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(+)-Borneol is a desirable monoterpenoid with effective anti-inflammatory and analgesic
effects that is known as soft gold. (+)-bornyl diphosphate synthase is the key enzyme in
the (+)-borneol biosynthesis pathway. Despite several reported (+)-bornyl diphosphate
synthase genes, relatively low (+)-borneol production hinders the attempts to synthesize
it using microbial fermentation. Here, we identified the highly specific (+)-bornyl
diphosphate synthase CbTPS1 from Cinnamomum burmanni. An in vitro assay showed
that (+)-borneol was the main product of CbTPS1 (88.70% of the total products),
and the Km value was 5.11 ± 1.70 µM with a kcat value of 0.01 s−1. Further, we
reconstituted the (+)-borneol biosynthetic pathway in Saccharomyces cerevisiae. After
tailored truncation and adding Kozak sequences, the (+)-borneol yield was improved
by 96.33-fold to 2.89 mg·L−1 compared with the initial strain in shake flasks. This work
is the first reported attempt to produce (+)-borneol by microbial fermentation. It lays a
foundation for further pathway reconstruction and metabolic engineering production of
this valuable natural monoterpenoid.

Keywords: (+)-borneol, (+)-bornyl diphosphate synthase, Cinnamomum burmanni, metabolic engineering,
Saccharomyces cerevisiae

INTRODUCTION

The monoterpene borneol is a highly desirable natural product widely used in medicine, spice,
and chemical fields since ancient times (Wojtunik-Kulesza et al., 2019). It has a broad spectrum
of bidirectional regulation on the central nervous system (Zhang et al., 2017; Zheng et al., 2018);
anti-inflammatory (Zou et al., 2017; Ji et al., 2020) and antimicrobial activities (Xin et al., 2020); and
increases biofilm barrier permeability (Song et al., 2018; Chen et al., 2019). Borneol is divided into
(+)-borneol and (−)-borneol according to optical rotations. Natural (+)-borneol has primarily

Abbreviations: BPPS, bornyl diphosphate synthase; CIAP, calf intestinal alkaline phosphatase; DMAPP, dimethylallyl
diphosphate; GC-MS, gas chromatography coupled with mass spectrometry; GPP, geranyl diphosphate; IPP, Isopentenyl
diphosphate; MVA, mevalonate pathway; ORF, open reading frame; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel
electrophoresis.
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been extracted from Cinnamomum camphora (L.) Presl and
C. burmanni (Nees et T.Nees) Blume (borneol-type) since the
1980s in China (Chen et al., 2010). However, the slow growth
rate, low (+)-borneol levels, and restricted cultivation area mean
that the yield of natural (+)-borneol is far from meeting the
market demand. Borneol synthesized by chemical methods thus
occupies most of the market share; however, a certain number
of toxic compounds, such as isoborneol may exist in synthetic
borneol. Thus, it is necessary to explore other methods to produce
natural (+)-borneol.

Due to the clear genetic background and lack of susceptibility
to phage infections, Saccharomyces cerevisiae is the preferred
host for metabolic engineering (Kirby and Keasling, 2009; Liu
et al., 2019; Nielsen, 2019). Many monoterpenoids, such as
geraniol, limonene, linalool, and α-terpineol (Figure 1) have been
produced in S. cerevisiae (Amiri et al., 2016; Cao et al., 2016, 2017;
Zhang et al., 2019, 2020). Isopentenyl diphosphate (IPP) and its
isomer dimethylallyl diphosphate (DMAPP) derived from the
mevalonate pathway (MVA) are the precursors of all terpenoids
in S. cerevisiae, and geranyl diphosphate (GPP) is the direct
precursor of monoterpenes catalyzed by farnesyl diphosphate
synthase (ERG20) (Jiang et al., 2017). Thus, in order to produce
monoterpenes in yeast, ERG20 is usually mutated or rationally
designed into GPP synthase (Ignea et al., 2014; Zhao et al., 2016;
Jiang et al., 2017). The upstream MVA pathway genes, tHMG1
and IDI1, are frequently overexpressed in yeast (Zhao et al., 2016;
Zhang et al., 2019). Guo et al. (2018) even overexpressed all
MVA pathway genes (ERG10, ERG13, tHMG1, ERG12, ERG8,
ERG19, IDI1, ERG20) to increase the GPP pool. Modification
of the monoterpene synthase, including translational fusion and
truncation of transit peptides at the N-terminus of the enzymes, is
also an effective strategy for increasing the production of terpenes
(Jongedijk et al., 2015; Ignea et al., 2019; Hu et al., 2020).

Like other monoterpenes, bornyl diphosphate synthase
(BPPS) is the key enzyme involved in (+)-borneol biosynthesis.
It catalyzes the universal precursor GPP to form (+)-bornyl
diphosphate, and is then dephosphorylated to produce the
target product (+)-borneol (Figure 1). BPPSs have been
identified from several plants, including Salvia officinalis (SBS),
Lavandula angustifolia (LaBPPS), Lippia dulcis (LdBPPS), and
Amomum villosum (AvBPPS) (Wise et al., 1998; Despinasse
et al., 2017; Hurd et al., 2017; Wang et al., 2018). However, all
these enzymes produced multiple products, such as α-pinene,
β-pinene, camphene, and limonene, with the largest amount of
(+)-borneol produced by SBS, accounting for 57.8% of the total
products. However, there have been no attempts to produce this
valuable product by microbial cell factories.

Here we report a high-specificity (+)-borneol BBPS gene
(CbTPS1) from C. burmanni. Among the products with GPP
as substrate in an in vitro assay, (+)-borneol accounted for
88.70% of the total. We thus aimed to construct a (+)-borneol
biosynthesis pathway in S. cerevisiae. To reach the target,
eight genes involved in the MVA pathway were overexpressed.
Truncated transit peptides and adding the Kozak sequence of
CbTPS1 further improved the (+)-borneol production. Our
work provides a good example for (+)-borneol production in
microbial fermentation.

MATERIALS AND METHODS

Plant Materials and Chemicals
Leaves of Cinnamomum burmanni (Nees et T.Nees) Blume were
obtained from Guangdong Huaqingyuan Technology Co., Ltd.
Plant leaf material grown in natural conditions was picked in May
2019. C. burmannii was identified by Prof. Cui Guanghong of
China Academy of Chinese Medical Sciences and stored at−80◦C
for further usage (Storage Number: YXS201905). GPP, geraniol,
α-pinene, β-pinene, α-phellandrene, limonene, α-terpineol, (+)-
borneol and (−)-borneol standards were purchased from Sigma-
Aldrich Chemical Co., United States.

RNA Extraction, cDNA Synthesis
The total RNA from C. burmannii leaves was extracted using
a quick RNA isolation kit (HuaYueYang Biotechnology, China)
based on the manufacturer’s protocol, and then digested and
purified by RNase-free DNase I (TaKaRa, Japan). An aliquot
containing 1 µg total RNA was used to synthesize the first-strand
cDNA with TransScript One-Step gDNA Removal and cDNA
Synthesis SuperMix (TransGen Biotechnology, China) according
to the manufacturer’s guidelines.

BPPS Candidate Selection and Analysis
Transcriptomic libraries of the C. burmannii leaves were
shipped to the Novogene Company1 for library construction and
RNA-seq. The Illumina-derived nucleotide sequences reported
in this paper have been submitted to China National Center
for Bioinformation2 under accession number CRA003558.
To mine the BPPS candidate genes, TBLASTN analysis of
BPPSs in the C. burmannii transcriptome was carried out using
BioEdit software (Su et al., 2018). SBS (GenBank Accession
Number: AAC26017), LaBPPS (GenBank Accession Number:
AJW68082), LdBPPS (GenBank Accession Number: ATY48638),
and AvBPPS (GenBank Accession Number: AWW87313)
were used as the query sequences. The CbTPS1 (GenBank
Accession Number: MW196671) sequence was analyzed using
NCBI3. The open reading frames (ORFs) were identified
using the ORF Finder4, and deduced amino acid sequences
were identified using ExPASy5. Multiple sequence alignments
were conducted using CLC Bio Sequence Viewer 66. The
chloroplast transit peptide of CbTPS1 was predicted by
ChloroP7.

All statistical analyses were conducted using SPSS version 23.0
(SPSS Inc., Chicago, IL, United States) for windows. One-way
analysis of variance was used to compare the mean difference in
(+)-borneol of strains. The P-value of less than 0.05 considered
statistically significant.

1https://www.novogene.com/
2https://bigd.big.ac.cn/
3http://www.ncbi.nlm.nih.gov/
4http://www.ncbi.nlm.nih.gov/gorf/gorf.html
5http://web.expasy.org/translate/
6http://www.clcbio.com
7http://www.cbs.dtu.dk/services/ChloroP/
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FIGURE 1 | Proposed mechanism for BPPS. The primary pathway leads to the formation of borneol (gray) and other monoterpenoid products.

Gene Cloning, Protein Expression and
Purification
The ORF was cloned using specially designed primers
(Supplementary Table 1). Phusion High-Fidelity PCR Master
Mix (New England BioLabs, United States) was used for
amplification reaction according to the included protocol. PCR
products were purified, and then ligated into the pEASY R©-
Blunt Simple Cloning Vector (TransGen Biotech, China) and
transformed into E. coli DH5α cells. Positive colonies were
verified by sequencing (Beijing RuiBo Biotechnology Co., Ltd.,
China) and then subcloned into the pET-32a (+) expression
vector (Novagen, United States) according to the protocol of the
pEASY R©-Uni Seamless Cloning and Assembly Kit (TransGen
Biotech, China) (Supplementary Table 1).

Recombinant proteins were expressed and purified following
the methods described previously (Ma et al., 2020), with some
modifications as follows: the 200 mL bacterial solution was
centrifuged (5,000 × g, 5 min, 4◦C) to collect the cell pellets,
and resuspended in 5 ml assay buffer (50 mM HEPES, pH 7.2,
10 mM MgCl2, 5 mM dithiothreitol), and then a sonicator was
used to lyse cells. The lysates were centrifuged (12,000 × g,
30 min, 4◦C) to produce crude protein. And then the His-tagged
purified proteins were eluted using a buffer equivalent to the
binding buffer but supplemented with different concentrations of
imidazole (50, 100, 250, 350, and 500 mM). Fractions containing

the target protein were pooled together and concentrated to
a volume of 1 mL using an Amicon Ultra-15 centrifugal
filter unit with an Ultracel-30 membrane (Merck Millipore,
Germany). Protein concentrations were determined using the
Bradford Assay (Cowin Biotech, China). The protein samples
were assessed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE).

In vitro Enzyme Assays and Kinetic
Assays
In vitro enzyme assays followed the method described below:
enzyme assays were performed in 300 µL, containing 50 mM
HEPES (Ph 7.2), 10 mM MgCl2, 5 mM DTT, 1 mM PMSF, 380
nM of the enzyme and 50 µM GPP, incubated for 1 h at 30◦C.
Then 1.5 µL calf intestinal alkaline phosphatase (CIAP) (TaKaRa,
Japan) was added, followed by incubation for 2 h at 37◦C to
allow enzymatic dephosphorylation. Time-course experiments
were carried out to obtain the initial speed of the enzymatic
reaction from 1 to 180 min (Supplementary Figure 1). Then,
3 min was used in the kinetic assays. The enzyme assays were
performed in a 300 µL reaction volume at 30◦C. A concentration
that ranged from 0.125 to 150 µM GPP substrate was used.
After 3 min incubation, the reaction was terminated at 80◦C for
3 min, followed by quenching in ice, and then added 1.5 µL
CIAP, followed by incubation for 30 min at 37◦C. Assay products
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were extracted twice with 300 µL of hexane and samples were
concentrated under a gentle nitrogen flow. The samples were
then redissolved with 100 µL of hexane before analysis with
gas chromatography coupled with mass spectrometry (GC-MS)
(described below).

The GraphPad Prism version 5 for Windows (GraphPad
Software, La Jolla California United States)8 was used to obtain
kinetic parameters by fitting the obtained data to the Michaelis-
Menten equation. All assays were performed in triplicate.

Construction of (+)-Borneol Producing
Strains
The initial strain used in this study was CEN.PK2-1D derived
from S. cerevisiae (Table 1). All the endogenous genes (ERG10,
ERG13, tHMG1, ERG12, ERG8, ERG19, IDI1, ERG20) involved
in the MVA pathway were amplified from CEN.PK2-1D
genomic DNA. The mutant of ERG20, ERG20F96W−N 127W ,
used in this work was reported to possess higher efficiency
for monoterpene production (Jiang et al., 2017). The M2S
integration method was applied to integrate gene expression
cassettes into the yeast chromosome (Li et al., 2016). Briefly,
ERG10 and ERG13 were amplified with the addition of a
BsaI digestion site and ligated with head-to-head promoters
(pGAL1-pGAL10) into the terminator vector T1-(TPI1-
PGI1), resulting in the plasmid T1-(ERG10-ERG13). Two
terminators were inserted into the scaffold plasmid, with
dedicated homologous arms L1 and L2 lying on both sides.
Similarly, plasmids T2-(tHMG1-tHMG1), T3-(tHMG1-ERG12),
T4-(ERG8-ERG19), and T5-(IDI1-ERG20F96W−N 127W) were
generated with dedicated homologous arms L2 and L3, L3
and L4, L4 and L5, L5 and L6, respectively. Each expression
cassette with designed homologous arms was amplified
individually. The integration site YPRC115 was chosen as the
target locus, and URA3 was chosen as the selection marker.
The upstream homologous arm YPRC115-UP was amplified
from CEN.PK2-1D genomic DNA; URA3 cassette including
the promoter was amplified from pESC-URA vector; and L1
arm was amplified from terminator vector T1. These three
parts were assembled to form the selection marker module
YPRC115UP-URA3-L1 through overlap extension PCR. The
downstream homologous arm YPRC115DOWN was amplified
from CEN.PK2-1D genomic DNA and the L6 arm was amplified
from terminator vector T5, and they were then combined
to generate the downstream homologous arm module L6-
YPRC115DOWN. All the amplified fragments were used to
co-transform CEN.PK2-1D for assembly and integration, and
transformants were selected on synthetic drop in medium-
Ura (SD-Ura) containing 20 g·L−1 glucose and 18 g·L−1

agar. Positive transformants were verified by sequencing,
yielding the strain MD.

For (+)-borneol production, the yeast codon-optimized
CbTPS1 as well as three truncated variants of CbTPS1
(at positions S10, S32 and C37) were cloned into the
BamHI site of the pESC-Leu vector (Agilent Technologies,
United States) according to the pEASY-Uni Seamless Cloning

8http://www.graphpad.com

TABLE 1 | Information of strains and vectors used in this study.

Strains or vectors Description Source

CEN.PK2-1D MATα, URA3-52, TRP1-289,
LEU2-3112, HIS311, MAL2-8C, SUC2

EUROSCARF

MD CEN.PK2-1D, YPRCM15
URA3-PGAL1-ERG10-TTPI1-PGAL10-
ERG13-TPGI-PGAL1-tHMG1-TADH1-
PGAL10-tHMG1-TCYC1-PGAL1-tHMG1-
TFBA1-PGAL10-ERG12-TPDC1-PGAL1-
ERG8-TRPS2-PGAL10-ERG19-TTDH1-
PGAL1-IDI1-TCCW 12-PGAL10-
ERG20F 96W−N127W -TRPL9A

This study

MD-1 MD, pESC-LEU::CbTPS1 This study

MD-2 MD, pESC-LEU::CbTPS1K This study

MD-3 MD, pESC-LEU::t10-CbTPS1 This study

MD-4 MD, pESC-LEU::t10-CbTPS1K This study

MD-5 MD, pESC-LEU::t32-CbTPS1 This study

MD-6 MD, pESC-LEU::t32-CbTPS1K This study

MD-7 MD, pESC-LEU::t37-CbTPS1 This study

MD-8 MD, pESC-LEU::t37-CbTPS1K This study

T1-(TPI1-PGI) Terminator vector with terminators TPI1
and PGI

This study

T2-(ADH1-CYC1) Terminator vector with terminators
ADH1 and CYC1

This study

T3-(FBA1-PDC1) Terminator vector with terminators
FBA1 and PDC1

This study

T4-(RPS2-TDH1) Terminator vector with terminators
RPS2 and TDH1

This study

T5-(CCW12-RPL9A) Terminator vector with terminators
CCW12 and RPL9A

This study

and Assembly Kit (TransGen Biotech, Beijing, China), yielding
the plasmids pESC-LEU:CbTPS1, pESC-LEU:t10-CbTPS1,
pESC-LEU:t32-CbTPS1, and pESC-LEU:t37-CbTPS1. Further,
yeast-specific Kozak sequence was added in front of the START
codon ATG of CbTPS1 and the three truncated variants,
generating pESC-LEU:CbTPS1K, pESC-LEU:t10-CbTPS1K,
pESC-LEU:t32-CbTPS1K, and pESC-LEU:t37-CbTPS1K.
Plasmids with the correct sequence were transferred to the
host strain MD using Frozen-EZ Yeast Transformation IITM

(Zymo Research, United States) to obtain the (+)-borneol
producing strains (Table 1). All the primers used are listed in
Supplementary Table 1.

Shake Flask Fermentation
For shake flask fermentation, the positive strains were cultured
in flasks (50 ml) containing 10 ml of synthetic drop-out medium
without leucine and uracil (SD-Leu-Ura) (FunGenome, China)
at 30◦C and 200 rpm for 48 h. Next, the cells were collected and
induced by GAL promoters in 10 ml of YPL (1% yeast extract,
2% peptone, and 2% galactose) medium at 30◦C and 200 rpm
for 48 h. The fermentation products were extracted with an equal
volume of ethyl acetate for 1 h, and centrifuged at 13,000 × g
for 10 min to separate the upper organic phase for analyzing
by GC-MS (described below). The calibration curves for content
determination are shown in Supplementary Figure 2. All assays
were performed in triplicate.
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Analysis Using GC-MS
The assay was carried out using a Trace 1310 series GC with a
TSQ8000 MS detector (Thermo Fisher Scientific, United States).
A TR-5 ms capillary column (30 m × 0.25 mm i.d., 0.25 µm film
thickness; Thermo Fisher Scientific, United States) was used. The
carrier gas for GC was helium at a flow rate of 1.0 mL·min−1. The
oven program was as follows: 50◦C for 2 min, linear ramp up at a
rate of 5◦C·min−1 to 230◦C, held at 230◦C for 5 min, followed with
a linear ramp up at a rate of 10◦C·min−1 to 300◦C, held at 300◦C
for 2 min. The injector temperature and transfer line temperature
were 280◦C.

A chiral column, Agilent CycloSil-B (30 m × 0.25 mm i.d.,
0.25 µm film thickness), was used to identify the chirality of
the assay product and the content of borneol and camphor in

C. camphora leaves. The carrier gas for GC was helium at a
flow rate of 1.0 mL·min−1. The oven program was as follows:
50◦C for 2 min, followed by a gradient from 50◦C to 180◦C
at 5◦C·min−1, then 10◦C·min−1 to 230◦C, held at 230◦C for
2 min. The injector temperature was 200◦C, and the transfer line
temperature was 230◦C.

RESULTS

Transcriptome-Based Discovery of
(+)-Bornyl Diphosphate Synthase in 2
Based on the high abundance of (+)-borneol in the leaves
of C. burmanni (Shi et al., 2013), we used RNA isolated

FIGURE 2 | SDS-PAGE and kinetic assays analysis of CbTPS1. (A) SDS-PAGE of CbTPS1 in vitro assays. (B) Velocity of CbTPS1 at increasing GPP concentrations.

FIGURE 3 | Partial alignment of CbTPS1 protein sequence with those of other known BPPSs. LaBPPS (accession No. AJW68082); LdBPPS (accession No.
ATY48638); SBS (accession No. AAC26017); AvBPPS (accession No. AWW87313). The conserved RRX8W, DDXXD and NSE/DTE motifs are underlined.
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from young leaves to produce the transcriptome sequences.
The reported BPPS genes were further queried against
the de novo assembly of these sequences, showing that
trinity_1267_c0_g1_i1 had the highest identity with all the
reported genes. Trinity_1267_c0_g1_i1 was present as full-length
sequence. It was further cloned using specific primers and
annotated as CbTPS1.

CbTPS1 has an open reading frame of 1,812 bp that encodes a
603-residue enzyme with a calculated molecular mass of 69.1 kDa
(Figure 2A). It was classified into the TPS-b subfamily, which
contains three motifs of typical terpene synthases, namely the
RRX8W motif responsible for monoterpenoid cyclization (Chen
et al., 2011); and the DDXXD and NSE/DTE motifs in the
C-terminal domain, which are responsible for metal-dependent
ionization and substrate binding (Chen et al., 2011). Homologous
alignment analysis showed that CbTPS1 shared highest sequence
identities with SBS (41.75%) from Salvia officinalis (Wise et al.,
1998; Figure 3), followed by AvBPPS (40.10%) from Amomum
villosum (Wang et al., 2018), LaBPPS (38.68%) from Lavandula
angustifolia (Despinasse et al., 2017), and LdBPPS (36.20%) from
Lippia dulcis (Hurd et al., 2017).

Functional Analysis of CbTPS1
The recombinant protein of CbTPS1 was expressed in E. coli
Transetta (DE3) cells using the pET-32a (+) expression vector,
and then its function was identified with GPP as a substrate.
CIAP was then added to remove the diphosphate group from
the intermediate product. The purified CbTPS1 produced several
monoterpenes (Figure 4A). Borneol was predominant (88.70%)
with small amounts of α-pinene (2.70%), β-pinene (0.76%),
α-phellandrene (1.20%), limonene (2.37%), and other minor
monoterpenoids (4.27%). CbTPS1 was further examined for its
catalytic properties and the Km value was 5.11 ± 1.70 µM with
a kcat value of 0.01 s−1 (Figure 2B). In parallel, no product
formation was found when the empty vector was transformed
into E. coli Transetta (DE3) cells, and no product was produced
in the absence of CIAP.

A chiral column was used to identify the chirality of borneol.
Based on the results of GC-MS analysis (Figure 4B), a single
product (peak 1) corresponding to the authentic standard (+)-
borneol was detected. When the authentic standard (+)-borneol
was added to the reaction product, only peak 1 was detected.
However, a new product (peak 7) was detected when the
authentic standard (−)-borneol was added. This result further
proved that (+)-borneol was produced with GPP as a substrate.

Reconstituting the MVA Pathway in Yeast
for (+)-Borneol Production
When the codon-optimized CbTPS1 was overexpressed in yeast
CEN.PK2-1D, (+)-borneol could not be detected (Figure 5A).
In addition, geraniol (the dephosphorylated GPP, precursor of
(+)-borneol) was not detected in CEN.PK2-1D (Figure 5B).
Hence, we reconstituted the MVA pathway in CEN.PK2-1D by
overexpressing all the MVA pathway genes (ERG10, ERG13,
tHMG1, ERG12, ERG8, ERG19, IDI1, ERG20F96W−N 127W) to
increase the precursor pool (Figure 5C). The obtained chassis

strain MD can accumulate 12.52 mg·L−1 geraniol (Figure 5B).
Then CbTPS1 was overexpressed in strain MD, and (+)-
borneol was generated with a yield of 0.03 mg·L−1 (strain
MD-1) (Figure 5A).

Improving the (+)-Borneol Yield by
Tailored Truncations
To obtain a higher (+) borneol titer, we engineered the CbTPS1
by further structure optimization. Most terpene synthases in
plants have N-terminal plastidic transit peptidases, and will be
hydrolyzed after the protein is targeted to the plastid (Bohlmann
et al., 1998; Zybailov et al., 2008; Rowland et al., 2015). However,
this affects the catalytic activity because yeast cannot digest
the transit peptide. Thus, we truncated the chloroplast transit
peptide according to the prediction of ChloroP7; CbTPS1 was
truncated at the C37 position in the N-terminus, and named
t37-CbTPS1. (+)-borneol was detected by GC-MS (Figure 6A).
The truncated t37-CbTPS1 showed a significant increase of (+)-
borneol production to 1.53 mg·L−1 (strain MD-7) (Figure 6B).

Hamilton compared 96 Saccharomyces cerevisiae sequences,
and analyzed the window of 100 bases around the START codon
(Hamilton et al., 1987). They found that 50% of highly expressed
genes use the UCU serine codon as the second triplet, which
indicated that UCU following the START codon ATG could
increase gene expression. Therefore, we designed two truncated
proteins with ATG followed by the UCU codon. Both amino
acids at positions 10 (TCC) and 32 (TCA) of CbTPS1 are serine,
which is the same as the amino acid encoded by UCU, so
the codon corresponding to the truncated site was mutated to
TCT to increase the (+) borneol titer, resulting in t10-CbTPS1
and t32-CbTPS1, respectively. The (+) borneol titer of the two
truncated proteins increased significantly. The titer of truncated
t10-CbTPS1 was 1.48 mg·L−1 (strain MD-3), which was 49.33-
fold higher than untruncated CbTPS1, and the titer of truncated
t32-CbTPS1 was 72-fold higher than CbTPS1, up to 2.16 mg·L−1

(strain MD-5) (Figure 6B).

Improving the (+)-Borneol Yield by
Adding Kozak Sequence
The Kozak sequence is roughly the first six important nucleotides
upstream of the START codon in S. cerevisiae, which are used
for gene translation and expression. In yeast, the Kozak sequence
is mostly “AAAAAA” (Hamilton et al., 1987; Li et al., 2017;
Hernández et al., 2019). On the basis of truncation, yeast-specific
Kozak sequence was added in front of START codon ATG of
the codon-optimized CbTPS1 and three truncated proteins to
increase (+)-borneol yield. The modified proteins were named
CbTPS1K, t10-CbTPS1K, t32-CbTPS1K, and t37-CbTPS1K. The
results showed that the yield increased at different levels after
adding the Kozak sequence. The highest (+)-borneol titer was
achieved in strain MD-6 containing t32-CbTPS1K, which is
96.33-fold higher than that in the strain harboring wild-type
CbTPS1, producing 2.89 mg·L−1 (+)-borneol (Figure 6B).
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FIGURE 4 | GC-MS analysis of in vitro assays with CbTPS1. (A) Extracted ion chromatograms of m/z 93 in vitro assays with purified CbTPS1 and GPP as a
substrate. Peak 1, (+)-borneol, Peak 2, α-pinene, Peak 3, β-pinene, Peak 4, α-phellandrene, Peak 5, limonene, Peak 6, α-terpineol. (B) Chromatogram of borneol
product compared with authentic standards (+)- and (−)-borneol. Peak 1, (+)-borneol, Peak 7, (−)-borneol. Corresponding mass spectrum of (+)-borneol (upper
halves) and (−)-borneol (lower halves). EIC, Extracted ion chromatograms.
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FIGURE 5 | The biosynthetic pathway of GPP and (+)-borneol in S. cerevisiae. (A) Extracted ion chromatograms of m/z 95 of (+)-borneol production in CEN.PK2-1D
(negative control) and the MD-1 strain. (B) Extracted ion chromatograms of m/z 69 of geraniol production in CEN.PK2-1D (negative control) and the MD strain.
(C) Reconstitution of the MVA pathway in yeast for GPP production (pink ellipses), and the biosynthetic pathway of (+)-borneol (blue ellipses).

DISCUSSION

Due to the insufficient supply of natural products, the role of
microbial production of valuable compounds has emerged as an
attractive alternative source. Microbial production is a promising
choice to substitute for chemical synthesis or phytoextraction
(Kirby and Keasling, 2009; Nielsen, 2019). High-efficiency gene
elements are vital for metabolic engineering. In this study, we
identified a (+)-bornyl diphosphate synthase (CbTPS1) from
C. burmannii that catalyzed GPP to form (+)-borneol under
the hydrolysis of CIAP. This is the first time an enzyme related
to (+)-borneol synthesis was mined from C. burmannii, and
it has the highest specificity for (+)-borneol production (Wise
et al., 1998; Despinasse et al., 2017; Hurd et al., 2017; Wang
et al., 2018). The Km value of CbTPS1 (5.11 µM) for GPP is
consistent with SBS (3.0 µM) (Wise et al., 1998) and slightly
lower than other reported monoterpene synthases (13.10–26.12
µM), which indicated CbTPS1 had a higher affinity for GPP. Its

kcat/Km (1.99× 10−3 s−1/µM) is similar to that of other efficient
and highly specific monoterpene synthases (3.55 × 10−3–
1.23 × 10−2 s−1/µM) (Morehouse et al., 2017; Ignea et al.,
2019; Dusséaux et al., 2020). Thus, it gives us an opportunity to
reconstruct the (+)-borneol biosynthetic pathway in S. cerevisiae.

In S. cerevisiae, GPP is mainly produced by FPP synthase
(ERG20) to serve as the intermediate product of FPP synthesis,
thus, it should be consumed rapidly. As a result, when there
is no engineering of ERG20, no (+)-borneol or geraniol was
detected in CEN.PK2-1D. In order to increase the GPP pool,
we further overexpressed all MVA pathway genes and mutated
the 96F and 127N of ERG20 to obtain the strain MD, which
generated the target product (+)-borneol. However, compared
with the accumulation of geraniol (12.52 mg·L−1), the yield of
(+)-borneol product was relatively low (0.03 mg·L−1). Thus,
modified proteins were used to improve the expression and
activity of CbTPS1. After steady modification, strain MD6 was
obtained with the highest yield of (+)-borneol (2.89 mg·L−1).
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FIGURE 6 | The (+)-borneol production of strains expressing truncations of the CbTPS1. (A) GC-MS analysis of the fermentation products of strains expressing the
truncated proteins. (B) The titer of (+)-borneol product in strains expressing the truncated proteins. (∗) represent means which are significantly different at p < 0.05;
(∗∗) represent means which are significantly different at p < 0.01.

Thus, the combination of truncation and using Kozak sequence
is an effective strategy for improving (+)-borneol productivity.

Though more than 20 mg·L−1 of linalool, α-terpineol, and
limonene were produced in yeast (Cao et al., 2016; Zhang
et al., 2019, 2020), the yields of most monoterpenes are still
lower than the sesquiterpenes and diterpenes (Zebec et al., 2016;
Zhao et al., 2016; Jiang et al., 2017), such as artemisinic acid
(25 g·L−1) (Paddon et al., 2013) and miltiradiene (3.5 g·L−1)
(Hu et al., 2020). The efficiency of forming the final product
is influenced by many factors. Reduced efficiency is partially
due to the high toxicity of many monoterpenes, such as pinene
and limonene, to S. cerevisiae because they alter membrane
properties or damage the cell wall (Brennan et al., 2013; Demissie
et al., 2019). Two-phase extractive fermentation is usually used
to alleviate the toxicity of monoterpenes (Brennan et al., 2012).

We next will attempt more protein modification of CbTPS1,
such as translational fusion (Ignea et al., 2019) and directed
evolution of enzymes (Qu et al., 2019). In addition, optimizing
the fermentation strategy, by selecting suitable solvent, and
optimizing the carbon sources and fermentation parameters will
further enhance production (Zhou et al., 2019). Thus, we have
good reason to believe that S. cerevisiae could be a promising
platform for a feasible, scalable, and economic route to the
overproduction of (+)-borneol derivatives in the future.
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