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ABSTRACT

Mammalian gene expression is often regulated by
distal enhancers. However, little is known about
higher order functional organization of enhancers.
Using �100 K P300-bound regions as candidate en-
hancers, we investigated their correlated activity
across 72 cell types based on DNAse hypersensitiv-
ity. We found widespread correlated activity between
enhancers, which decreases with increasing inter-
enhancer genomic distance. We found that
correlated enhancers tend to share common tran-
scription factor (TF) binding motifs, and several chro-
matin modification enzymes preferentially interact
with these TFs. Presence of shared motifs in
enhancer pairs can predict correlated activity with
73% accuracy. Also, genes near correlated enhan-
cers exhibit correlated expression and share
common function. Correlated enhancers tend to be
spatially proximal. Interestingly, weak enhancers
tend to correlate with significantly greater numbers
of other enhancers relative to strong enhancers.
Furthermore, strong/weak enhancers preferentially
correlate with strong/weak enhancers, respectively.
We constructed enhancer networks based on shared
motif and correlated activity and show significant
functional enrichment in their putative target
gene clusters. Overall, our analyses show exten-
sive correlated activity among enhancers and
reveal clusters of enhancers whose activities are
coordinately regulated by multiple potential mechan-
isms involving shared TF binding, chromatin modify-
ing enzymes and 3D chromatin structure, which
ultimately co-regulate functionally linked genes.

INTRODUCTION

Eukaryotic transcription is intricately regulated at
multiple levels, including epigenomic modifications,

chromatin reorganization and sequence-specific binding
of transcription factor (TF) to either proximal promoter
regions or to distal enhancer/repressor regions of a gene
(1,2). Distal enhancers can regulate their target genes from
long distances, the most extreme case being the Shh gene’s
enhancer at �1Mb away, and are especially important in
regulating critical developmental genes (3,4). Recent
advances in sequencing technologies have revealed that
cell-specific enhancers are often marked by P300 binding
(a histone acetyltransferase and transcription coactivator)
(5,6), as well as other epigenomic marks such as DNAse
hypersensitivity (DHS), H3K4me1, H3K27ac and so
forth. (7,8). Various combinations of these marks have
been used to generate genome-wide catalogs of potential
cell-type-specific distal enhancers (9). However, the target
genes of the distal enhancers remain unknown for the
most part. Moreover, the mechanisms by which distal en-
hancers regulate the expression of their target genes are
not completely understood.

Functionally linked genes, e.g. components of a biolo-
gical pathway or a protein complex, tend to be co-
expressed and are presumed to be co-regulated (10–13).
Gene networks based on co-expression patterns of gene
pairs across multiple conditions and/or cell types reveal
intricate organization of genes into pathways and func-
tional groups (14). Similar to functionally related genes,
functionally related enhancers, i.e. those regulating func-
tionally related genes, share TF binding sites and are likely
to have spatio-temporal coordinated activity (15). A
network-level analysis of coordinated activities of distal
enhancers has not been reported, and such an analysis is
likely to reveal higher order organization of a global
transcriptional regulatory network mediated by distal en-
hancers. Analogous to using expression level to quantify
transcriptional activity of a gene, DHS of an enhancer
region has been proposed as a proxy for its condition-
specific regulatory activity (8,16,17). Under the
encyclopedia of genomic elements (ENCODE) project,
whole-genome DHS profiles have been generated for
dozens of human cell types (18). Analogous to using
cross-condition expression correlation to infer gene
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networks, cross-condition DHS correlation can be used to
infer enhancer networks. Indeed, a recent report has
shown the effectiveness of using cross-condition DHS cor-
relation between distal enhancers and gene promoters to
identify distal enhancers of genes (19).

Tissue-specific enhancers are often marked by P300
binding. Most of the tested P300 bound regions in mouse
embryonic forebrain, midbrain and limb tissue were shown
to function as enhancers in transgenic mice (5). Thus, a
genome-wide profile of P300 bound regions provides a rea-
sonable approximation for candidate enhancer regions.
Starting with �100 000 P300 bound regions in one or
more of four cell types as candidate enhancers, here we
perform a detailed network-level analysis of enhancers
based on their DHS correlation across 72 cell types. We
identified a large set of enhancer pairs whose DHS level
was significantly correlated across cell types, even after
controlling for autocorrelation of DHS along the chromo-
some. We found that (i) correlated enhancers tend to share
common TF binding motifs. (ii) Several chromatin modifi-
cation enzymes (CME) preferentially interact with TFs
whose binding sites co-occur in pairs of correlated enhan-
cers. (iii) Presence of shared motifs can discriminate
between correlated and uncorrelated enhancer pairs with
73% accuracy. (iv) Using the gene closest to an enhancer as
its putative target, we found that the targets of correlated
enhancers have correlated expression and are involved in
common biological processes. (v) Based on Hi-C data on
chromatin spatial interaction in two different cell types, we
found that correlated enhancers are spatially proximal sig-
nificantly more often than expected. (vi) Strong enhancers,
those with higher expression levels of the nearest gene, tend
to be correlated with fewer enhancers than weak enhancers
but preferentially correlate with other strong enhancers,
whereas weak enhancers are correlated with a greater
number of enhancers and preferentially correlate with
other weak enhancers. (vii) We constructed enhancer
networks based on correlated activity and shared TF
motifs, and found significant enrichment of specific biolo-
gical processes among the putative gene targets of the
enhancer modules.

Overall, our analysis suggests that functionally linked
genes may be co-regulated by distal enhancers whose
activities are regulated by common sets of TFs and
mediated by both 3D chromatin structure as well as
CMEs. Our work represents the first investigation of
enhancer networks based on correlated activity across
multiple cell types.

MATERIALS AND METHODS

P300 and DHS data overview

P300 binding has been shown to be a reliable marker of
tissue specific enhancers (5). As a starting set of candidate
enhancers, we extracted from Gene Expression Omnibus
(GEO) (20) the genomic regions bound by P300 in at least
one of the four cell types—HepG2 (GEO accession Id
GSM758575), GM12878 (GEO Id GSM803387), H1-
HESC (GEO Id GSM803542) and SK-N-SH_RA (GEO
Id GSM803495). For each of the four data sets, we

extracted the P300 peaks and, in case of overlaps, used
the center of merged overlapping regions. We thus
obtained 98 353 enhancer regions, with an average length
of 500 bp centered at the center of the P300 peaks, <5%
(7%) of which overlap with 2 kb (5 kb) upstream of
annotated ENSEMBL transcripts. From the ENCODE
database (18), we extracted the genome-wide DHS broad
peak data for each of the 72 tissue types represented; for
tissue types with more than one data set available, we
chose the set with the greatest number of peaks. For
each enhancer, with respect to each tissue, DHS was set
to 1 if the 500 bp enhancer region overlapped a DHS peak;
otherwise, it was set to 0. This procedure yielded a
98 353� 72 binary matrix, with rows corresponding to en-
hancers, columns to tissue (or cell) types and matrix
entries reflecting the ‘activity state’ of an enhancer in a
tissue. To minimize dependencies, tissues were clustered
based on similarity, into 37 clusters, including 25 single-
tons (Supplementary Table S1), and only the most repre-
sentative tissue from each cluster was retained for further
analyses. Accordingly, the DHS matrix was reduced from
72 columns to 37.

Mutual information

Mutual information (MI) between two binary vectors X
and Y is defined as

MIðX,YÞ ¼
X

x2o,1

X

y2o,1

pðx,yÞ log pðx,yÞ

pðxÞ pðyÞ
,

where p(x) is the probability of x in X, p(y) is probability
of y in Y and p(x,y) is the joint probability that x and y co-
occur in vectors X and Y. Informally, MI quantifies how
much knowing one of the two vectors helps determine the
other. Relative advantages of using MI over other
measures such as correlation have been discussed previ-
ously, e.g. (21).

Controlling for DHS autocorrelation

We controlled for the observed cell-type-specific DHS
autocorrelation to detect significantly correlated
enhancer pairs (Figure 1). Separately for each of the 37
cell types, based on 100 000 random genomic segments, we
estimated the autocorrelation probability of DHS at a
location conditional on DHS at another location at a
specific distance-range (or distance-bin). In particular,
given a cell type, enhancer X, and enhancer Y at
distance-bin d from X, we estimate the probability that
Y is DHS conditional on the DHS status of X. This
tissue-specific and distance-specific autocorrelation prob-
ability was then used to create a ‘synthetic’ enhancer pair
corresponding to each of the actual enhancer pairs. Each
synthetic pair consists of the DHS vector for one member
of the actual pair and a randomly generated vector of 37
binary DHS values replacing the other member (Figure 1).
The autocorrelation conditional probabilities estimated
above are used to generate the synthetic vector, condi-
tioned on cell type and distance-bin. As a consequence,
DHS data for synthetic pairs preserve for each tissue type
both the mean DHS and extent of autocorrelation
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observed in the real genome, resulting in an MI profile
that is virtually identical to that of random genomic
segment pairs (Figure 2).

TF binding site identification

For each enhancer sequence and each of the 981 positional
weight matrix for vertebrate TFs in transcription factor
binding sites (TRANSFAC) database (22), we used our
previously published tool (23) to identify binding sites
based on a score threshold of 95th percentile. For each
enhancer, only presence/absence of a motif was noted.

Motif co-occurrence score

We quantified the tendency of each motif to co-occur in
correlated pairs of enhancers relative to its expected co-
occurrence frequency, assuming independent occurrence
of motifs among enhancers. If p represents the fraction
of enhancers in which a motif occurs then assuming inde-
pendence the motif is expected to co-occur in p2 of the
enhancer pairs. The motif co-occurrence score is defined
as the ratio of the observed co-occurrence frequency and
the expected frequency p2.

Removing dependencies among pairs

In both the foreground and the background, transitive
dependencies were removed; enhancer pairs were
excluded if either of the enhancers was part of a previously
included pair. In addition, we ensured that the distribution

of inter-enhancer distances was identical for the fore-
ground and the background.

Motif clustering

Motifs were clustered based on similarity owing to struc-
tural similarities between the corresponding TFs. All
pairwise motif similarity scores for the 981 vertebrate
motifs were obtained from the author of the STAMP
DNA-binding motif comparison tool (24). Using pairwise
similarity, the motifs were hierarchically clustered using the
‘hierarchy’ module in SciPy’s ‘cluster’ package (www.scipy.
org) for Python based on Euclidean distance and complete
linkage. The resulting tree was trimmed using the module’s
‘fcluster’ function with a maximum co-phenetic distance
criterion that produced 142 disjoint clusters.

Tissue clustering

We computed the pairwise similarity between tissues based
on their genome-wide DHS profiles for all enhancers. We
used the ‘linkage’ method in Scipy’s ‘hierarchy.cluster’
class to perform hierarchical clustering based on average
linkage in combination with Russell–Rao pairwise
distance (i.e. the fraction of enhancers with a DHS state
of one in the two tissues). The resulting tree was trimmed
using the class’s fcluster method and with an inconsistency
criterion that resulted in 37 clusters, including 25 single-
tons. In each cluster of size 3 or larger, the tissue with the
lowest mean distance to other cluster members was
retained, whereas in clusters of size 2, it was the tissue

Figure 1. Generating the synthetic enhancer data to account for autocorrelation. (A) Starting with a large set of random genomic regions and their
DHS profiles across 37 cell types, we estimated, for each cell type separately, the conditional probability of observing DHS at a location Y0, given the
DHS status at another location X at distance d from X. (B) Given a pair of enhancer DHS profiles (X,Y), we generate a synthetic pair of DHS
profiles as (X,Y0) where Y0 is randomly generated from X and the conditional probabilities estimated in (A). See text for further details. Blue:
DHS=1 (open chromatin); white: DHS=0 (closed chromatin).

6830 Nucleic Acids Research, 2013, Vol. 41, No. 14



with the greatest mean separation from all other tissues in
the sample.

Determination of concordance between enhancer cluster’s
and target gene cluster’s tissue-specific activity

We clustered the 84 tissue types in the CTen database and
the 72 cell/tissue types in the DHS database into 34 and 23
cytologically motivated classes, respectively. [Class sizes
ranged from 1 to 19 (brain) for CTen tissues and 1–15
(endothelium and blood) for DHS cell types]. Agreement
in tissue-specific activity was assessed based on the 17
classes shared between the two domains; tissues falling
outside of these classes were not considered. For each
target gene cluster, we first identified the tissue in which
the genes exhibit tissue-specific activity according to CTen
[False Discovery Rate (FDR) 0.01]. Then, we obtained the
corresponding tissue class in the DHS data set and
determined the rank of that tissue class for the corres-
ponding enhancer cluster activity as follows. For an
enhancer cluster, and for each tissue class, we determine
the ratio between (i) the fraction of enhancers in the par-
ticular cluster having DHS in that tissue class and (ii) the
fraction of ‘all’ enhancers with DHS in that tissue class.
We then use this tissue-specific fold enrichment to rank all
23 tissue classes. We are interested in the rank of the
specific tissue class in which the corresponding genes had

robust and specific activity according to CTen. We thus
obtain a rank for each cluster, and we determined the
median rank among all clusters in a clustering. We
applied eight different clustering parameters and for
each clustering obtained the median rank for the actual
clusters as well as for randomly generated background
clusters with same size. Finally, we compared the
median ranks for the foreground and background
clusters using paired Wilcoxon test.

RESULTS

Data overview

P300 binding has been shown to be a reliable marker of
tissue specific enhancers (5). As a starting set of candidate
enhancers, we obtained 98 353 P300 peaks in four different
cell types (see ‘Materials and Methods’ section). We ex-
tracted genome-wide DHS broad peak data for 72 tissue
types in the ENCODE database (18) and clustered the 72
tissues into 37 representatives (Supplementary Table S1)
based on genome-wide correlation (see ‘Materials and
Methods’ section). Enhancers vary broadly (0–37 tissues)
in the number of tissues in which they overlap a DHS peak
(see distribution in Supplementary Figure S1). For each
enhancer, we constructed a DHS profile as a binary vector
of length 37 corresponding to 37 cell types, by setting the
DHS value to 1 if the enhancer region overlapped a DHS
peak in the particular tissue; otherwise, it was set to 0.
This procedure yielded a 98 353� 37 enhancer ‘activity’
matrix, with rows corresponding to enhancers, columns
to tissue (or cell) types.

Identifying enhancers with correlated activity

We quantified correlated activity for a pair of enhancers
using the information theoretic measure MI using DHS in
37 tissues (see ‘Materials and Methods’ section). However,
MI can be biased toward enhancer pairs that are near each
other on the genome, if DHS regions are long or tend to
cluster on the genome. We tested this by selecting intra-
chromosomal pairs using 100 000 random genomic
segments and computing their MI. Figure 2 shows that
the fraction of segment-pairs with MI >0.4 decays mono-
tonically with increasing inter-segment distance, suggest-
ing autocorrelation of DHS along the genome; the same
trend holds for other MI thresholds. The same trend also
holds for the 35 million enhancer pairs tested, but cru-
cially, the fraction of enhancer pairs with high MI is
greater than that of random genomic segments (repre-
sented by yellow and gray bars, respectively, in
Figure 2). We controlled for the observed cell-type-
specific DHS autocorrelation to detect significantly
correlated enhancer pairs (see ‘Materials and Methods’
section and Figure 1). We consider six distance-bins
ranging from 20Kb to 12.5Mb (Figure 3) and within
each distance-bin, we identify significantly correlated
enhancer pairs by estimating a nominal FDR (25) by
comparing MI scores for actual and control pairs (see
‘Materials and Methods’ section).

Figure 2. MI of chromatin states is higher among enhancer pairs than
background pairs, and it decreases monotonically with increasing
distance. Plot shows the relationship between inter-enhancer genomic
distance and the number of actual and synthetic enhancer pairs with
MI above 0.4 across 37 representative cell types. Enhancer pairs
(light gray) were selected from 98 000 enhancers identified based on
P300 ChIP-Seq peaks by exhaustively pairing all enhancers sharing
the same chromosome and <12.5Mb apart. Five million additional
pairs were sampled for distances >12.5Mb, as well as 1 million inter-
chromosomal pairs. As a negative control, the DHS vector of a
randomly chosen member of each enhancer pair was used as a seed
to generate a paired synthetic DHS vector by conditioning on observed
cell type-specific DHS autocorrelation along the genome. This resulted
in 1 synthetic enhancer pair (black) for each enhancer pair; pairs of
random genomic segments (gray) were generated in the same fashion
as enhancer pairs by drawing from 100 000 random genomic segments
of mean length 500 bp. MI of 0.4 roughly corresponds to FDR 0.01
(see text).
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A sizable fraction of enhancer pairs has correlated activity
across cell types

We exhaustively assessed �35 million intra-chromosomal
enhancer pairs separated by <12.5Mb; additional
sampling at larger distances and across chromosomes sug-
gested that 12.5Mb ceiling is sufficient to capture general
patterns. Despite distance bin-specific FDR control, the
fraction of enhancers that are significantly correlated
declines with increasing distance (Figure 3); after
removing transitive relationships (‘Materials and
Methods’ section), at FDR of 0.1%, the fraction decreases
from 1.7% pairs at 20Kb to 0.1% for pairs separated by
>12.5Mb. The corresponding fractions at 5% FDR are
4.8–1.3%. A similar trend is also observed when back-
ground pairs are pooled across distance bins and a
single FDR test is conducted (Supplementary Figure
S2a). Similarly, these trends are preserved when we used
random trans-chromosomal enhancer pairs as the back-
ground to calculate the FDR (Supplementary Figure S2b).
Across all bins, at an FDR of 1%, we detect a total of
313 757 significant enhancer pairs, covering 32% of
enhancers.

Strong and weak enhancers have different degrees of
connectivity and are assortative

Previous studies have shown that low affinity binding sites
for individual TFs tend to cluster on the genome (26), and
such clustering of binding sites in regulatory regions has
been suggested to cooperate to promote overall function-
ality via multiple mechanisms (27–30). Extending this

notion to the level of enhancers, we assessed whether
weak enhancers have a greater proclivity to cooperate.
Ernst and Kellis (31) have previously predicted enhancers
in the genome based on histone modification patterns
using the ChromHMM tool and further classified the en-
hancers into ‘strong’ and ‘weak’ based on cell-type-specific
expression level of the proximal gene. We calculated each
enhancer’s ‘degree’, as the number of other enhancers it is
correlated with and partitioned enhancers into five bins
based on degrees: 0, 1–4, 5–8, �9 (other binning
schemes do not affect the conclusion). For each bin, we
calculated the fraction of ‘strong’ enhancers out of all en-
hancers overlapping with a ChromHMM enhancer.
Figure 4 shows that weak enhancers tend to have
correlated activity with several other enhancers, whereas
strong enhancers tend to function in smaller groups. For
instance, the percentage of strong enhancers having no
correlation partners (44%) is significantly higher than
that for the weak enhancers (35%) (Fisher exact test
P=1.8e-56). Next, we checked whether strong/weak
enhancers preferentially interact with other strong/weak
enhancers. Even though strong enhancers have fewer
interactions, we found that strong enhancers are twice as
likely to be correlated with another strong enhancer than
expected by chance (Fisher exact test P=1.6e-7).
Similarly, weak enhancers preferentially interact with
other weak enhancers (Fisher exact test P=0.0002).
The aforementioned results are based on an MI FDR
threshold of 0.01, but the trend remains significant at
FDR=0.05. Thus, strong and weak enhancers assort
with other strong and weak enhancers, respectively.

Figure 4. Relative to strong enhancers, weak enhancers are more likely
to be coordinately activated with other enhancers. Bar plot shows the
relative fractions of all enhancers that are non-ambiguously classified in
chromHMM data base as ‘weak’ or ‘strong’ enhancers partitioned into
four groups, based on their degree, i.e. the number of other enhancers
with which they are epigenetically highly correlated (FDR 0.0001),
which is recorded along top row of x-axis. Numbers on bottom row
indicate the total number of non-ambiguously classified chromHMM
enhancers in that bin. The determination of whether an enhancer has 0
neighbors was made at a more relaxed FDR 0.05.

Figure 3. Chromatin states of a large number of enhancer pairs are
significantly correlated. The plot shows the fraction of pairs with sig-
nificant MI as a function of inter-enhancer distance. Significant
enhancer pairs were identified by setting a threshold MI for each bin
that corresponded to a nominal false discover rate of 0.1% (see text).
The plot is based on significant pairs after greedily removing pairs
inducing transitive relationships. The percentage of significant
enhancer pairs drops with pairwise distance but stabilizes at �2Mb.
Moreover, if one of the enhancers in our set overlapped both with a
strong and weak chromHMM enhancer, we excluded that enhancer as
well as the overlapping chromHMM enhancers from our calculations.
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Potential roles of TFs and CMEs in correlated
enhancer activity

It is possible that correlated activities of enhancers are
mediated by common TFs as has been shown widely for
promoters of co-expressed genes (11). We therefore tested
whether correlated enhancer pairs harbor common TF
binding sites. We created two sets of enhancer pairs: the
‘foreground’ included the significantly correlated enhancer
pairs at FDR=5% (conclusions remain the same at other
thresholds) in each distance bin. ‘Background’ enhancer
pairs were randomly chosen from enhancer pairs in each
distance bin with MI <0.01. In this context and in what
follows, the term ‘Background’ is used to refer to
uncorrelated enhancer pairs as opposed to non-enhancer
pairs. Next, we identified high-scoring binding sites in
each enhancer for each of the 981 vertebrate motifs (see
‘Materials and Methods’ section) and quantified the
tendency of a motif to co-occur in correlated enhancers
based on a ‘co-occurrence score’ (see ‘Materials and
Methods’ section). We found that the overall co-occur-
rence score distribution for all motifs was significantly
higher in the foreground than the background (Figure 5;
Wilcoxon test P=6.7e-18). Next, we estimated the signifi-
cance of co-occurrence for each motif in the foreground by
comparing observed and expected co-occurrence fre-
quency using a Chi-squared test. After controlling for
multiple testing, at FDR=0.05, we found 153 motifs
with significant co-occurrence (‘Materials and Methods’
section). An identical analysis of background enhancer
pairs yielded only 39 motifs. We further filtered the 153
motifs down to the 62 most significant motifs by directly
comparing the co-occurrence P-values in the foreground
and the background using the nominal FDR approach
(25) at 5% FDR. Of the 62, 10 were significant in the
background. The remaining 52 motifs (Table 1) were
used for further analyses.

When we repeated the aforementioned analysis by only
considering the motifs whose corresponding TF genes are
present in tissues where enhancer pair is active, our con-
clusions are further strengthened (Supplementary Note
S1). This also proved true when the aforementioned
pair-wise co-occurrence analysis was extended to clusters
of correlated enhancers (Supplementary Note S2 and
Supplementary Figure S3). Finally, in addition to
determining that co-occurring motifs are present more
often than expected in correlated enhancer pairs, we also
observe that correlated enhancer pairs share overall
greater numbers of motifs than expected (Supplementary
Note S3). Taken together, the aforementioned analyses
suggest that epigenetically correlated enhancers share TF
binding motifs significantly more frequently than expected
suggesting a role of TFs in enhancer co-regulation.

Next, we assessed, using machine learning, whether the
presence of common motifs can predict correlated activity
of a pair of enhancers (see Supplementary Note S4 for
details). To summarize, using 10-fold cross-validation, a
support vector machine based on 981 motif matches,
as feature set was able to discriminate between the
foreground and the background enhancer pairs with
an overall average classification accuracy of 73%.

Importantly, there was little reduction in performance
(70%) when the model used only the 52 significantly co-
occurring motifs detected earlier in the text.
Finally, we probed the potential involvement of CME in

regulating correlated enhancer activities. We assessed each
of the 828 CMEs for preferential interaction with signifi-
cant motifs relative to the other motif, using a Fisher
Exact test (see Supplementary Note S5 for details). At
FDR=5%, we detected 28 CMEs to preferentially
interact with significant motifs (Table 2). In contrast,
there was no CME that preferentially interacted with
non-significant motifs. Although this result should be in-
terpreted with caution owing to innately noisy PPI data,
the analysis nonetheless reveals a small set of CMEs that
preferentially interact with co-occurring motifs.

Correlated enhancers are spatially proximal

We expect the correlated activity of non-proximal enhan-
cers to be associated with their spatial proximity in the
nucleus. We estimated the fraction of correlated
enhancer pairs that are spatially proximal based on Hi-C
data (GSE18199) (32). We note that the Hi-C data was
obtained from human K562 and HIC_gm06690 cell lines,
whereas DHS correlation was obtained across 37 primary
cell types. It is known that spatially interacting regions are
enriched for DHS (33). We controlled for this by ensuring
that in each distance bin, the background enhancer pairs
were selected such that their average pair-mean DHS
across cell types was within 2% of the corresponding
average for foreground pairs. We compared foreground

Figure 5. Motif co-occurrence is greater among correlated enhancers
relative to background non-correlated enhancer pairs. Histogram
shows the log enrichment of motif co-occurrence above random expect-
ation for significantly correlated enhancer pairs (FDR 0.01) (green)
compared with the same for background pairs (red). The x-axis
shows the log of enrichment values, where 0 denotes random expect-
ation, and more positive scores indicate higher enrichment, whereas
negative scores indicate higher depletion. The y-axis shows the
number of motifs with the indicated level of log enrichment.
Background pairs were selected based on MI scores <0.01. The
‘10�1’ on the y-axis is an artifact of the drawing tool and simply rep-
resents 0.
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and background enhancer pairs in terms of the fraction of
pairs that are spatially proximal according to the K562
Hi-C experiment, using Fisher Exact Test. We found
that overall, the foreground enhancer pairs showed a
greater coincidence with Hi-C data (P=0.01). Even
when we include only the top 10% most confident Hi-C

pairs, the P=0.03. When we repeat the aforementioned
tests using the HIC_gm06690 Hi-C data, the correspond-
ing P-values are 0.02 and 0.009. These results suggest that
spatial proximity of the chromosomal regions is
associated, albeit weakly, with correlated enhancer
activities. The weak association may be due to cell-type
specificity of spatial proximity (see ‘Discussion’ section).

Genes near correlated enhancers have correlated
expression and shared function

We hypothesized that the gene targets of highly correlated
enhancers are themselves correlated in their expression.
Although the targets of enhancers are largely unknown,
as a first approximation, we mapped each enhancer to its
nearest gene as a putative target (34). For each gene, we
obtained from GEO (20) the normalized RNA-seq tran-
script counts from 15 of the 72 tissue types and calculated
the Spearman correlation between vectors of transcript
counts. For the foreground enhancer pairs at FDR 1%
(results are comparable for other FDR thresholds), we
found that the median Spearman correlation of expression
of the target genes was 0.31, whereas for the background,
it was only 0.18 (Wilcoxon rank-sum test P=2.1e-74). It
indicates that epigenetically correlated enhancers tend to
have co-expressed target genes.

Our analyses thus far suggest that correlated enhancer
pairs have (i) a greater motif co-occurrence (section
‘Potential roles of TFs and CMEs in correlated enhancer
activity’) and (ii) greater co-expression between their
target genes (section ‘Genes near correlated enhancers
have correlated expression and shared function’).
Therefore, we assessed directly whether motif co-occur-
rence in enhancers is predictive of correlated expression
in their target genes, regardless of correlated activity of the
enhancers. Ten thousand enhancer pairs were sampled
without regard for their correlation. The Jaccard index
for motif sharing between enhancers and gene co-expres-
sion for putative target genes was estimated as aforemen-
tioned. Based on linear regression of expression
correlation against the corresponding enhancer pairs’
Jaccard indices, we found the two to be highly positively
associated with a slope of 0.26 (P=4.4e-26 for null
hypothesis that slope=0), suggesting that shared motifs
in enhancers is predictive of their target genes’ co-
expression.

Next, we tested whether targets of correlated enhan-
cers are functionally related. For each enhancer pair, we
checked whether target genes, if they are different, share
a Gene Ontology (GO) biological process. We only con-
sidered specific GO terms including at most 200 genes
(this threshold was varied from 200 to 2000). We found
that the foreground enhancer pairs consistently share a
GO term more frequently than the background; the dif-
ference between them varying between 11 and 30%.
This difference is significant (Fisher Exact test
P< 0.05) for all but one thresholds where it was mar-
ginally significant with P=0.06. This suggests that gene
targets of correlated enhancer pairs tend to be function-
ally related.

Table 1. Motifs with significantly greater co-occurrence in correlated

enhancers than expected (after filtering—see text)

Motif Co-occurrence
Score

P-value q-value Gene

M00649 9.80E-02 0 1.70E-04 MAZ
M01742 1.20E+00 0 2.10E-04 Zfp206
M00986 3.90E-02 0 3.00E-04 Churchill
M00915 5.40E-01 0 3.80E-04 AP-2
M01028 2.70E+00 0 4.30E-04 NRSF
M01783 6.30E-01 0 4.70E-04 SP2
M00431 1.30E-01 0 5.10E-04 E2F-1
M00008 3.30E-01 0 5.60E-04 Sp1
M01199 6.90E-01 0 6.00E-04 RNF96
M01219 4.60E-01 0 6.40E-04 SP1:SP3
M00925 5.40E-02 0 7.30E-04 AP-1
M01253 7.50E-01 0 8.10E-04 CNOT3
M00189 6.80E-01 0 9.00E-04 AP-2
M00255 3.70E-01 0 9.40E-04 GC_box
M01482 2.60E+00 0 9.80E-04 Nkx3-2
M00716 8.20E-01 0 1.00E-03 ZF5
M01267 6.40E-02 0 1.10E-03 FRA1
M00199 9.20E-02 0 1.10E-03 AP-1
M00196 6.30E-01 0 1.20E-03 Sp1
M00800 8.00E-01 0 1.20E-03 AP-2
M00807 3.20E-01 0 1.30E-03 Egr
M00931 4.80E-01 0 1.30E-03 Sp1
M00933 3.20E-01 0 1.40E-03 Sp1
M00932 5.90E-01 0 1.40E-03 Sp1
M00615 1.90E+00 0 1.50E-03 c-Myc:Max
M01303 3.10E-01 0 1.50E-03 SP1
M01588 2.90E-01 0 1.50E-03 GKLF_(KLF4)
M00322 4.30E-01 0 1.60E-03 c-Myc:Max
M00976 2.20E-01 0 1.60E-03 AhR,_Arnt,_

HIF-1
M00720 7.80E-02 0 1.70E-03 CAC-binding_

protein
M01273 4.50E-01 0 1.70E-03 SP4
M01837 1.70E-01 0 1.80E-03 FKLF
M00174 1.10E-01 1.10E-16 1.90E-03 AP-1
M00926 3.80E-02 4.40E-16 1.90E-03 AP-1
M00428 4.60E-02 6.70E-16 2.00E-03 E2F-1
M01593 9.50E-01 1.20E-15 2.10E-03 Zfx
M01104 4.60E-02 2.20E-14 2.10E-03 MOVO-B
M01177 3.20E-01 1.50E-11 2.10E-03 SREBP2
M01230 2.40E-02 1.60E-11 2.20E-03 ZNF333
M01816 1.30E-01 5.60E-11 2.20E-03 ZBP89
M00940 5.50E-01 4.10E-10 2.30E-03 E2F-1
M01597 2.20E-01 9.70E-10 2.30E-03 Zfp281
M01045 3.90E-01 2.70E-09 2.40E-03 AP-2alphaA
M01162 3.00E-02 1.20E-08 2.40E-03 OG-2
M01292 2.00E-02 1.50E-08 2.40E-03 HOXA13
M00378 9.90E-02 1.30E-07 2.50E-03 Pax-4
M00982 6.80E-01 2.00E-07 2.60E-03 KROX
M00644 3.30E-02 3.70E-07 2.60E-03 LBP-1
M01714 3.50E-01 4.70E-07 2.70E-03 KLF15
M01275 2.40E-02 9.80E-07 2.70E-03 IPF1
M01318 1.40E+00 1.60E-06 2.70E-03 Irx-3
M00175 4.70E-02 1.90E-06 2.80E-03 AP-4

Column 1: TRANSFAC Motif ID, Column 2: Co-occurrence score (see
text), Column 3: P-value, Column 4: Multiple testing corrected q-value,
Column 5: TF name.
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Targets of correlated enhancer clusters have correlated
expression and shared function

We extended our analyses previous sections to ‘clusters’ of
correlated enhancers. We identified enhancer clusters for a
variety of parameters (Supplementary Note S6) pertaining
to cluster size, intra-cluster MI and fraction of enhancers
sharing a motif. For each enhancer cluster, a control
cluster was created from non-correlated enhancers that
mirrored the former’s size and genomic footprint (i.e.
intra-cluster genomic distances). We found that putative
targets of correlated clusters (i.e. the set of genes nearest to
each enhancer) were more highly correlated to each other
in their RNA-seq transcript counts across 15 cell types
than were background clusters. For the entire range of
parameters, mean expression correlation within fore-
ground clusters was consistently greater than that for
background clusters. Owing to the variability in cluster
counts for different parameters, P-values ranged from
0.02 to 4.1e-15 (Wilcoxon rank-sum test). These results
suggest that gene targets of correlated enhancer clusters
with shared motifs are co-expressed and presumably co-
regulated.

Next, we assessed enrichment of GO biological
processes amongst the targets of an enhancer cluster
using R’s GOstats package. Enhancer clusters also
revealed consistently greater GO functional enrichment
than the background clusters. Across all parameter
settings, the ratio of number of enriched GO terms (at
FDR 0.01) per cluster was on average 3-fold higher in

the foreground (19.1 terms per cluster). As an example,
for the parameter setting with the greatest fold enrichment
of GO terms, the terms are shown in Supplementary Table
S2. These terms are consistently revealed across all par-
ameters settings. Together, the GO enrichment and gene
expression results suggest that co-expression of genes with
shared function is coordinately regulated across tissues by
enhancers that share motifs and are epigenetically
correlated across the same tissues.

Concordant cell type specificity of enhancer clusters and
their target genes

Enhancers are believed to regulate cell-type-specific gene
expression. We tested whether there is cell-specificity
among the gene targets of correlated enhancers. For iden-
tifying cell-type-specificity of gene expression, we used the
online tool CTen (35), which compares input genes with a
database of highly expressed cell-specific genes found in
public microarray databases and reports any significant
overlaps. Enhancer clusters and associated target genes
were identified with three parameter settings resulting in
42, 122 and 182 clusters, with average cluster sizes 64, 31
and 19 genes, respectively. Background gene sets were
obtained as in previous section. Our results indicated
high tissue enrichment in the gene targets of correlated
enhancer clusters. For instance, with 42 clusters, we
found enrichment (FDR=1%) for 23 tissue-specific
gene sets involving 16 clusters, whereas no enrichment
was detected in the corresponding background clusters;

Table 2. CME that preferentially interact with significantly co-occurring motifs (Table 1)

CME P-value Interaction
frequency

Description

ENSP00000336750 5.50E-04 5.50% Suppressor of Ty 7 (Saccharomyces cerevisiae)-like
ENSP00000308227 5.90E-04 9.60% High mobility group AT-hook
ENSP00000264709 9.60E-04 8.20% DNA (cytosine-5-)-methyltransferase 3 alpha
ENSP00000362649 1.20E-03 16.00% Histone deacetylase 1
ENSP00000231509 1.60E-03 12.00% Nuclear receptor subfamily ‘3’, group ‘C’, member 1
ENSP00000349508 2.30E-03 6.80% Chromodomain helicase DNA-binding protein 4
ENSP00000278823 2.40E-03 6.20% Metastasis associated 1 ‘family’, member 2
ENSP00000367207 2.90E-03 15.00% v-myc myelocytomatosis viral oncogene homolog (avian)
ENSP00000343325 2.90E-03 5.50% Protein kinase N1
ENSP00000263119 4.20E-03 6.20% Calcineurin-binding protein 1
ENSP00000362674 5.30E-03 5.50% Histone deacetylase 8
ENSP00000334061 5.40E-03 6.20% Histone deacetylase 6
ENSP00000386759 7.30E-03 6.80% SET domain containing 2
ENSP00000302967 9.20E-03 10.00% Histone deacetylase 3
ENSP00000352516 9.50E-03 8.20% DNA (cytosine-5-)-methyltransferase 1
ENSP00000284384 1.20E-02 6.80% Protein kinase ‘C’, alpha
ENSP00000349049 1.30E-02 5.50% Lysine (K)-specific demethylase 1A
ENSP00000225983 1.40E-02 8.20% Histone deacetylase 5
ENSP00000381331 1.50E-02 9.60% Histone deacetylase 2
ENSP00000371067 2.30E-02 8.20% Janus kinase 2
ENSP00000264606 2.40E-02 7.50% Histone deacetylase 4
ENSP00000264010 2.50E-02 6.20% CCCTC-binding factor (zinc finger protein)
ENSP00000268712 2.50E-02 9.60% Nuclear receptor corepressor 1
ENSP00000337088 2.70E-02 6.20% Multiple endocrine neoplasia I
ENSP00000356480 2.80E-02 5.50% Ring finger protein 2
ENSP00000231487 2.90E-02 6.20% S-phase kinase-associated protein 1
ENSP00000263253 3.00E-02 15.00% E1A-binding protein p300
ENSP00000267163 3.10E-02 9.60% Retinoblastoma 1

Column 3 denotes the percentage of significant motifs interacting with the CME.
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results are qualitatively similar for other parameter
settings.
Next, we hypothesized that if the genes targeted by an

enhancer cluster are expressed in specific cell types, then
the enhancers in the cluster should have high DHS in the
same cell type(s). We determined the average DHS of an
enhancer cluster in ENCODE cell types and obtained the
DHS-based rank of the cell type in which the correspond-
ing gene cluster was specifically expressed according
to CTen; mapping between CTen tissue types and
ENCODE cell types was manually determined and
organized into classes (Supplementary Table S3). For a
clustering parameter, we obtained the median rank for
the resulting enhancer clusters as well as median rank
for an equivalent set of background clusters. We found
that across eight different clusterings, the median ranks
of enhancer clusters ranged from 4 to 8 with a mean of
6, whereas the expected median rank is 11.5. Overall, this
result suggests that there is concordance between enhancer
clusters and targeted gene clusters in their tissue-specific
activity.
Figure 6 shows an illustrative example of an enhancer

cluster (179 enhancers) and corresponding gene cluster (98
genes) with tissue-specific activities across 15 cell types.
The DHS profiles of the enhancers (Figure 6, left panel)
mirror the expression profiles of the genes (Figure 6, right
panel). These genes are highly expressed in a number of
cancer cell lines and an embryonic stem cell line, combined
with markedly lower expression in normal adult somatic
cells and are highly enriched for terms related to intra- and
inter-cellular signal processing, and regulation of tran-
scription (Supplementary Table S4).

DISCUSSION

Based on a systematic analysis of correlated enhancer
activities across 72 cell types, we found a broad range of
evidence that support coordinated enhancer activities, po-
tentially mediated by TFs, CMEs and spatial chromatin
structure. Our analyses are based on stringent controls
at various stages to maximize the robustness of our con-
clusions. First, we explicitly control for observed autocor-
relation along the genome in DHS levels, which would
otherwise inappropriately make neighboring enhancers
seem correlated. Second, when appropriate, we remove
transitive correlations between enhancers. Third, when
analyzing a group of enhancer pairs, we create an appro-
priate negative control by selecting uncorrelated enhancer
pairs with similar inter-enhancer distances. Fourth, to
control for cell type similarities, 37 representative cell
types were selected from 72 cell types. Fifth, significantly
co-occurring motifs in enhancer pairs were screened for
high likelihood of active tissue-specific TF binding.
Sixth, dependencies owing to motif similarity were ad-
dressed by clustering motifs. Seventh, clustering param-
eters settings that included cutoff for MI, minimum size
and minimum level of motif enrichment were varied to
ensure robustness of pattern discovery at the network
level. For individual analyses, additional controls were
used to ensure robustness of our conclusions.

P300 binding has been shown to be an accurate marker
of tissue relevant enhancers (5). The base set of 98 000
enhancers was identified based on P300 binding in one
of the four cell types. P300 binding is a reasonable
marker of candidate enhancer for the intended aim of
our work, namely, to investigate coordinated enhancer

Figure 6. Tissue activity profile of an enhancer cluster and the corresponding target genes. Left Panel: Tissue-specific DHS activity for 179
coordinately activated enhancers. Data are shown only for 15 cell types for which RNA-seq data was also available. Rows (cell types) and
columns (enhancers) are hierarchically clustered. Right Panel: Corresponding expression of the 98 target genes in the same 15 cell types. Gene
membership in GO slim categories that are highly enriched is displayed above the heat plot. Columns (genes) have been clustered independently,
however, row order is preserved from the enhancer heatmap. In both maps, deeper shades of color indicate higher values.
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activities and test hypotheses concerning its functional
underpinning and consequences. Although there are alter-
native ways of identifying the candidate enhancers, such
as ChromHMM (31), the combination of DHS and 5C
(34), and other epigenomic marks (7), they all can have
false positives. Moreover, using DHS as a proxy for an
enhancer’s tissue-specific activity allowed us to take ad-
vantage of the many tissues for which DHS data are cur-
rently available, without introducing circular dependence.
Even though individual enhancers may be false positives,
we infer correlated activity based on highly significant DHS
correlation across 37 independent cell types after
controlling for potential autocorrelation. Despite noise at
the level of individual enhancers, we observe significant
patterns when comparing enhancers with coordinated
activities with background enhancer pairs, which notably
are derived from the same set of enhancers. Approximately
53% of our enhancers overlap with those predicted by
ChromHMM. To further ensure the robustness of our con-
clusions, we repeated some of our analyses separately on
the subset of enhancers supported by chromHMM and the
ones not predicted by ChromHMM. In both disjoint data
sets, we still observed that correlated enhancers had signifi-
cant motif co-occurrence, and that the potential targets of
correlated enhancers were significantly correlated in their
expression and function.

The goal of identifying the full complement of enhancers
that drive transcriptional regulation in a specific context
remains largely unmet. This work suggests a useful para-
digm for organizing enhancers into clusters of coordinated
activities. These clusters of enhancers, given their high
cross-tissue concordance in epigenetic state, are likely to
participate in coordinate transcription regulation of specific
genes, or more likely, pathways. Presently, researchers treat
enhancers and their gene targets predominantly as inde-
pendent edges in a graph. By leveraging prior knowledge
of these clusters, searches for enhancer-target genes will
benefit from both greater sensitivity and greater specificity.

In addition to finding clusters of enhancers ostensibly
involved in coordinate regulation of gene transcription,

we also examined the nature of the clusters. We asked,
for example, whether there was a pattern in clusters with
regard to enhancer strength, as manifested in the expression
level of target genes. We found that strong enhancers are
much more likely to function in isolation than are weak
enhancers. Moreover, strong and weak enhancers assort
with enhancers of the same kind: strong (weak) enhancers
prefer to interact with strong (weak) enhancers.
TF binding motifs can exert influence on enhancer

activity. We found that shared motifs can predict correlated
activities of a pair of enhancers. Even though there is no
qualitative difference in density and composition of motifs
between enhancers that are involved in coordinate regula-
tion and enhancers that are not, certain motifs preferen-
tially co-occur in correlated enhancers. This could be
explained if enhancers with shared motifs respond in
unison to a common modulator, such as an allosterically
regulated TF, or a pioneer TF that can interact with and
recruit CMEs. Indeed, we found that co-occurring motifs
do preferentially interact with a subset of CMEs.
We found that correlated enhancers that are in genomic

proximity share fewer significantly co-occurring motifs
relative to those that are far apart (Table 3). This, in con-
junction with a greater propensity for coordinated activity
for nearby enhancers (Figure 3), suggests alternative
mechanisms for proximal and distal enhancer pairs’
coordinated activities. Greater motif sharing between
distant enhancer pairs is consistent with a more active
role of motifs in establishing coordinated activity, with
or without influencing spatial proximity.
Overall, our analysis suggests that mirroring the known

organization of genes into functionally linked co-expressed
modules, distal enhancers regulating such genes are also
organized into modules of correlated activity across cell
types. Strong and weak enhancers exhibit differential
correlated activity and assortativity with strong and weak
enhancers, respectively. The observed organization of
mammalian enhancers into correlated networks is likely
mediated by the joint action of TFs through shared
motifs, CMEs and spatial chromatin structure.

Table 3. Motif sharing between coordinated enhancer pairs and the background

Max dist between enhancers (kB) Correlated enhancer pairs (FDR 0.0001) Background enhancer pairs (I< 0.01)

Mean Jaccard
(all motifs)a

Median Jaccard
(all motifs)a

Mean Jaccard
(all motifs)a

Median Jaccard
(all motifs)a

20 0.32 0.32 0.3 0.3
200 0.32 0.32 0.29 0.28
1000 0.31 0.31 0.29 0.29
20 000 0.31 0.31 0.28 0.28
Overall 0.31 0.31 0.29 0.29

Mean Jaccard
(significant motifs)b

Median Jaccard
(significant motifs)b

Mean Jaccard
(significant motifs)b

Median Jaccard
(significant motifs)b

20 0.22 0.14 0.12 0
200 0.28 0.2 0.11 0
1000 0.29 0.2 0.11 0
20 000 0.3 0.25 0.11 0
Overall 0.28 0.2 0.11 0

aThis table shows results of Wilcoxon rank-sum tests comparing the extent of motif overlap in correlated enhancer pairs (FDR 0.0001) to that in
background pairs, with one test per distance bin. All 981 vertebrate motifs in the TRANSFAC database were used.
bSame as (a), except that overlap is evaluated only for the significantly co-occurring motifs in correlated enhancers.
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Supplementary Tables 1–4, Supplementary Figures 1–3
and Supplementary Notes 1–6.
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