzie et al, 2001
CC 27 ALL cases 28 children with other cancers Laboratory

investigation
EBV PCR —

Petridou et al, 2001
CC 94 ALL cases

Clinical database of
participating centres

94 controls
Hospital controls for non-
infectious reason

Laboratory
investigation

Parainfluenza 1, 2 and 3
IgG

1 : 1 on sex, age, hospital, and
time period

BRITISH JOURNAL OF CANCER Childhood infections and risk of childhood ALL

132 www.bjcancer.com | DOI:10.1038/bjc.2017.360

http://www.bjcancer.com


they were often unable to include other important confounders,
such as ethnicity, parental occupation, maternal age, birth weight,
and parity (Dockerty et al, 2001; Hjalgrim et al, 2004; Ma et al,
2005; Lim et al, 2014). Finally, the findings from the laboratory
studies must be interpreted with caution due to the study quality,
and smaller sample sizes and larger effect sizes as shown by the
asymmetry of the funnel plot.

The mutational mechanisms of ALL point to three potential
pathways: (1) anomalies in lineage-specific factors (ETV6-RUNX1,
IKZF1, and PAX5); (2) flaws in receptor protein tyrosine
kinases and their down-stream pathways; and (3) epigenetic
modifiers (Whitehead et al, 2016). Recent developments in genome
and mouse model studies may change our initial understanding
of the aetiology of ALL as new studies have generated new
hypotheses with respect to identifying potential infectious
candidates (Martin-Lorenzo et al, 2015; Swaminathan et al,
2015). The presence of parvovirus B19 IgG antibodies is associated
with the presence of ETV6-RUNX1 (Ibrahem et al, 2014), and is
associated with certain class II HLA alleles that are risk factors for
the development of childhood ALL. Furthermore, parvovirus B19
has certain characteristics similar to other oncoviruses, that is,
its DNA genome persists indefinitely in human tissues following

acute infection, causing mild or no disease, and upregulates pro-
inflammatory cytokines associated with ALL onset (Kerr and Mattey,
2015). The results from the small laboratory studies will require
confirmation in larger population studies. Since half of 15-year-old
adolescents have specific antiparvovirus B19 antibodies (Young and
Brown, 2004), the measurement of the clinical syndromes caused by
parvovirus B19 may be preferred to assess manifestations of the
pathogen. Parvovirus B19 infection may provide only a subset of an
oncogenic hit in a multistep carcinogenesis process.

The qualitative differences in our findings support the
hypothesis of an alternative pathway for ALL development. Recent
qualitative reviews have attempted to explain the positive
association between infections and ALL and suggested studies that
used medical records or administrative data may be capturing
children with an earlier than expected altered immune system.
These children may respond differently to infections, have a greater
propensity to seek medical care when infections are contracted,
and/or have a stronger immune response (Wiemels, 2012;
Whitehead et al, 2016). The sensitivity to infections may be due
to a lack of immunomodulation from lower levels of anti-
inflammatory cytokine interleukin-10 in newborns who later go
on to develop ALL (Chang et al, 2011).

Table 1. ( Continued )

Study
design Case ascertainment Control selection

Data source
and collection

Selected exposure
definition Matching variables

Neglia et al, 2000
CC 727 ALL cases

Clinical database of
participating centres

637 controls
Random digit dialling
residents

Self-report:
Interviews

Ear infection 1 : M on age at diagnosis, race,
and telephone area code

Schuz et al, 1999
CC 884 ALL cases

National cancer registry
2566 controls without cancer
Population-based registration
files

Self-report:
interview and
questionnaire

Common infections 1 : M on age and sex

McKinney et al, 1999
CC 124 ALL cases

National cancer registry
236 controls without cancer
Population-based general
practice registration files

Medical records:
chart abstraction

Common infections 1 : M on age, sex, and health
board area of residence

Dockerty et al, 1999
CC 97 ALL cases

National cancer registry
303 controls without cancer
National birth records

Self-report:
interview

Common infections 1 : M on age and sex

Schlehofer et al, 1996
CC 118 ALL cases

National cancer registry
187 controls
Hospital controls from
participating sites

Laboratory
investigation and
self-report:
questionnaire

Varicella 1 : M on age and sex

Nishi and Miyake, 1989
CC 63 ALL cases

9 hospitals in Hokkaido
Prefecture, Japan

126 healthy controls
Same hospitals located in
areas where the index
case resided

Self-report:
interview

Measles 1 : M on age, sex, and district
residence at diagnosis

van Steensel-Moll et al, 1986b

CC 492 ALL cases
Study Group national registry

480 controls without cancer
Randomly drawn from
municipal registration files
from same region as cases

Self-report:
questionnaire

Hospitalisations for
infections

1 : 1 on age, sex, and place of
residence at diagnosis

Till et al, 1979
CC 54 ALL cases

Single hospital
121 controls without
leukaemia
Ascertained from parent’s
suggested friends or
neighbours for matching

Self-report:
questionnaire,
and interview

Common infections 1 : M on age

Abbreviations: EBV¼Epstein–Barr virus; EBNA¼Epstein–Barr nuclear antigen; HSV¼ represents herpes simplex virus; PCR¼polymerase chain reaction; VCA¼ viral capsid antigen.
aOnly selected sites contributed early infection information and the presented information is based on those sites that contributed data.
bNot included in primary analysis, but was included in the secondary analysis examining severe infections.
Selected exposure definition represents the infection definition used in the primary analysis. CC represents case–control and Co represents cohort studies. 1 : M represent frequency matching.
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As in previous reviews, there continues to be substantial
heterogeneity among the studies; however, our review focuses on
specific objectives and highlights the recent developments of the

field (McNally and Eden, 2004; Buffler et al, 2005; Greaves, 2006;
Ma et al, 2009; Maia Rda and Wunsch Filho, 2013). There are
several limitations of this study. The heterogeneity between the

Author, year

Primary analysis – any infection
Ateyah et al., 2017
da Conceicao Nunes et al., 2016
Lin et al., 2015
Ajrouche et al., 2015
Rudant et al., 2015
Ibrahem et al., 2014
Vestergaard et al., 2013
Ahmed et al., 2012
Chang et al., 2012
Mahjour et al., 2010
Rudant et al., 2010
Zaki and Ashray, 2010
Flores-Lujano et al., 2009
Tesse et al., 2009
Cardwell et al., 2008
MacArthur et al., 2008
Roman et al., 2017
Loutfy et al., 2006
Zaki et al., 2016
Ma et al., 2005 - Hispanic
Ma et al., 2005 - Non Hispanic White
Rosenbaum et al., 2005
Surico and Muggeo, 2005
Canfield et al., 2004
Jourdan-Da Silva et al., 2004
Kerr et al., 2003
Chan et al., 2002
Perrillat et al., 2002
Salonen et al., 2002
MacKenzie et al., 2001
Petridou et al., 2001
Neglia et al., 2000
Dockerty et al., 1999
McKinney et al., 1999
Schuz et al., 1999
Schlehofer et al., 1996
Nishi and Miyake, 1989
van Steensel- Moll et al., 1986
Till et al., 1979

Total (95% Cl)

Ajrouche et al., 2015
Rudant et al., 2015

Rudant et al., 2010
Chang et al., 2012

Cardwell et al., 2008
Ma et al., 2005 - Hispanic
Ma et al., 2005 - Non-Hispanic White
Canfield et al., 2004
Jourdan-Da Silva et al., 2004
Chan et al., 2002
Perrillat et al., 2002
Negila et al., 2000
Dockerty et al., 1999

Total (95% Cl)

effect (P = 0.977)

effect (P = 0.286)

effect (P = 0.020)

Secondary analysis – Severity of Infections

Secondary analysis – Frequency of Infections

Secondary analysis - Parvovirus B19

Ajrouche et al., 2015
Vestergaard et al., 2013
Flores-Lujano et al., 2009
Van Steensel-Moll et al. 1986

Total (95% Cl)

Total (95% Cl)

da Conceicao Nunes et al., 2016
Ibrahem et al., 2014
Zaki and Ashray, 2010
Zaki et al., 2006
Kerr et al., 2003
Petridou et al., 2001
Schlehofer et al., 1996

I2 = 76%, Q (P < 0.001), Test for overall 

I2 = 80%, Q (P < 0.001), Test for overall 

I2 = 71%, Q (P = 0.015), Test for overall 

I2 = 72%, Q (P = 0.001), Test for overall 

effect (P = 0.187)

Odds 
ratio (95% Cl) Weights (%)

4.06
1.31
0.43
0.75
0.95
3.62
0.92
30.59
3.18
3.87
0.70
27.61
1.45
1.12
1.05
1.01
1.30
0.27
27.88
1.74
0.79
0.97
1.36
0.52
0.80
16.92
0.77
0.60
3.25
0.83
1.90
0.71
1.29
0.49
1.00
1.63
1.71
0.80
2.90
1.10

0.93

0.97
1.11
0.94

1.19
1.13
0.95
0.81
1.12
0.79
1.13
0.93
1.09
1.00

1.48
0.92
3.45
1.00
1.22

2.20
3.62
27.61
27.88
16.92
1.10
0.48
2.69

(1.20, 13.60)
(0.54, 1.98)
(0.26, 0.69)
(0.57, 0.99)
(0.87, 1.04)
(1.49, 8.78)
(0.78, 1.07)
(1.76, 531.87)
(2.17, 4.66)
(1.96, 7.65)
(0.60, 0.90)
(1.56, 488.95)
(0.64, 3.30)
(0.70, 4.81)
(0.64, 1.74)
(0.69, 1.48)

(0.03, 2.25)
(0.90, 1.80)

(1.48, 526.12)
(0.80, 3.76)
(0.40, 1.57)
(0.64, 1.45)
(0.75, 2.46)
(0.28, 0.96)
(0.60, 1.00)
(1.03, 77.18)
(0.38, 1.57)
(0.40, 1.00)
(0.32, 32.68)
(0.22, 3.14)
(1.10, 3.20)
(0.50, 1.01)
(0.68, 2.46)
(0.26, 0.95)
(0.80, 1.20)
(0.91, 2.92)
(0.86, 3.37)
(0.60, 1.00)
(0.84, 9.96)
(0.95, 1.28)

(0.87, 0.99)

(1.07, 1.15)
(0.94, 0.99)

(0.88, 0.99)
(0.97, 1.45)
(0.97, 1.31)
(0.83, 1.09)
(0.62, 1.08)

(0.81, 1.56)

(0.95, 1.05)

(0.91, 2.41)
(0.78, 1.07)
(1.37,8.66)
(0.70, 1.40)
(0.85, 1.75)

(1.02, 4.76)
(1.49 , 8.78)
(1.56, 488.95)

(0.70, 1.90)
(1.03, 77.18)
(1.48, 526.12)

(0.14, 1.69)
( 1.17, 6.22)

(0.84, 1.40)
(0.89, 0.99)

(0.50, 1.26)
(0.89, 1.41)

1.12
2.42
3.18
4.20
4.86
1.75
4.68
0.25
3.69
2.38
4.52
0.24
1.93
1.56
3.13
3.70
3.87
0.43
0.23
2.07
2.37
3.56
2.71
2.63
4.30
0.42
2.28
3.32
0.37
0.97
2.97
3.84
2.52
2.50
4.52
2.76
2.37
4.30
1.09
100

12.48
14.37
14.02
12.47
5.03
6.80
7.70
3.01
4.11
1.27
2.35
12.87
3.51
100

23.11
36.69
11.16
29.04
100

20.37
19.29
6.31
6.11
9.34
22.63
15.94
100

Infections protective Infections increase risk
Odds ratio

0.1 1 10 100

Figure 2. Random-effects model examining the association between common infections and risk of childhood acute lymphoblastic leukaemia.
CI represents confidence interval. Common infections are reported as a two-class variable, or highest vs lowest in more than two categories. The
secondary analysis for frequency of infections is a combined maximum likelihood effect estimate that estimates a trend from summarised dose–
response data. The presence of parvovirus B19 was measured as a dichotomous variable, presence of IgG antibodies vs no IgG antibodies for
parvovirus B19. All other studies, the reference was no infections.
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studies in the definition of infections, the time period to observe
the infections, and the evidence of publication bias was a challenge.
We decided to use any common infection as our main exposure
variable in the primary analysis because we felt it to be the most
appropriate measure that reflects the hypotheses from Kinlen and
Greaves (Kinlen, 1988; Greaves, 2006). The heterogeneity likely
stems from the unknown aetiology of ALL, and one that requires
further research. The limitation with laboratory investigation
studies is the inability to disentangle temporality. The presence of
the infectious agent was assessed after a diagnosis of ALL was made
and it is unknown if the agent was present before or after the onset
of ALL. It is unclear whether the infection occurred before the
onset of ALL, or if the potentially reduced immune function
because of ALL contributed to the contraction of specific
infections. Further, the laboratory studies were appraised as
high-risk of bias, often small, and may not be generalisable.
Despite the differences in the risk of bias amongst the included
studies, our conclusions were unchanged after we stratified the
analysis to the 13 studies with a low-risk of bias. Another limitation
was the quality of reporting in the studies included in the review.
Most studies clearly reported their findings, but studies published
earlier tended to have incomplete reporting.

Costs and feasibility are the usual barriers to establishing new
large pregnancy and birth cohorts (Riley and Duncan, 2016),
research groups have instead combined existing cohorts to study
childhood cancers (Brown et al, 2007; Metayer et al, 2013) and
other diseases (Larsen et al, 2013). The increased power may help
to identify high risk or vulnerable, and understudied populations.
The next step should focus on the measurement of infections and
infectious exposures. The use of linked administrative data
provides a large population for study with accurate information
on the timing of physician diagnosed infections, frequency, and
severity of infections as answers to these questions remain elusive.
Enhancing the administrative data with surveys to obtain other
infectious exposures such as day-care attendance, breastfeeding, or
by applying emerging technologies that detect and quantify the
pathogen burden with greater speed, accuracy, and simplicity
(Caliendo et al, 2013) in a subset sample would improve
the accuracy and strengthen the measurement of infections.
Day-care attendance has been found to increase the risk of
exposure to infections, and has been used as a proxy for infections.
A meta-analysis found day-care attendance reduced the risk of
childhood ALL (Urayama et al, 2010). Breastfeeding has been
found to reduce the risk of ALL through its immunologically active
components, antibodies, and other elements that influence
the development of the infant’s immune system (Kwan et al,
2004; Martin et al, 2005; Amitay and Keinan-Boker, 2015). The
challenge will be to disentangle the mechanistic pathways of the
infectious aetiology hypothesis by combining different measure-
ments of infectious exposures to determine the total, direct,
and indirect effect of infections on the risk of developing childhood
ALL.

An infectious aetiology of ALL is suggestive in our study;
however, the challenges in measuring infections must be addressed.
Parvovirus B19 as a putative causal infectious agent for childhood
ALL needs to be tested in larger cohorts and the rather substantial
point estimates from influenza, cytomegalovirus, and herpes
simplex virus warrant a follow-up in larger studies. Whether
children with ALL have a dysregulated immune function present at
birth requires further investigation. Only one study conducted an
exploratory assessment on a key aspect of Greaves’ hypothesis, the
timing of the infections in early life (Crouch et al, 2012). Our
future research aims to provide further insight on the timing of
infections and the risk of developing childhood ALL. The use of
administrative data or medical records with linked laboratory data
would overcome the challenges facing studies that used self-
reported and laboratory investigation data, and would be ideal to

evaluate the association between childhood ALL and the timing
and frequency of infections. The review has highlighted knowledge
gaps surrounding the relationship between childhood ALL and
severity of infections. The causal association of infections will need
to be tested in conjunction with other identified risk factors to
quantify the direct and indirect interaction and mediated effect of
infections on ALL risk. These will be critical research questions in
discovering the causes of childhood ALL and will be the foundation
for future studies that can combine epidemiologic, genetic, and
environmental factors.
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