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Background: Neurofilament light chain (NfL) is a highly promising biomarker of

neuroaxonal injury that has mainly been studied in adult neurodegenerative disease. Its

involvement in neonatal disease remains largely unknown. Our aim was to establish NfL

plasma concentrations in preterm and term infants in the first week of life.

Methods: Plasma NfL was measured by single molecule array immunoassay in two

neonatal cohorts: cohort 1 contained 203 term and preterm infants, median gestational

age (GA) 37.9 weeks (interquartile range [IQR] 31.9–39.4), in whom venous and arterial

umbilical cord blood was sampled at birth and venous blood at day of life (DOL) 3; cohort

2 contained 98 preterm infants, median GA 29.3 weeks (IQR 26.9–30.6), in whom venous

blood was sampled at DOL 7.

Results: Median NfL concentrations in venous blood increased significantly from birth

(18.2 pg/mL [IQR 12.8–30.8, cohort 1]) to DOL 3 (50.9 pg/mL [41.3–100, cohort 1]) and

DOL 7 (126 pg/mL [78.8–225, cohort 2]) (p < 0.001). In both cohorts NfL correlated

inversely with birth weight (BW, Spearman’s rho −0.403, p < 0.001, cohort 1; R

−0.525, p < 0.001, cohort 2) and GA (R −0.271, p < 0.001, cohort 1; R −0.487,

p < 0.001, cohort 2). Additional significant correlations were found for maternal age at

delivery, preeclampsia, delivery mode, 5-min Apgar, duration of oxygen supplementation,

sepsis, and brain damage (intraventricular hemorrhage or periventricular leukomalacia).

Multivariable logistic regression analysis identified the independent predictors of NfL in

cohort 1 as BW (beta = −0.297, p = 0.003), delivery mode (beta = 0.237, p = 0.001)

and preeclampsia (beta = 0.183, p = 0.022) and in cohort 2 as BW (beta = −0.385,

p = 0.001) and brain damage (beta = 0.222, p = 0.015).

Conclusion: Neonatal NfL levels correlate inversely with maturity and BW, increase

during the first days of life, and relate to brain injury factors such as intraventricular

hemorrhage and periventricular leukomalacia, and also to vaginal delivery.
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INTRODUCTION

As direct access to the central nervous system (CNS) is
almost impossible, neuronal biomarkers have been investigated
for decades in order to improve early diagnostics, monitor
disease progression and optimize care. Neurofilaments (Nf) are
highly specific major neuronal scaffolding proteins comprising 4
subunits: the triplet of Nf light chain (NfL), Nf medium chain,
and Nf heavy chain (NfH), and α-internexin in the CNS, or
peripherin in the peripheral nervous system (1). Acute or chronic
neuronal damage, including traumatic brain injury, stroke,
dementia and multiple sclerosis, releases Nf fragments into the
cerebrospinal fluid and eventually the blood compartment (2–
6). Recent advances using highly sensitive single molecule array
(Simoa) immunoassay have improved NfL detection, particularly
in peripheral blood, making it a promising and readily accessible
biomarker for neuroaxonal injury (7).

Whereas, circulating Nf has been extensively characterized in
adults and older children with neurologic disease, data in infants
and particularly newborns are sparse. One study reported raised
serum NfH in children older than 6 months with febrile seizures
lasting >30min, suggesting that prolonged seizures cause some
degree of neuronal damage (8). Plasma NfH in newborns with
hypoxic-ischemic encephalopathy (HIE) was also higher than
in healthy neonates (9, 10). Moreover, NfL levels in infants
undergoing therapeutic hypothermia for HIE were significantly
higher in those with unfavorable vs. favorable brain magnetic
resonance imaging (MRI) outcome (11). As for mode of delivery,
serum NfH levels at day of life (DOL) 2 in a small cohort of
newborns did not differ between those born vaginally and those
born by cesarean section (12).

Given the potential of Nf in adults with acute or chronic CNS
damage and promising results in infants with HIE, we aimed to
measure NfL levels by Simoa in two cohorts of preterm and term
neonates in umbilical cord blood at birth and in venous blood a
few days after birth.

MATERIALS AND METHODS

Study Participants
The study was based on data and blood samples prospectively
collected from two neonatal cohorts. Cohort 1 comprised data
and blood samples from 203 preterm and term neonates, median
gestational age (GA) 37.9 weeks (interquartile range [IQR]
31.9–39.4), born and cared for at the University Hospitals of
Zurich and Basel, Switzerland. More specifically, it comprised 89
preterm infants (GA < 37 weeks), including 52 with GA < 32
weeks, and 114 term infants (GA ≥ 37 weeks). The study was
approved by the institutional review boards of both university
hospitals (Ethikkommission beider Basel, EKBB07/09, Kantonale
Ethikkommission Zurich, KEK08/09). Cohort 2 comprised data
and blood samples from 98 very preterm neonates (GA < 32
weeks), median GA 29.3 weeks (IQR 26.9–30.6), born and cared

Abbreviations: Nf, Neurofilament; NfL, Neurofilament Light Chain; GA,

Gestational Age; BW, Birth Weight; DOL, Day of Life; MPT, Moderate Preterm

and Term.

for at the University Hospital of Basel, Switzerland. The study was
approved by the institutional review board (Ethikkommission
beider Basel, EK233/13) and was carried out in accordance
with the declaration of Helsinki. Written informed consent was
obtained from the parents prior to enrollment.

Clinical Characteristics (Table 1)
Details of pregnancy (presence/absence of preeclampsia,
amniotic infection, preterm labor, maternal age, premature
rupture of membranes), delivery (umbilical artery pH, delivery
modality), birth (GA, BW, sex, 5- and 10-min Apgar scores),
and postnatal course to discharge home (presence/absence of
sepsis and/or necrotizing enterocolitis, ultrasound brain damage
with periventricular intraventricular hemorrhage [PIVH] or
periventricular leukomalacia [PVL], duration of oxygen) were
collected from the charts. Definitions of clinical characteristics,
including preeclampsia, clinical chorioamnionitis, PIVH, and
PVL, have been described previously (13), based on standardized
definitions of the Swiss Neonatal Network.

Sample Preparation and Assessment of
NfL
In cohort 1, venous blood (0.5mL) was collected from the
umbilical cord at birth (n = 185) and simultaneously with
mandatory neonatal metabolic screening at DOL 3 (n = 39);
68 paired umbilical arterial samples were also collected at birth.
In cohort 2, venous blood was collected with diagnostic blood
samples at DOL 7 (n = 98). All samples were handled according
to standard operating procedures for blood sampling in EDTA
tubes, subsequent sample transfer to the central laboratory
service, centrifugation, preparation of aliquots, and storage at
−80◦C until batch-wise analysis as described previously (14).
Assay technicians were blinded to clinical information and
pregnancy outcome.

NfL levels were measured by Simoa immunoassay using
capture monoclonal antibody (mAB) 47:3 and biotinylated
detector mAB 2:1 (UmanDiagnostics, Umea, Sweden), as
previously described (15). Calibrators (neat) and serum samples
(1:4 dilution) were measured in duplicate. Bovine lyophilized
NfL was obtained from UmanDiagnostics. Calibrators ranged
from 0 to 2,000 pg/mL. Batch-prepared calibrators were stored
at −80◦C. Intra- and interassay variabilities were < 10%; the
few samples with intra-assay coefficients of variation >20% were
remeasured.

Data Analysis
Statistical analyses were performed using SPSS for Windows
version 24 (IBM) and included descriptive statistics, Spearman’s
rank-order correlation analyses and multiple linear regressions
(MLR) using NfL as dependent variable. NfL variables were log10
transformed for the correlations and MLR. The independent
variables included forMLRwere based on significant correlations
and significant non-parametric univariate analyses such as the
Mann-Whitney U (2 levels) and Kruskal-Wallis tests (>2 levels).
For cohort 1 these variables were: BW, 5-min Apgar, delivery
mode (3 levels), preeclampsia, sepsis, and oxygen duration. For
cohort 2 they were: BW, 5-min Apgar, sex, brain damage, sepsis,
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amniotic infection, and oxygen duration. Due to collinearity
between BW and GA, we used only BW inMLR, where it showed
stronger correlation with NfL than GA.

RESULTS

Baseline NfL Levels
In cohort 1 overall median venous NfL concentrations were 18.2
pg/mL (IQR 12.8–30.8) at birth and 50.9 pg/mL (41.3–100.1) at
DOL 3; in cohort 2 they were 128.5 pg/mL (78.8–224.8) at DOL 7.

We split cohort 1 into a very preterm group (GA < 32 weeks;
n= 52) and amoderate preterm and term (MPT) group (GA≥32
weeks; n = 151) with fewer prematurity complications (n = 1
in our sample). This also enabled us to compare the first group
with cohort 2. NfL levels were significantly higher in very preterm
infants than in the MPT group at birth (median 32.5 pg/mL,
n = 47 vs. 15.3 pg/mL, n = 138; p < 0.001), but not at DOL 3
(median 48.5 pg/mL, n = 16 vs. 51.4 pg/mL, n = 23; p = 0.668).
Moreover, levels increased significantly from birth to DOL 3 in
both the very preterm and MPT groups (median 32.5 vs. 48.5
pg/mL, p = 0.002; and median 15.3 vs. 51.4 pg/mL, p < 0.001),
and from DOL 3 to DOL 7 in the very preterm group (median
48.5 vs. 128.5 pg/mL, p = 0.001) (Table 2). This increase was
confirmed in cohort 1 when comparing paired samples from
same infants (MPT group n = 16, very preterm group n = 11)
at birth and DOL 3 (median 18.2 pg/mL vs. 49.4 pg/mL). Out
of these, only in 2 very preterm infants NfL levels remained
unchanged, in all other infants they increased from birth until
DOL 3. Paired umbilical cord arterial and venous plasma were
closely related (R= 0.875, p< 0.001). Given this close correlation
and the greater number of subjects (n = 185), we performed
all further analyses using the venous blood samples collected at
birth.

NfL and Perinatal Characteristics in
Cohort 1
Venous cord blood at birth correlated negatively with BW
(R = −0.403, p < 0.001, Figure 1), GA (R = −0.271, p < 0.001),
5-min Apgar (R = −0.295, p < 0.001), and 10-min Apgar
(R = −0.363, p < 0.001). In contrast, levels correlated positively
with oxygen duration (R = 0.333, p < 0.001) and delivery mode
(R= 0.156, p= 0.034).

Presence of preeclampsia (31.0 pg/mL vs. 16.2, p < 0.001) and
sepsis (32.6 pg/mL vs. 17.85, p = 0.033) were associated with
higher NfL levels.

In the MPT group NfL levels at birth were significantly higher
in infants delivered vaginally than by primary or secondary
cesarean section (21.8 vs. 13.9 and 14.4 pg/mL; p = 0.002)
(Figure 2). This was not the case in the very preterm group,
presumably due to the few vaginal deliveries (n = 5 vs. n = 47
cesarean sections). At DOL 3 there was no significant difference
(p = 0.07) in NfL levels between birth modalities except for
vaginal delivery vs. cesarean section (110 pg/mL, n = 8 vs. 48.7
pg/mL, n= 31; p= 0.031).

MLR testing for the best independent predictors of NfL levels
at birth used BW, 5-min Apgar, delivery mode, preeclampsia,
sepsis and oxygen duration as explanatory variables. The model

TABLE 1 | Descriptive statistics.

Cohort 1

n = 203

Cohort 2

n = 98

Moderate Preterm

and Term (≥32

weeks GA)

n = 151

Very preterm

(< 32 weeks GA)

n = 52

Very preterm

(< 32 weeks GA)

n = 98

NEONATAL CHARACTERISTICS

GA (weeks) 38.3 (37.0–40.0) 30.1 (28.3–31.3) 29.3 (26.9–30.6)

BW (g) 3270 (2710–3630) 1360 (1063–1463) 1145 (788–1413)

Sex (male, %) 87 (57.6) 25 (48.1) 52 (53.1)

Brain damage (%) 1 (0.7) 10 (19.2) 12 (12.2)

O2 duration (days) 0 4 (1–15.8) 2.38 (0.05–22.8)

pH umbilical artery 7.30 (7.26–7.33) 7.32 (7.29–7.37) 7.32 (7.28–7.36)

NEC (%) 0 0 3 (3.1)

Sepsis (%) 0 11 (21.2) 13 (13.3)

5-min Apgar 9 (9–9) 7 (5.25–8) 7 (6–8)

Death (%) 0 6 (11.5) 2 (2.0)

MATERNAL CHARACTERISTICS

Age (years) 32 (29–36) 33 (28.3–36.0) 33 (29–36)

Amniotic infection (%) 5 (3.3) 13(25) 20 (20.4)

Preeclampsia (%) 16 (10.6) 20 (38.5) 16 (16.3)

PROM (%) 14 (9.3) 14 (26.9) 28 (28.6)

DM (%):

Primary CS 76 (50.3) 26 (50) 27 (27.6)

Secondary CS 29 (19.2) 21 (40.4) 59 (60.2)

VD 46 (30.5) 5 (9.6) 12 (12.2)

GA, gestational age; BW, birth weight; BD, brain damage (PIVH and/or PVL); NEC,

necrotizing enterocolitis; PROM, premature rupture of membranes; DM, delivery mode;

CS, cesarean section; VD, vaginal delivery. GA, BW, O2 duration, Apgar, pH and maternal

age are presented as median and interquartile range.

was significant (F(6, 176) = 8.655, p < 0.001), explaining around
23% of NfL variance (R2

= 0.228). The predictors were BW
(beta = −0.297, p = 0.003), delivery mode (beta = 0.237,
p= 0.001), and preeclampsia (beta= 0.183, p= 0.022).

NfL and Perinatal Characteristics in
Cohort 2
NfL at DOL 7 correlated negatively with the main neonatal
characteristics such as BW (R=−0.525, p< 0.001, Figure 1), GA
(R=−0.487, p < 0.001), and 5- and 10-min Apgar (R=−0.247,
p = 0.014; R = −0.228, p = 0.024). Correlation was positive
with oxygen duration (R = 0.358, p < 0.001) and maternal age
(R= 0.353, p < 0.001).

Brain damage (211.5 pg/mL vs. 123, p = 0.002) and sepsis
(184 pg/mL vs. 124.5, p= 0.020) were associated with higher NfL
levels. Delivery mode had no significant impact (p= 0.624).

MLR analysis of cohort 2 used BW, 5-min Apgar, sex, brain
damage, sepsis, amniotic infection, and oxygen duration as
explanatory variables. The regression model explained around
37% of NfL variance (R2 = 0.366, F(7, 89) = 7.331, p < 0.001).
Only BW (beta = −0.385, p = 0.001) and brain damage
(beta = 0.222, p = 0.015) contributed significantly to predicting
NfL (Figure 2).
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DISCUSSION

Neuronal injury marker NfL has proved a sensitive and specific
biomarker in adult peripheral blood, serving as a promising
adjunct to monitoring and decision-making in acute and chronic
neurologic disease (16, 17). Our study provides a first insight
into neonatal NfL levels in term and preterm infants. The major
findings are that NfL levels increase over the first few days of
life, relate inversely to prematurity and BW, and identify BW,
delivery mode, preeclampsia and brain damage as independent
predictors.

NfL levels at birth in MPT infants resemble those in healthy
adults (15). By DOL 3 they rise to the levels seen in adults
with neurodegenerative disease such as multiple sclerosis (15).
At DOL 7 in very preterm infants NfL levels are in the range of
asphyxiated neonates at DOL 4 (11).

The main influencers of NfL in both cohorts were BW and
maturity: birth and neonatal levels were both higher in low
BW infants (Figure 1), perhaps because brain vulnerability to
neuronal injury increases with prematurity. Alternatively, high
NfL levels in preterm infants might be due to high neuronal

TABLE 2 | Cohort neurofilament light chain concentrations at birth and at days of

life (DOL) 3 and 7.

Cohort Neurofilament light chain concentrations (pg/mL)

Birth

(arterial)

Birth

(venous)

DOL 3

(venous)

DOL 7

(venous)

1: Very preterm group

(GA < 32 weeks)

n = 52

32.5

(17.6–52.5)

n = 47

48.5

(37.6–138)

n = 16

1: Moderate Preterm

and Term group

(GA ≥32 weeks)

n = 151

17.7

(12.4–25.4)

n = 68

15.3

(12.2–23.9)

n = 138

51.4

(41.4–86.4)

n = 23

2: Very preterm group

(GA < 32 weeks)

n = 98

126

(78.8–225)

n = 98

Median and interquartile range. GA, gestational age.

turnover in general, with the much higher postnatal levels at
DOL 3 and DOL 7 (Figure 2) simply reflecting a neuronal stress
reaction to birth, as in healthy term neonates.

Preterm infants are at risk for perinatal brain damage, in
particular PIVH and PVL (18). In our sample those with evidence
of brain damage had significantly higher NfL levels than those
without (Figure 2). Brain damage leads directly to neuronal
injury, to a degree objectifiable by NfL: levels are higher in
asphyxiated neonates with unfavorable brain MRI outcome (11).
As in adults, cerebrovascular accident results in immediately
higher NfL levels (19), compared to the more gradual neuronal
damage seen in neurodegenerative disease (20).

In addition to a direct effect of brain damage, we identified
two other stressors that increase NfL, namely delivery mode and
preeclampsia. Levels were higher in infants delivered vaginally
than by cesarean section (Figure 2), suggesting greater neuronal
injury and confirming vaginal delivery as one of life’s strongest
stressors, causing incommensurable release of various fetal stress
hormones (21). Preeclampsia, a pregnancy-specific syndrome
defined by high blood pressure and other morbidities (22),
was the additional stressor, raising NfL levels at birth even
after adjustment for BW and GA. Our finding is consistent
with the recent report of raised NfL levels in women with
preeclampsia (23). Maternal hypertension is closely linked to
placental insufficiency which compromises fetal perfusion and
may cause cardiovascular disease later in life (24). Our data
indicate that preeclampsia involves a risk of neuronal damage in
the unborn child.

While the main source of NfL is considered to be the
central nervous system, peripheral damage may contribute to
increased NfL values as well, as recently revealed by studies on
peripheral neuropathies (25, 26). Increased blood levels of the
muscle enzyme creatine kinase in newborn infants after vaginal
deliveries compared to cesarean sections have been reported
(27). They support the notion that increased NfL in these
babies may result, at least in part, from peripheral neuronal
damage. However, data on the central nervous system biomarker
S100 B measured in the maternal serum and cord blood show
clearly increased S100B values after vaginal delivery compared
to cesarean section (28). It has been shown previously that

FIGURE 1 | Correlation between birth weight and NfL. (A) Birth (cohort 1). (B) DOL 7 (cohort 2).
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FIGURE 2 | Effect of delivery mode and brain damage on NfL. (A) NfL at birth in infants with GA ≥ 32 weeks (cohort 1). (B) NfL at DOL 7 (cohort 2). Absent, no brain

damage; present, PIVH and/or PVL. Boxplots are presented with median and IQR. The * are extreme outliers.

extracranial sources of S100B do not affect serum levels (29).
Taken together, the findings of Schulpis KH et al. corroborate our
data that increased levels of the neuronal injury markers S100B
and NfL might be caused by the compression on the fetus’ brain
during delivery.

Further, S100B levels in neonates with HIE exceeded those in
healthy controls, proportionately to disease severity and worse
outcome (30). Although S100B levels decreased overall from
DOL 1 through DOL 9 (31), levels in preterm and term neonatal
saliva followed a pattern similar to NfL, being higher in preterm
than in term infants and correlating negatively with GA (32).
Nerve growth factor (NGF) is a neurotrophic factor involved in
brain development and neuroplasticity following brain damage.
Unlike NfL, NGF levels in maternal and cord plasma are lower in
preterm than in term deliveries (33).

To date the metabolism of NfL in cerebrospinal fluid (CSF)
and blood is largely unknown, ways of elimination or protein
degradation have not been described. One study examined the
influence of blood brain barrier permeability and blood NfL
levels. In this study there was no correlation between serum NfL
concentration and CSF/serum albumin ratio (34).

Study limitations include the relatively few subjects sampled
at DOL 3, which may account for the non-significant difference
between very preterm and MPT infants at DOL 3. In the
first week of life there is an apparent increase in NfL levels,
but in the absence of data points post-DOL 7, the subsequent
profile of NfL requires elucidation in further studies. Nor can
we exclude other confounders that might influence and explain
NfL. Cognitive outcome studies will need to confirm the use
of NfL as a predictive biomarker of brain damage and eventual
neurodevelopmental deficit. Such early biomarkers are sorely
needed to complement ultrasound or MRI in conditions such
as PVL (18). In addition, future studies may explore NfL
together with other potentially promising biomarkers of brain

damage (35). More generally, research is required to explore and
disentangle the causes of the high degree of neuronal injury in the
preterm brain.

CONCLUSION

This study provides an initial insight into neuronal injury marker
NfL in term and preterm infants. Levels increase through the first
week of life. They relate inversely to GA and BW and are higher
in brain injury. Obstetric parameters such as delivery mode and
preeclampsia also raise NfL levels. Our study supports the use
of NfL in neonates to help us understand the factors leading
to neuroaxonal injury and how we might monitor and prevent
them.
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