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Automatic heartbeat classification via electrocardiogram (ECG) can help diagnose and prevent cardiovascular diseases in time.
Many classification approaches have been proposed for heartbeat classification, based on feature extraction. However, the existing
approaches face the challenges of high feature dimensions and slow recognition speeds. In this paper, we propose an efficient
extreme learning machine (ELM) approach for heartbeat classification with multiple classes, based on the hybrid time-domain
and wavelet time-frequency features. The proposed approach contains two sequential modules: (1) feature extraction of heartbeat
signals, including RR interval features in the time-domain and wavelet time-frequency features, and (2) heartbeat classification
using ELM based on the extracted features. RR interval features are calculated to reflect the dynamic characteristics of heartbeat
signals. Discrete wavelet transform (DWT) is used to decompose the heartbeat signals and extract the time-frequency features of
the heartbeat signals along the timeline. ELM is a single-hidden layer feedforward neural network with the hidden layer pa-
rameters randomly generated in advance and the output layer parameters calculated optimally using the least-square algorithm
directly using the training samples. ELM is used as the heartbeat classification algorithm due to its high accuracy training accuracy,
fast training speed, and good generalization ability. Experimental testing is carried out using the public MIT-BIH arrhythmia
dataset to perform a 16-class classification. Experimental results show that the proposed approach achieves a superior classi-

fication accuracy with fast training and recognition speeds, compared with existing classification algorithms.

1. Introduction

Arrhythmia is caused by disturbance in the rate, regularity,
site of origin, or conduction of the cardiac electrical impulse
[1]. Severe arrhythmias can even threaten human life. An
electrocardiogram (ECG) records the changes in electrical
activity generated during each cardiac cycle of the heart,
which can help doctors to diagnose arrhythmias. However, a
routine ECG usually lasts only a few minutes, which
sometimes does not detect an occasionally irregular heart
rhythm. Some cardiovascular diseases, such as sudden
cardiac death caused by ventricular tachyarrhythmia, have
short durations from onset to death. The Holter monitor, a
portable device invented by Norman J. Holter in 1949, can

continuously monitor the patient’s electrical activity of the
heart for 24 hours or more in their daily life [2]. The ex-
tended monitoring period is helpful to observe occasional
cardiac arrhythmias which would be difficult to be detected
in a shorter period. Besides, due to the numerous varieties
and subtle changes of heartbeats, usually arrhythmia needs
to be identified by experienced doctors. The automatic ar-
rhythmia classification approach based on ambulatory ECG
plays a role in timely detecting arrhythmia and therefore can
effectively prevent the cardiovascular diseases.

Two main factors affect the performance of heartbeat
classification: features extracted from the heartbeat signals,
and selected classifier. The extracted features should show
dispersions between different heartbeat types and the
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similarities between features within the same heartbeat type.
In the literature, various handcrafted features have been
extracted for heartbeat classification, including RR interval
features [3, 4], morphological features [5], wavelet features
[6, 7], independent component analysis [8], and higher-
order statistics [9]. Recent studies tend to automatically
extract the features of heartbeat signals via deep learning
[10-12].

For classification task, classifiers such as support vector
machine (SVM) [13], k-nearest neighbor (KNN) [14], and
backpropagation neural network (BPNN) [15] have been
used. However, the training speed of gradient descent based
BPNN is slow, and its parameters often fall into local op-
timums. For SVM, the training time increases exponentially
as the feature dimension increases. Faced with so many
features, feature reduction is often performed first, followed
by classification. Extreme learning machine (ELM) is
originally developed for the single-hidden layer feedforward
neural networks (SLFNs), and then extended to the gen-
eralized SLFNs which need not be neuron alike [16]. The
hidden layer parameters are randomly generated, and the
output parameters are calculated analytically. ELM is iter-
ation-free, so its training speed is very fast compared with
the BPNN algorithm. Huang et al. prove that ELM has
universal approximation capability [17]; that is, as the
number of hidden layer nodes increases, the network can
approximate nonlinear functions with infinitely small errors.

Due to these advantages, ELM has been studied ex-
tensively over the years, and many different types of ELM
have been proposed to solve different machine learning
problems. Liang et al. [18] proposed an online sequential
ELM (OS-ELM) which is used in the situation that the
training samples are processed one by one. Zong et al. [19]
proposed the weighted ELM (W-ELM) when the numbers of
samples of different classes are imbalanced. Huang et al. [20]
extended ELM using kernel trick (KELM), which greatly
improves the performance of ELM, and they explained why
ELM is the optimal solution, while SVM is the suboptimal
solution. The experimental results also verified that the
performance of KELM is better than SVM. To make full use
of unlabeled samples, semisupervised ELM (SS-ELM) and
unsupervised ELM (US-ELM) were proposed [21]. Tang
et al. [22] designed a multilayer ELM (ML-ELM) in which
feature extraction and classification are integrated into a
unified network structure. The multilayer structure of ML-
ELM increases the representation ability of ELM, which can
extract features automatically. Zhang et al. [23] proposed
residual compensation ELM (RC-ELM) for regression
problem, which employs a multilayer structure. The residual
is compensated layer by layer iteratively by remodeling the
unmodeling prediction error in the previous layer. Recently,
they [24] proposed a robust ELM (R-ELM) to improve the
modeling capability and robustness with unknown noise.
They used mixture of Gaussian to fit the noise and con-
structed a modified objective function.

In this paper, we will propose an efficient ELM approach
for heartbeat classification with multiple classes based on the
hybrid time-domain and wavelet time-frequency features.
We extract the RR interval features in time-domain and
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wavelet time-frequency coeflicient features of the heartbeats.
Four types of RR intervals are calculated to reflect the
temporal characters of heartbeat signals. Discrete wavelet
transform (DWT) is employed to decompose the heartbeat
signal to wavelet coefficient components that progress over
time, and wavelet decomposition coeflicients are designated
as the time-frequency features. We concatenate these two
types of features, forming a total of 20 heartbeat features.
Then, ELM is introduced to classify the heartbeat signals into
16 categories.

The main contributions of this paper include the fol-
lowing: (1) temporal features and time-frequency features
are simultaneously extracted for heartbeat signals. The in-
tegrated features capture the characteristics of heartbeat
signals more comprehensively; (2) ELM is introduced to
achieve high heartbeat classification accuracy and recogni-
tion speed.

The paper is organized as follows: Section 2 presents the
related work. Section 3 briefly introduces ELM. Section 4
details the feature extraction schemes and the proposed
approach. Section 5 reports the experimental results. Finally,
Section 6 presents the conclusions and the future work.

2. Related Work

In the literature, feature extraction methods for heartbeat
signals can be mainly classified to two categories: manually
feature extraction and automatically feature extraction. For
the former, handcrafted features will reflect meaningful
information for original ECG signals in specific aspects.
Recently, with the popularity of deep learning, scholars
begin to design neural networks with deep structures that are
suitable for ECG signals and automatically extract the fea-
tures in a layer-by-layer manner.

Khalaf et al. [25] introduced cyclostationary signal
analysis to extract heartbeat features. They used the spectral
correlation as a nonlinear statistical transformation to in-
spect the periodicity of the correlation. However, the large
number of features was extracted by this method, and the
author employed principal component analysis (PCA) to
reduce the feature dimensions. Finally, SVM classifies the
heartbeat signals into 5 categories. Mert [26] decomposed
electrocardiogram beats into a set of band-limited oscilla-
tions by variational mode decomposition (VMD). The
amplitude modulation bandwidth, the frequency modula-
tion bandwidth, and the total bandwidth of the modes form
the feature vectors. Then, the bagged decision tree is adopted
to classify the heartbeat into six classes.

Ye et al. [13] extracted dynamic and morphological
features of the heartbeat signal. A total of 128 features are
obtained, which consist of 114 wavelet features and 14 in-
dependent component coefficient features. Then, PCA is
used to reduce the feature dimensions, and SVM for clas-
sification. The process of extracting so many features and
then reducing dimensionality is redundant when classifying
the heartbeat signals. The introduction of PCA may lose the
original information.

Wavelet transform (WT) has been developed for au-
tomatic ECG analysis, including signal denoising, wave
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detection, and heartbeat classification [27]. Li et al. [28]
employed DWT with soft thresholding to reduce the
noises of the ECG signals. Biswas et al. [29] gave the
detailed comparisons of different wavelet families on ECG
denoising. Kaur et al. [30] detected the QRS complexes by
DWT with Db6 wavelet. By the convolution operation of
the wavelet basis function and the ECG signals, the peak
can be found at the position corresponding to the largest
convolution result, due to the morphological similarity
between wavelet and QRS complexes. Sarkaleh and
Shahbahrami [15] calculated the statistics of the DWT
coeflicients and selected BPNN as the classifier. When WT
is acted as a feature extractor, it can actually be regarded as
a downsampling operation.

Recently, Yildirim et al. [10] proposed to automati-
cally extract heartbeat features via deep learning methods.
They designed a convolutional autoencoder to reduce the
signal size of arrhythmic beats. Then, long short-term
memory (LSTM) classifiers were employed to automati-
cally recognize heartbeat classes. Fan et al. [31] proposed a
multiscaled fusion of the deep convolutional neural
network to recognize atrial fibrillation. Two-stream
convolutional networks with different filter sizes were
customized to capture features of different scales. Al-
though this method can automatically extract features, the
deep learning-based feature extraction method is black-
box and cannot effectively explain the meaning of the
extracted features.

ELM has been applied to many applications.
Mohammed et al. [32] employed ELM for face recogni-
tion, producing a faster recognition rate. Yuan et al. [33]
classified epilepsy patients via EEG, and ELM was chosen
as the classifier. Experimental results demonstrated sat-
isfactory classification accuracy and fast training time.
Huang et al. [34] used ELM to recognize traffic signs. The
proposed method not only has a high recognition rate but
also has high computational efficiency in both training
and recognition process. Zhang et al. [35] performed
parameterized geometrical feature extraction (PGFE) and
designed an ELM-based approach for device-free locali-
zation, which can improve the localization accuracy
significantly. Later, they continued to develop ELM and
applied it to large-scale device-free localization setting,
and experimental results showed the validity of the
proposed approach [36]. However, less work involves the
use of ELM to classify heartbeat signals, and ELM is not
fully developed to perform multiclass heartbeat
classification.

Kim et al. [6] extracted the heartbeat features by con-
tinuous wavelet transform, and ELM was carried out for
classification. However, ELM without constraints on output
parameters of SLFN tends to perform poorly.

3. Extreme Learning Machine

ELM is a single-hidden layer feedforward neural network,
which contains three layers, namely, the input layer, the
hidden layer, and the output layer. Figure 1 shows the
structure of ELM. The parameters in ELM are calculated in a

m output nodes

L hidden nodes

n input nodes

FiGgure 1: The structure of ELM.

different way from BP. The hidden layer parameters are
randomly generated, and the output parameters connecting
the hidden layer and the output layer are analytically ob-
tained by the least-square method.

ELM has the universal approximation ability [17].
Specifically, given any bounded nonconstant piecewise
continuous activation function, a network with randomly
generated hidden layer parameters can approximate the
objective function with an arbitrarily small error, simply by
adjusting the output parameters.

Now, we briefly present the principle of ELM.

Suppose that we have N labeled samples x;, where i =
1,2,...,N and x; € R". The parameters of the hidden
neurons are randomly generated according to any contin-
uous probability distribution; then, for SLENs with L hidden
neurons, the hidden layer output matrix H is calculated
forward as

g(a - x,+by) - glay-x, +by)
H= : : : , (1)

g(a, - xy+by) - glag-xy+b) Iy

where g(-) is the activation function and g; and b; are the
parameters of the ith hidden node in the hidden layer. The
propagation of data from the input layer to the hidden layer
actually maps the original data from the #-dimensional
space to the L-dimensional space.

For multiclass classification, the number of ELM output
nodes is set to the same as the number of the classes. As-
suming that there are m classes, c is the original class label,
and the expected output vector of the m output nodes is

encoded ast; = [-1,...,-1, i, ~1,...,-1]"; that is, only the
cth element of ¢; is 1, while the rest elements are set to —1.
The relationship between the output of the hidden layer and
the network is written as

HB =T, (2)

where
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Often the number of training samples is not equal to the
number of hidden nodes; that is, the hidden layer output
matrix H is not a square matrix, so the least-square solution
of (2) is not unique. Bartlett pointed out that for feedforward
neural network, the smaller the network weights, the better
the generalization performance of the network [41]. The
smallest norm least-square solution of f3 is

B=H'T, (5)

where H' is the Moore-Penrose generalized inverse of H.

To avoid ill-posed problem, a positive value C is added to
the diagonal of H'H according to the ridge regression
theory. Then, the objective function of regularized ELM
becomes

1 1
Minimize: [ = E||/5||2 +5CIT - Hp|I. (6)

Taking the derivative with respect to § and letting it be
zero, then the output parameters of ELM are

B= <é + HTH>_1HTT, (7)

where I is the unit matrix.
We summarize ELM into three steps, which are pre-
sented as follows:

(1) Randomly generate the hidden layer parameters g;
and b; according to any continuous probability
distribution

(2) Calculate the output matrix H of the hidden layer
(3) Obtain the output parameters using equation (7)

4. Proposed Approach

In this section, we first introduce the MIT-BIH arrhythmia
dataset and then detail the proposed heartbeat classification
approach.

4.1. Dataset. The MIT-BIH arrhythmia dataset is one of the
widely used datasets for the study of arrhythmia classifi-
cation [37]. It contains 48 half-hour records of dual-channel
dynamic ECG, which are obtained from 47 subjects. In these
records, 23 records are randomly selected from 4000 24-
hour Holter ECG records and 25 records are selected from
the same set to include less common but clinically significant
arrhythmias [38].

In the upper channel, 45 records of the signals are
collected from a modified limb lead IT (MLII) and 3 records
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are collected from a modified precordial lead V5. In the
lower channel, 1 record is collected from MLII and the
others are collected from lead V1, V2, V4, or V5. In our
study, we use the signals of the upper channel and reverse
two channels of record 114 to ensure that the signal comes
from MLIL

All records are band-pass filtered at the range of
0.1-100 Hz, and then the filtered signals are digitized at
360 Hz. The dataset provides the label of each heartbeat,
which is annotated by two cardiologists. The approximate
location of the fiducial R point of each heartbeat is also
marked in the dataset.

Table 1 gives the name, abbreviation, and annotation of
each heartbeat type in the MIT-BIH arrhythmia dataset.

4.2. The Overall Structure. Figure 2 shows the overall
structure of the proposed heartbeat classification approach.
It contains two phases: the offline training phase and the
online classification phase. Both phases consist of three
stages, namely, preprocessing, heartbeat segmentation, and
hybrid feature extraction. In the preprocessing stage, we
eliminate the baseline wander of the ECG signals using
median filters. Then, we divide the continuous heartbeat
signal to heartbeat segments one by one. Next, we extract the
RR interval features and wavelet coefficient features of the
heartbeat signals. ELM is trained on the offline heartbeat
training data, and finally, the trained ELM model classifies
the online heartbeat signals.

4.3. Preprocessing. The baseline wander of ECG signal is
caused by low-frequency interferences such as the res-
piration of the measured object and electrode movement.
ECG signal contains low-frequency components, and the
baseline wander will obscure useful information. Awodeyi
et al. [39] proposed a novel approach for removal of
baseline wander in photoplethysmography signals. We
refer to this approach and design a two-stage median
filtering approach to remove the baseline wander of ECG
signal.

4.4. Heartbeat Segmentation. Before feature extraction,
continuous ECG signal should be divided into individual
heartbeats. A heartbeat segment should capture the useful
information of the current heartbeat as much as possible, but
avoid covering the components of the previous heartbeat or
the next heartbeat.

Generally, the PR interval ranges from 0.12 to 0.22
seconds, and the QT interval is roughly less than 0.45
seconds, so without loss of generality, in this paper we set
the duration of the heartbeat segmentation as 0.65 seconds.
The MIT-BIH arrhythmia dataset provides the approxi-
mate location of the fiducial R point for each heartbeat. We
manually correct the provided R-peak positions beat-by-
beat. Then, based on the position of the corrected fiducial R
point, the intervals of 0.25 seconds before R peak and 0.4
seconds after R peak are selected and they constitute a
heartbeat segment of 0.65 seconds.
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TaBLE 1: The detailed description of the MIT-BIH arrhythmia dataset.
Heartbeat type Abbreviation Annotation
Normal beat NOR N
Left bundle branch block LBBB L
Right bundle branch block RBBB R
Atrial premature contraction APC A
Premature ventricular contraction PVC \%
Paced beat PACE /
Aberrated atrial premature beat AP a
Ventricular flutter wave VF !
Fusion of ventricular and normal beat VEN F
Blocked atrial premature beat BAP X
Nodal (junctional) escape beat NE j
Fusion of paced and normal beat FPN f
Ventricular escape beat VE E
Nodal (junctional) premature beat NP ]
Atrial escape beat AE e
Unclassifiable beat UN Q
Total — 16
T !
i Offline training phase !
! I
i . Heartbeat Hybrid feature ELM i
> Preprocessmg — . . » o 1
» I segmentation extraction training |
S | Lo Tooooooooooo oo ———f-———__
20
QO |
2 T
| . Heartbeat Hybrid feature R ! assitication
—T* Preprocessing segmentation extraction ELM model |—-> results

Online classification phase

FIGURE 2: The overall structure of the proposed approach.

4.5. Feature Extraction

4.5.1. RR Interval Features in the Time Domain. RR interval
can reflect the relationship between the current heartbeat
and its neighboring heartbeat in the time domain. This
sequential relationship can help more effectively distinguish
heartbeat signals. We calculate 4 types of RR interval in-
formation: previous RR, the interval between the R peak of
the current heartbeat and the previous heartbeat; post RR,
the interval between the R peak of the current heartbeat and
the next heartbeat; short-term RR, the average interval of [
previous RRs; long-term RR, the average interval of previous
RRs over the d minutes before the current heartbeat. In this
paper, we empirically choose / as 10 and d as 5.

To illustrate the effectiveness of RR interval features, we
choose three heartbeat classes, each of which contains 50
randomly selected samples, and then plot scatter diagrams of
their distributions. Figure 3(a) shows that heartbeat classes
atrial premature contraction (A), nodal (junctional) pre-
mature beat (J), and paced beat (/) can be easily distin-
guished by the feature of previous RR. From Figure 3(b), we
can also find that heartbeat classes fusion of ventricular and
normal beat (F), ventricular flutter wave (!), and blocked
atrial premature beat (x) are clearly distinguished by the
feature of long-term RR.

4.5.2. Wavelet Time-Frequency Features. ECG signal is
nonstationary signal; that is, its frequency changes over
time. Using Fourier transform, we can only get the fre-
quency components in the signal, but the specific time
when these frequencies occur is not known. Although
short-time Fourier transform (STFT) solves the above
problem by adding a sliding window, it also faces the
challenge that the window size is difficult to determine.
Wavelet transform (WT) is a novel transform analysis
method, which inherits and develops the idea of locali-
zation of STFT, and overcomes the shortcoming of STFT
which the window size not changes with frequency. Below
we first briefly introduce the definition of WT and then
propose the wavelet coefficient features of heartbeat
signals extracted by WT.

WT uses multiple changeable “time-frequency” win-
dows and provides the localized analysis of time and
frequency. By gradually refining the signal in multiple
scales through extension and translation operations, WT
finally achieves time subdivision at high frequency and
frequency subdivision at low frequency, which makes it an
ideal tool for signal time-frequency analysis and
processing.

WT is divided into continuous WT (CWT) and discrete
WT (DWT). Formally, CWT is described as
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where x(t) is the given signal, y(t) is continuous mother
wavelet, a is the scaling parameter, and 7 is the translating
parameter, and their values are continuous, which means the
number of wavelets is unlimited. Wavelet can be scaled by
scaling parameter g, and the localization of window can be
translated by translating parameter 7.

The main difference between DWT and CWT is that the
scaling and translating parameters of DWT are discretized
by power function.

In practice, DWT is often designed through multi-
resolution analysis. Multiresolution analysis is also called
the Mallat algorithm [40]. The flow of the Mallat algorithm
is as follows: select a wavelet first and extend and translate
the mother wavelet to get a set of wavelets. The signal
passes through a high-pass filter and a low-pass filter,
followed by the downsampling process (dyadic decima-
tion, that is, keep the even indexed elements), then the
detail coefficients (cD) and the approximation coefficients
(cA) are obtained. Next, the approximation coefficients
replace the original signal and use the same scheme to
decompose and so on.

Since the wavelet coeflicients obtained by convolving
with the signal at different resolutions are the representa-
tions of the original signal at different resolutions, that is, the
wavelet coefficients reflect the frequency components of the
heartbeat signals along the timeline. We use the approxi-
mation coefficients and the detail coefficients at the last layer
of DWT as the time-frequency features of heartbeat signals.

Similarly, we also give an example to illustrate the validity
of the wavelet coefficients features. We choose three heartbeat
classes, namely, class A, class J, and class /. 50 samples are

randomly chosen from each class. Then, we calculate the
mean of the approximation coeflicients and the detail coef-
ficients of these samples, respectively. Figure 4 shows that the
extracted approximation coefficients and detail coefficients
have obvious difference among these classes.

4.6. ELM for Heartbeat Classification. In the feature ex-
traction stage, RR interval features and wavelet time-fre-
quency features are extracted. Then, these features are
concatenated as the inputs of ELM, as shown in Figure 5.

The number of the output nodes in ELM is set to be the
same as the number of heartbeat classes. During the offline
training phase, the original labels of the heartbeat training
samples are encoded to the matrix form in equation * and the
output parameters [ are analytically calculated using
equation ”

During the online classification phase, when the
heartbeat sample x comes and needs to be classified, the
output vector of ELM to sample X,
f)=1f1(,..., fm (x)]" with fj (x) being the output of
the jth output node, is calculated by

f (%) = h(x)B, (9)

where h(x) = [hy(x),...,h; (x)] is the output vector of the
hidden layer with respect to x.
Finally, the predicted class label of heartbeat sample x is

label (x) = arg max f]- (x).

Jjeil,...mj} (10)

4.7. Parameter Design. In our proposed approach, four
parameters need to be preset, including the wavelet type of
DWT, the number of decomposition layers of DWT,
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FIGURE 5: Schematic diagram of the proposed ELM approach for heartbeat classification.

regularized parameter, and the number of hidden nodes in
ELM. We first use the grid search method to determine the
wavelet type and the number of decomposition layers
according to the accuracy of validation set. Then, grid search
is carried out again to select the combination of regularized
parameter and the number of hidden nodes based on the
accuracy on validation set.

5. Experimental Study

5.1. Dataset Division. In our experiments, 13% of the class N,
40% of the classes L, R, A, V, and P, and 50% of the remaining
classes are randomly selected to constitute the training set. The
remaining samples make up the testing set. Table 2 gives the
detailed dataset partition of the MIT-BIH arrhythmia dataset.



TaBLE 2: Training set and testing set division of the MIT-BIH
arrhythmia dataset.

Heartbeat type Total Training Testing
Normal beat 75023 9753 65270
Left bundle branch block 8072 3229 4843
Right bundle branch block 7255 2902 4353
Atrial premature contraction 2546 1018 1528
Premature ventricular contraction 7129 2852 4277
Paced beat 7026 2810 4216
Aberrated atrial premature beat 150 75 75
Ventricular flutter wave 472 236 236
Fusion of ventricular and normal beat 802 401 401
Blocked atrial premature beat 193 96 97
Nodal (junctional) escape beat 229 114 115
Fusion of paced and normal beat 982 491 491
Ventricular escape beat 106 53 53
Nodal (junctional) premature beat 83 42 41
Atrial escape beat 16 8 8
Unclassifiable beat 33 16 17
Total 110117 24096 86021

5.2. Performance Metrics. We evaluate classification per-
formance in terms of the class sensitivity (Se), the class
positive predictivity (Pp), and overall accuracy. The class
sensitivity reflects the proportion of the samples with pos-
itive model predictions in these with positive true labels. The
class positive predictivity denotes the proportion of the
samples with positive true labels in all the samples with
positive model predictions. They are calculated as follows:

Se = ——— x 100%, 11
€= Tp 4 pN < 100% (1
TP
Pp=—— x 100%, 12
P=pypp < 100% (12)
TP + TN
Acc = x 100%. (13)

TP + TN + FP + FN

where TP, TN, FN, and FP are the number of true positives,
true negatives, false negatives, and false positives,
respectively.

5.3. User-Specified Parameters. In our experiments, we first
standardize the extracted features by
* X —
x =2k (14)
o

where y and ¢ are the mean and standard deviation of
features. The standardized data satisfy the mean value of 0
and the variance of 1.

The wavelet type and the number of decomposition
layers need to be carefully designed for DWT. Many types of
wavelets can be used for DWT. These wavelets have different
waveforms and lengths. The number of wavelet decompo-
sition layers affects the decomposition granularity of
heartbeat signals. We conduct experiments to study the
influence of different wavelet types and the number of
wavelet decomposition layers on heartbeat classification. The
number of layers that a wavelet can be decomposed is related
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to the frequency of the original signal, so the number of
decomposition levels of some wavelets is limited. In our
experiments, we select four typical types of wavelet families,
namely, Daubechies wavelets, Biorthogonal wavelets,
ReverseBior wavelets, and Symlets wavelets. Then, we select
a representative wavelet from each wavelet family, respec-
tively. The number of decomposition layers ranges from 2 to
6. In the experiment, we set the number of hidden layer
nodes of ELM to 3000, and the regularization parameter to
0.1. Table 3 shows the experimental results. Dbl with 5-level
decomposition achieves the highest accuracy. For dbl,
biorl.3, and sym2 wavelets, 5-level decomposition has the
highest accuracy. For the rbio3.1 wavelet, the classification
accuracies of 3-level, 4-level, and 5-level are similar. The
higher the number of wavelet decomposition levels, the
smaller the number of wavelet coefficients at the highest
layer. In our proposed approach, wavelet approximation
coefficients and detail coefficients of the highest layer are
adopted as the features of the heartbeat signal. A smaller
number of features can reduce the complexity and classi-
fication time. Therefore, 5-layer decomposition is suitable.
Table 3 also gives the total number of the approximation
coefficients and detail coefficients at each decomposition
layer.

In ELM, the regularization parameter C and the number
of hidden layer nodes L are two key parameters that affect
the classification performance. The optimal combination of
Cand L for ELM is determined by the accuracy on validation
set in our experiment. The ranges of grid search for Cand L
are {107%,107%,...,10%,10°} and {200,400, ...,5000}, re-
spectively. The activation function uses sigmoid function.
The parameters of sigmoid function are randomly generated
within [-1, 1] based on uniform distribution. Figure 6 shows
the results of grid search on validation set. We observe that a
smaller number of hidden nodes cannot obtain good clas-
sification accuracy. When the number of hidden layer nodes
reaches 3000, continuing to increase L will not produce
greater gains. For regularized parameter C, a value of 0.1 or 1
is appropriate for heartbeat classification.

5.4. Experimental Results. We compare the proposed algo-
rithm with four classic classification algorithms, including
BPNN, KNN, SVM, and decision tree (DT). RR interval
features and wavelet coefficients features are extracted as the
features of heartbeat signals. Daubechies 1 is used, and DWT
performs 5-layer wavelet decomposition. The approxima-
tion and detail coefficients at the fifth layer are served as the
wavelet features of heartbeat signals. In the training samples,
70% are used for training the classifier and 30% are used as
the validation set. According to the accuracy on the vali-
dation set, the hyperparameters of the classifier are deter-
mined. The number of the hidden layer neurons of BPNN is
consistent with that of ELM for comparison. And the pa-
rameters of BPNN are trained using stochastic gradient
descent (SGD), which runs iteratively. SVM cannot achieve
multiclassification task. One-against-one (OAO) strategy is
used to extend SVM to multiclassification. In our experi-
ment, 16 types of heartbeats need to be classified, so the
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TaBLE 3: Results of different wavelets and decomposition levels.

Accuracy (%)

Wavelet Decomposition level The number of wavelet coefficients
2 118 97.12
3 60 97.88
dbl 4 30 98.39
5 16 98.43
6 8 97.55
2 124 97.18
3 66 97.60
bior1.3 4 38 97.94
5 24 98.21
6 — —
2 120 97.81
3 62 98.22
rbio3.1 4 34 98.26
5 20 98.24
6 12 97.28
2 120 96.28
3 62 97.01
sym2 4 34 97.94
5 20 98.25
6 12 97.68

o
[

o
a8

~
S o

& 8
Accuracy on validation set (%)

3500,

4000

FIGURE 6: Accuracies of different combinations of C and L on
validation set.

TaBLE 4: The comparison results with other approaches.

Features Classifier Accuracy (%)
BPNN 97.71
KNN 98.31
RR +dbl (5-level) SVM (OVO) 98.38
DT 95.84
ELM 98.61

number of SVMs required is 16 # 15/2=120. The compar-
ison results are shown in Table 4. We can find that ELM
achieves the highest accuracy, the decision tree has the
lowest, and the performance of KNN and SVM is
comparable.

Table 5 shows the sensitivity and positive predictability
of each heartbeat class. Most of the classes present

TaBLE 5: Sensitivity and positive predictivity for each heartbeat
class.

Heartbeat type Test Se (%) Pp (%)
N 65270 99.28 99.35

L 4843 99.40 99.03

R 4353 99.22 98.58
A 1528 88.81 87.27
\ 4277 95.25 95.63
/ 4216 99.79 99.03
a 75 64.00 77.42
! 236 91.95 93.53
F 401 83.04 79.47
X 97 86.46 97.65
j 115 73.68 61.31

f 491 86.35 87.78
E 53 92.45 100.00
] 41 36.59 88.24
e 8 0.00 0.00

Q 17 0.00 0.00

Total 86021 98.61 98.61

satisfactory classification performance, except for the classes
a, ], e, and Q. In addition, Table 6 gives the confusion matrix
of the heartbeat classification, from which we can observe
the detailed classification results. Totally, 27 samples are
misclassified for class a, of which 10 samples are misclassified
as N, 11 are misclassified as A, and 4 are misclassified as
V. The reason is that class a has no significant morphological
differences compared with the other three misclassified
classes. Similarly, 26 samples for class J are misclassified, of
which 22 samples are misclassified as N.

The strong morphology similarity between classes ] and
N in record 234 may be responsible for the misclassifica-
tions. All samples are misclassified in all 8 samples of class e.
This is because in record 223, the morphological differences
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TaBLE 6: Confusion matrix.

Predict labels

N L R A \Y% / a ! F X j f E ] e Q

N 64803 20 47 128 129 1 4 14 36 1 51 35 0 1 0 0
L 14 4812 1 1 9 1 0 0 0 0 0 5 0 0 0 0
R 20 0 4319 11 2 0 0 0 0 0 0 0 0 1 0 0
A 143 4 1 1357 11 1 6 0 0 1 1 2 0 0 1 0
\% 85 16 3 33 4074 4 4 1 49 0 0 8 0 0 0 0
/ 4 1 0 0 0 4207 0 0 0 0 0 4 0 0 0 0
a 10 0 0 11 4 1 48 0 0 0 0 1 0 0 0 0
True labels ! 9 0 0 1 7 1 0 217 0 0 0 1 0 0 0 0
F 42 2 2 2 20 0 0 0 333 0 0 0 0 0 0 0
X 5 0 0 6 2 0 0 0 0 83 0 0 0 0 0 0
j 21 0 5 3 0 0 0 0 0 0 84 1 0 0 0 0
f 33 2 0 0 0 32 0 0 0 0 0 424 0 0 0 0
E 2 0 1 0 0 0 0 0 0 0 1 0 49 0 0 0
] 22 0 2 2 0 0 0 0 0 0 0 0 0 15 0 0
e 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q 9 2 0 0 2 0 0 0 1 0 0 2 0 0 0 0

TaBLE 7: Comparison of running speeds of different classifiers.

Classifier Training time (s) Testing time (s) Total time (s)
BPNN 655.02 6.88 661.9
KNN 0.16 17.92 18.08
SVM (OVO) 5.01 16.83 21.84
DT 0.76 0.03 0.79
ELM 9.17 8.25 17.42

between classes e and N are hardly observed. All the samples
of class Q are misclassified. We observe from the ECG of
class Q that its waveform appears as irregular and large-
amplitude fluctuation. The cardiovascular experts label these
samples as unclassified samples, so how to reduce the signal
deformation and loss of these samples is the key issue, but
this is beyond the scope of our study.

We also compare the training time and testing time of
different classifiers. The results are shown in Table 7. The
training time of BPNN is quite time-consuming. Although
DT shows the least training and testing time, it does not
reach a satisfactory classification accuracy as shown
in Table 4. The total time of ELM training and testing time is
less than that of SVM and KNN, which shows the efficiency
of the ELM algorithm.

6. Conclusions

In this paper, we propose an efficient ELM approach for
automatic heartbeat classification. We extract the temporal
features and wavelet time-frequency features for heartbeat
signals. Four RR intervals are calculated in time domain,
which reflects the dynamic information of heartbeat sig-
nals. We also employ DWT to decompose each heartbeat
signal. We use the detail coeflicients and approximation
coefficients at the fifth level, a total of 16 wavelet coeffi-
cients, as the time-frequency features for the heartbeat
signals. The ELM algorithm is developed for multiclass
heartbeat classification. Experimental results using the
MIT-BIH arrhythmia dataset show that our proposed

approach achieves better recognition accuracy and less
computational time in comparison with existing classifi-
cation approaches. Besides, we give a reference for
choosing the wavelet and the number of wavelet decom-
position levels of DWT, which is instructive for employing
DWT as a feature extractor in automatic heartbeat clas-
sification. However, due to the random assignment of the
hidden layer parameters in ELM, the classification accuracy
may fluctuate. As the future work, ensemble learning can be
considered in the ELM-based heartbeat classification ap-
proach to increase the classification accuracy and stability.
In addition, the multilayer structure with multiple hidden
layers can be studied for ELM to enhance the heartbeat
signal classification performance.
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