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ABSTRACT
BACKGROUND: The 15q11.2 BP1-BP2 cytogenetic region has been associated with learning and motor delays,
autism, and schizophrenia. This region includes a gene that codes for the cytoplasmic FMR1 interacting protein 1
(CYFIP1). The CYFIP1 protein is involved in actin cytoskeletal dynamics and interacts with the fragile X mental
retardation protein. Absence of fragile X mental retardation protein causes fragile X syndrome. Because abnormal
white matter microstructure has been reported in both fragile X syndrome and psychiatric disorders, we looked at
the impact of 15q11.2 BP1-BP2 dosage on white matter microstructure.
METHODS: Combining a brain-wide voxel-based approach and a regional-based analysis, we analyzed diffusion
tensor imaging data from healthy individuals with the deletion (n = 30), healthy individuals with the reciprocal
duplication (n = 27), and IQ-matched control subjects with no large copy number variants (n = 19), recruited from
a large genotyped population sample.
RESULTS: We found global mirror effects (deletion . control . duplication) on fractional anisotropy. The deletion
group showed widespread increased fractional anisotropy when compared with duplication. Regional analyses
revealed a greater effect size in the posterior limb of the internal capsule and a tendency for decreased fractional
anisotropy in duplication.
CONCLUSIONS: These results show a reciprocal effect of 15q11.2 BP1-BP2 on white matter microstructure,
suggesting that reciprocal chromosomal imbalances may lead to opposite changes in brain structure. Findings in
the deletion overlap with previous white matter differences reported in fragile X syndrome patients, suggesting
common pathogenic mechanisms derived from disruptions of cytoplasmic CYFIP1-fragile X mental retardation
protein complexes. Our data begin to identify specific components of the 15q11.2 BP1-BP2 phenotype and
neurobiological mechanisms of potential relevance to the increased risk for disorder.
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Copy number variants (CNVs) are rare structural variations of
the genome arising from unbalanced meiotic rearrangements
that can result in carriers possessing a deletion or duplication
of parts of one of the chromosome pairs. An increased burden
of CNVs has been observed in several neurodevelopmental
and psychiatric diseases, including autism spectrum disorder
(ASD), attention-deficit/hyperactivity disorder (ADHD), intel-
lectual disability, and schizophrenia (1,2). How these damaging
variants modify risk for psychopathology is still not well un-
derstood at the mechanistic level, but given their relatively high
penetrance and cross-disorder pleiotropic effects, significant
impact on brain structure and function is anticipated.

Altered white matter (WM) structure has been consis-
tently reported in psychiatric disorders. For instance, in the
case of schizophrenia, neuroimaging studies have shown
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abnormal structural and functional connectivity at both
microscopic and macroscopic levels, and such data have
been central in supporting various “dysconnectivity” hy-
potheses of mental disease (3,4). It follows that a key
question for neurobiological research is whether CNVs
that are associated with neurodevelopmental disorders,
including schizophrenia, are also associated with changes
in WM and brain connectivity.

The 15q11.2 BP1-BP2 cytogenetic microdeletion is
emerging as a recognized syndrome and has been associated
with developmental, speech, language, and motor delays (5,6),
and also with increased susceptibility for epilepsy (7), ADHD
(5), ASD (8), and schizophrenia (9). Moreover, recent ultra
high-resolution chromosomal microarray analyses report the
15q11.2 BP1-BP2 deletion as the most frequent finding in
iological Psychiatry. This is an open access article under the
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those with only ASD or with ASD combined with intellectual
disability and congenital anomalies (10). The reciprocal dupli-
cation has also been associated with increased risk for ASD
(11), although its significance is still unclear (8).

Not all the individuals with the BP1-BP2 microdeletion/
microduplication are clinically affected, and the genes in this
region have variable expressivity. Yet, healthy individuals
with the deletion and without a current clinical diagnosis
frequently report mild-to-moderate impairments in motor
function and deficits across several cognitive domains,
including an increased incidence of difficulties in mathe-
matics and reading skills (11,12), while healthy individuals
with the duplication perform to a similar level as population
control subjects (12). In a recent study by Ulfarsson et al.
(13), these cognitive deficits were shown to be accompanied
by structural changes in the brain, as assessed by structural
magnetic resonance imaging (MRI), in individuals with a
deletion or duplication showing reciprocal structural effects,
as well as by different patterns of brain activation in tests of
reading and mathematics. However, the effect on WM
microstructure cannot be assessed with standard MRI, and
diffusion tensor imaging (DTI) studies are needed.

The 15q11.2 BP1-BP2 region is adjacent to the areas
affected in the Prader-Willi and Angelman syndromes,
conditions resulting from deletions of the BP1-BP3 (type I)
or the BP2–BP3 (type II) regions at 15q11.2, with the BP1-
BP2 deletion partly overlapping the type I but not type II
Prader-Willi/Angelman region. Individuals with type I dele-
tion report more severe neurodevelopmental disturbances
compared with individuals with the smaller type II deletion
(14,15). The isolated BP1-BP2 region spans w500 kb and
encompasses four different genes: nonimprinted in Prader-
Willi/Angelman syndrome 1 gene (NIPA1), nonimprinted in
Prader-Willi/Angelman syndrome 2 gene (NIPA2), cyto-
plasmic FMR1 interacting protein 1 (CYFIP1), and tubulin
gamma complex associated protein 5 gene (TUBGCP5) (16).
The four genes probably play a role in brain development
and function, and some work has been done to understand
the extent and mechanism through which they contribute to
increased risk for psychiatric disorder in the 15q11.2 BP1-
BP2 region (5). For instance, the NIPA1 gene is known to
mediate Mg21 transport and was associated with autosomal
dominant hereditary spastic paraplegia (17), which might be
caused by abnormal bone morphogenic protein (BMP)
signaling as a result of dysregulations in NIPA1 (18). The
NIPA2 gene encodes for proteins used in renal Mg21

transport and metabolism and, when mutated, can cause
childhood absence epilepsy (19). TUBGCP5 is highly
expressed in the subthalamic nuclei, a region linked to
obsessive-compulsive disorder and ADHD (20). More is
known about the CYFIP1 gene, which is considered a
prominent candidate gene contributing to 15q11.2 BP1-BP2
brain and psychological phenotypes (21). Haploinsufficiency
of Cyfip1 in mouse models, recapitulating the predicted low
dosage of CYFIP1 in 15q11.2 BP1-BP2 microdeletion, has
been shown to impact two main processes: 1) the regulation
of cytoskeleton remodeling by the binding of CYFIP1 protein
to RAC1, and subsequent activation of the WAVE regulatory
complex neurons (22,23); and 2) via direct interaction of the
CYFIP1 protein with fragile X mental retardation protein
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(FMRP), the repression of eIF4E-mediated translation of
FMRP target messenger RNAs (24). These actions of
CYFIP1 protein in the brain have the potential to influence
WM, the former through effects on neuronal structure and
integrity and the latter via interactions with FMRP, muta-
tions that are known to be associated with changes in WM
structure (25). Loss of FMRP function, due to an expansion
repeat in the FMR1 gene on the long arm of the X chro-
mosome, is a cause of fragile X syndrome (FXS), the
most common monogenic form of inherited intellectual
disability (26).

Recently, two studies (27,28) used DTI to investigate
differences in WM microstructure, comparing subjects with
FXS with subjects without FXS but with similar IQ and levels
of autistic symptoms (minimizing confounding effects owing
to intellectual ability), and found increased fractional
anisotropy (FA) as well as decreased radial diffusivity (RD)
and mean diffusivity (MD) in several WM tracts in FXS
subjects. Therefore, it might be anticipated, given the close
molecular links between CYFIP1 and FMRP, that some de-
gree of phenotypic overlap may be present in FXS and
15q11.2 BP1-BP2 deletion.

In the present work, we employed a DTI approach to assess
WM microstructural changes associated with the 15q11.2
BP1-BP2 region in an adult cohort, selected from the Icelandic
population, without a known diagnosis of schizophrenia or
autism, thereby potentially avoiding the confounding effects of
the disorders clinical signs. Combining brain-wide voxel-based
approach (FSL Tract-Based Spatial Statistics [TBSS]) with an
atlas-based analysis, allowing quantification of the magnitude
of regional changes, we hypothesized that we would see a
similar pattern of effects as reported for FXS: increased FA in
15q11.2 BP1-BP2 deletion. We also assessed healthy adults
with the reciprocal duplication to evaluate the extent of any
reciprocal effects on the neural phenotype. Our data begin to
identify specific components of the 15q11.2 BP1-BP2
phenotype and mechanisms of potential relevance to the
increased risk for disorder.

METHODS AND MATERIALS

Participants

In total, 30 individuals with the 15q11.2 BP1-BP2 deletion, 27
with the reciprocal duplication, and 19 control subjects with no
large CNVs (NoCNV) were recruited from a large genotyped
sample of approximately 160,000 subjects representing half of
the Icelandic population, in which none of the subjects had any
other large CNVs. Subjects between 21 and 66 years of age
were included in this study, and the number of female and male
subjects was the same (38 men and 38 women) and balanced
in each condition group. All the subjects were clinically healthy,
such that subjects were excluded if they had ICD-10 or DSM-
IV diagnoses for schizophrenia or schizoaffective or bipolar
disorder; were diagnosed with autism, intellectual disability, or
developmental delay at the State Diagnostic and Counselling
Centre of Iceland (serves children and adolescents with a
disability); met psychoses criteria on the Mini-International
Neuropsychiatric Interview (29); were diagnosed with schizo-
phrenia, schizoaffective or bipolar disorder, autism, intellectual
disability, or developmental delay according to self-reports (or
rnal
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Table 1. Subject Characteristics

Group Age, Years Male/Female IQ Scorea Subjects (N = 76)

Deletion 42.83 6 12.5 (21–65) 14/16 101.2 6 13.8 30

NoCNV 38.95 6 10.56 (22–59) 12/7 108.3 6 16.9 19

Duplication 43.48 6 13.51 (22–66) 12/15 100.8 6 11.8 27

Values are mean 6 SD (range) or n. The IQ score included four subtests (vocabulary, similarities, block design, and matrix reasoning).
NoCNV, no large copy number variants.
aIcelandic version of the Wechsler Abbreviated Scale of Intelligence (12). The test was performed in all individuals with the deletion, in 11 of 19

individuals in the NoCNV group, and in 26 of 27 individuals with the duplication.

Table 2. Summary of Between-Group FSL Tract-Based
Spatial Statistics Analyses Results

Contrast

Whole-Group Analysis

FA AD RD MD

Del . NoCNV 1 2 2 2

NoCNV . Del 2 2 2 2

NoCNV . Dup 2 2 2 2

Dup . NoCNV 2 1 2 2

Del . Dup 11 2 2 2

Dup . Del 2 1 11 1

Significant voxelwise comparisons (p , .05) are indicated by a plus
sign (1) (less significant) or two plus signs (11) (more significant), and
nonsignificant results (p . .05) are indicated by a minus sign (2). All the
p values were corrected using the threshold-free cluster enhancement
algorithm in FSL Tract-Based Spatial Statistics.

AD, axial diffusivity; Del, deletion; Dup, duplication; FA, fractional
anisotropy; MD, mean diffusivity; NoCNV, no large copy number
variants; RD, radial diffusivity.
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reports from parents); or were using antipsychotic medication.
Approval for this study was obtained from the National
Bioethics Committee of Iceland and the Icelandic Data Pro-
tection Authority.

The IQ scores were assessed using an Icelandic version of
the Wechsler Adult Intelligence Scale (30,31) including four
subtests (vocabulary, similarities, block design, and matrix
reasoning). Further details on how these individuals were
genotyped and on how the cognitive assessment was per-
formed can be found in Stefansson et al.’s (12) study. There
were no significant differences in the IQs between groups.
Although all the individuals with the deletion were tested, only
11 of 19 from the NoCNV group and 26 of 27 from the dupli-
cation group were tested. Demographic information is
described in Table 1, and family relationships between sub-
jects are described in Supplemental Table S2.

Diffusion Tensor Imaging

Water diffusion is anisotropic in healthy nerve fibers,
diffusing freely along the fiber tracts but restricted in the
perpendicular direction (32). DTI is sensitive to these
anisotropic changes, which makes this technique particu-
larly useful for evaluating WM microstructure (33). DTI
findings are commonly reported in terms of scalars such as
FA, axial diffusivity (AD), RD, and MD.

Diffusion MRI Acquisition and Preprocessing

MRI data were acquired on a Philips Achieva 1.5T system
(Phillips Healthcare, Eindhoven, the Netherlands). A diffusion-
weighted echo-planar imaging sequence with sensitivity
encoding acceleration was used. Seventeen noncolinear
gradient diffusion-weighted images (DWIs) at b = 800 s/mm2

and one nonweighted (b = 0 s/mm2) image were acquired with
the following parameters: echo time = 72 ms, repetition time =
9024 ms, 60 slices, slice thickness = 2 mm, field of view = 2403

240 mm, acquisition matrix = 144 3 144, resulting in data ac-
quired with a 1.67 3 1.67 3 2 mm voxel resolution.

Diffusion-weighted data were preprocessed using Explor-
eDTI v.4.8.3 (34) in MATLAB R2015a (The MathWorks, Inc.,
Natick, MA). First, the Brain Extraction Tool (35) (http://www.
fmrib.ox.ac.uk/fsl/) was used to remove nonbrain tissue.
Within the ExploreDTI pipeline, eddy currents and head motion
correction was performed using an affine registration to the
non–diffusion-weighted B0 images, with appropriate rotation of
the encoding vectors (36). Field inhomogeneities were cor-
rected using the approach of Wu et al. (37). Each DWI was
nonlinearly warped to the T1-weighted image using the FA
maps from the DWIs as a reference. Warps were computed
Biologica
using Elastix (38), by using normalized mutual information as
the cost function and constraining deformations to the phase-
encoding direction. The corrected DWIs were therefore trans-
formed to the same (undistorted) space as the T1-weighted
structural images. ExploreDTI was used to generate whole-
brain maps of FA, AD, RD, and MD.

TBSS Analysis of DTI

The corrected FA, AD, RD, and MD maps were analyzed using
the FSL’s TBSS tool. TBSS is a whole-brain analysis (39) that
starts with a nonlinear registration of the FA maps to a stan-
dard FA template (FMRIB58_FA, FMRIB Software Library FA
adult template). Then, FA maps are thinned and averaged to
create a study-specific WM skeleton template, and the regis-
tered FA maps are aligned to this template. An optimal FA
threshold of 0.2 was chosen for the binary skeleton mask.
Afterward, all the AD, RD, and MD maps were also registered
to the FMRIB58_FA template.

General linear models were created to investigate copy
number effects at 15q11.2 BP1-BP2. Statistically significant
differences were first assessed with a multiple regression
model (duplication . NoCNV . deletion and deletion .

NoCNV . duplication). Total intracranial volume, age, and sex
were included as covariates of no interest. Differences in DTI
measures between groups were assessed using voxelwise
independent t tests (deletion vs. NoCNV, duplication vs.
NoCNV, and deletion vs. duplication), in which six different
contrasts were used to assess group differences (Table 2).
The randomize function from FSL was used with the
l Psychiatry April 1, 2019; 85:563–572 www.sobp.org/journal 565
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p = 0.05p < 0.001 p < 0.001

Fractional Anisotropy

Del > NoCNV Del > Dup

Axial Diffusivity

Dup > NoCNV Dup > Del

Radial Diffusivity Mean Diffusivity

Dup > Del Dup > Del

Figure 1. FSL Tract-Based Spatial Statistics
whole-group voxel-based analysis. Significant re-
sults for the two-sample t test showing group dif-
ferences between subjects with the deletion (Del)
(n = 30), duplication (Dup) (n = 27), and no large copy
number variants (NoCNV) (n = 19) for fractional
anisotropy, axial diffusivity, radial diffusivity, and
mean diffusivity maps. Here, only contrasts that
gave rise to significant results after correction are
displayed (p , .05, corrected). Within the significant
results, red and blue code for less significant results
and yellow and green for more significant results.
The deletion showed widespread increased frac-
tional anisotropy compared with the duplication and
NoCNV groups, and decreased axial diffusivity,
radial diffusivity, and mean diffusivity compared with
the duplication group. The duplication group
showed increased axial diffusivity compared with
NoCNV group.
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threshold-free cluster enhancement approach (40), generating
cluster-size statistics based on 5000 random permutations to
calculate probabilities corrected for multiple comparisons.
Significant results were considered with a corrected p value
,.05 (p , .025 for each tail of the two-tailed test). Anatomical
WM regions showing significant group differences were
identified with the John Hopkins University WM atlas (ICBM-
DTI-81) (41).

Regional DTI Metrics Statistical Analyses

Region values of FA, AD, RD, and MD were obtained by
averaging over the intersecting voxels between the WM DTI
maps with the John Hopkins University WM atlas (ICBM-
DTI-81), which comprises 48 tracts (41). To investigate
between-group regional differences in FA, AD, RD, and MD,
linear regression analysis was performed for each DTI
measure and for each WM tract, regressing out age, sex,
and total intracranial volume as covariates of no interest. For
these, RStudio version 1.1.463 (R Foundation for Statistical
Computing, Vienna, Austria) was used to test differences
between groups.

To account for multiple testing in the pairwise comparisons,
we used the standard false discovery rate method based on
the Benjamini-Hochberg approach (42), taking into account the
relation between different WM tracts and between DTI metrics.
Only significant false discovery rate–adjusted p values are re-
ported. Cohen’s d effect sizes were calculated for differences
between the deletion and duplication groups (43). An
566 Biological Psychiatry April 1, 2019; 85:563–572 www.sobp.org/jou
interaction between sex and 15q11.2 BP1-BP2 dosage was
also evaluated.

RESULTS

Between-Group TBSS Analysis

TBSS was used to assess groupwise microstructural differ-
ences in major WM pathways throughout the brain. F statistics
showed extensive significant differences in the direction
deletion . NoCNV . duplication in FA, and duplication .

NoCNV . deletion in AD, RD, and MD. Further pairwise
comparisons showed extensive and global increase in FA, and
decreased AD, RD, and MD in the deletion group compared
with the duplication group. These differences were seen in
major WM tracts, such as the corpus callosum, superior longi-
tudinal fasciculus, inferior longitudinal fasciculus (ILF), and inter-
nal capsule (IC). Moreover, the deletion group also showed
increased FA when compared with the NoCNV group in the
posterior thalamic radiation. The duplication group showed
significantly increased AD when compared with the NoCNV
group. The contrasts that gave rise to significant voxelwise re-
sults (p , .05, corrected) are summarized in Table 2 and TBSS
results are displayed in Figure 1.

Between-Group Regional Analyses

Results from the atlas-based segmentation were consistent
with the TBSS. Plots of the data confirmed the overall pattern of
increased FA in the deletion group compared with the
rnal
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Figure 2. Boxplots showing group differences for atlas-based analyses. Significant group differences in fractional anisotropy (FA), axial diffusivity (AD), radial
diffusivity (RD), and mean diffusivity (MD) are shown after multiple comparisons correction (p , .05). *p , .05, **p , .01, ***p , .001. BCC, body of corpus
callosum; LALIC, left anterior limb of the internal capsule; LC(CG), left cingulum (cingulate gyrus portion); LILF, left inferior longitudinal fasciculus; LPCR, left
posterior corona radiata; LPLIC, left posterior limb of the internal capsule; LSCR, left superior corona radiata; LSLF, left superior longitudinal fasciculus;
NoCNV, no large copy number variants; RACR, right anterior corona radiata; RC(CG), right cingulum (cingulate gyrus portion); RPCR, right posterior corona
radiata; RPLIC, right posterior limb of the internal capsule; RPTR, right posterior thalamic radiation; RSCR, right superior corona radiata; RSLF, right superior
longitudinal fasciculus; SCC, splenium of the corpus callosum.
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duplication group, with the NoCNV group lying intermediate
between these groups (Figure 2). However, the deletion group
showed greater effect sizes than the duplication group when
compared with the NoCNV group (Supplemental Table S1).
Because the pairwise comparisons were only significant be-
tween the deletion and duplication groups, we only show
Cohen’s effect size plots for comparisons of the deletion group
versus the duplication group. Cohen’s effect sizes for FA and
AD are displayed in Figure 3, and for all the DTI measures in
Supplemental Figure S1. The largest effect size was observed
for higher FA and lower RD in the posterior limb of the IC (PLIC).
Across the whole brain, the effect size was medium in FA
(Cohen’s d = 0.69), RD (Cohen’s d = 20.68), and MD (Cohen’s
d = 20.63), and small for AD (Cohen’s d =20.38), according to
Cohen’s criteria (43). Findings are summarized in Table 3 and
extended in Supplemental Table S1. As some of the subjects
are related, we reanalyzed the data using only onemember from
each family and found the results to be consistent with initial
findings/primary analyses. However, a few WM tracts became
nonsignificant, possibly owing to the loss of power from
reducing the cohort to 65 subjects (Supplemental Figures S3
and S4).

Sex Differences

A sex-by-dosage interaction model was used to investigate
sex differences in relation to 15q11.2 BP1-BP2 dosage.
Although we found no significant interaction effect in the
whole-group analysis, we found significant differences in
effect size when analyzing men and women separately, as
Biologica
assessed by using a two-tailed unpaired t test. Men showed
larger effect size for increased FA (t = 2.56, p = .013)
compared with women, and an overall large effect size in the
whole brain (Cohen’s d = 0.99), whereas women showed a
small effect size (Cohen’s d = 0.47). Moreover, men showed
large effect sizes in more regions, namely in the genu and
body of the corpus callosum, left ILF, anterior and posterior
corona radiata, posterior thalamic radiation, cerebral
peduncle, anterior limb of the IC, and PLIC. Women, how-
ever, showed a large effect size for increased FA in the left
cingulum (cingulate gyrus portion) that is not seen in men
(Supplemental Figure S2).

DISCUSSION

In a whole-brain exploratory analysis, we found consistently
increased FA and decreased RD and MD in individuals with the
15q11.2 BP1-BP2 deletion compared with individuals in the
reciprocal duplication group. The duplication group showed
significantly increased AD relative to the NoCNV and deletion
groups (Figure 1). Additional regional analyses (Figure 2) indi-
cated that, in most WM tracts, the NoCNV group was inter-
mediate between the deletion and duplication groups,
suggesting a “mirror phenotype” (12). However, the deletion
showed a greater impact on WM microstructure by showing
larger effect sizes than in the duplication group (Supplemental
Table S1).

We found the greatest effects in FA and RD bilaterally in the
PLIC (Figure 2 and Supplemental Figure S1). The PLIC carries
sensory information from the thalamus to the cortex, a key
l Psychiatry April 1, 2019; 85:563–572 www.sobp.org/journal 567
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Figure 3. Effect sizes on deletion versus duplication for fractional anisotropy (left) and axial diffusivity (right). The threshold where an effect size is considered
to be large [0.8, according to Cohen’s criteria (43)] is represented by the vertical red dashed line. Black, green, and red dots represent small, medium, and large
effect sizes, respectively. BCC, body of corpus callosum; CI, confidence interval; GCC, genu of the corpus callosum; LACR, left anterior corona radiata; LALIC,
left anterior limb of the internal capsule; LC(CG), left cingulum (cingulate gyrus); LCP, left cerebral peduncle; LILF, left inferior longitudinal fasciculus; LPCR, left
posterior corona radiata; LPLIC, left posterior limb of the internal capsule; LPTR, left posterior thalamic radiation; LRLIC, left retrolenticular part of internal
capsule; LSCR, left superior corona radiata; LSLF, left superior longitudinal fasciculus; LUF, left uncinate fasciculus; RACR, right anterior corona radiata;
RALIC, right anterior limb of the internal capsule; RC(CG), right cingulum (cingulate gyrus); RCP, right cerebral peduncle; RILF, right inferior longitudinal
fasciculus; RPCR, right posterior corona radiata; RPLIC, right posterior limb of the internal capsule; RPTR, right posterior thalamic radiation; RRLIC, right
retrolenticular part of internal capsule; RSCR, right superior corona radiata; RSLF, right superior longitudinal fasciculus; RUF, right uncinate fasciculus; SCC,
splenium of the corpus callosum.
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sensorimotor relay area implicated in schizophrenia (44) and
ASD (45). In schizophrenia, reductions in FA have been re-
ported in the IC (4). However, in ASD patients, functional
connectivity between motor regions of the thalamus and cor-
tex was found to be hyperconnected (46), and a longitudinal
study showed that the thalamus and IC undergo an atypical
development trajectory in ASD, in which increasing connec-
tivity from childhood through adolescence and adulthood was
seen (47). The increased FA in the PLIC seen in the deletion
group could be a result of an abnormal thalamus and IC
development, which could relate to motor delays frequently
reported in the BP1-BP2 deletion. Thus, a younger group is
needed to look at the age trajectory of FA and its correlates
with motor function outcome. We also found a large effect size
568 Biological Psychiatry April 1, 2019; 85:563–572 www.sobp.org/jou
in FA in the left ILF, a major WM tract thought to be critical to
semantic processing and involved in dyslexia. Dyslexia and
dyscalculia are common features in 15q11.2 BP1-BP2 dele-
tion, and individuals with the deletion were previously shown to
have a smaller fusiform gyrus (13), a structure that was shown
to play a role in reading and mathematics and that connects to
the ILF (48).

Although all DTI changes seem to be consistent throughout
the brain, regional analysis shows increases and decreases in
AD in different WM tracts in the deletion (Figure 2 and 3).
Previously, AD has been related to axonal damage and RD
with axonal density and myelin (49). FA reflects the relative
contribution of AD and RD. Because we find global increased
FA, including areas where AD is decreased, the RD
rnal
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Table 3. Comparisons Between the Deletion and
Duplication of the 15q11.2 BP1-BP2 Region on FA, AD,
RD, and MD

Dependent
Variable ROI t

p Value
(FDR Corrected)

Effect
Size

FA Del vs. Dup LILF 23.15 .02a 0.86

LPCR 22.85 .03a 0.73

RPTR 22.68 .04a 0.65

LC(CG) 22.93 .03a 0.75

LALIC 22.97 .03a 0.76

RPLIC 24.31 .003b 1.11

LPLIC 25.06 .0006c 1.31

AD Del vs. Dup BCC 3.55 .02a 20.86

SCC 22.62 .04a 20.62

LPLIC 22.88 .03a 0.75

RD Del vs. Dup BCC 2.89 .03a 20.65

SCC 2.88 .03a 20.68

RSLF 2.69 .04a 20.70

LSLF 2.69 .04a 20.69

RACR 3.01 .03a 20.73

RSCR 2.78 .03a 20.71

RPCR 2.78 .03a 20.69

LC(CG) 3.22 .03a 20.83

LALIC 2.80 .03a 20.72

RPLIC 3.32 .02a 20.84

LPLIC 4.48 .002b 21.16

MD Del vs. Dup BCC 3.38 .02a 20.77

SCC 3.31 .02a 20.78

RSLF 2.99 .03a 20.78

LSLF 2.95 .03a 20.77

RACR 3.03 .03a 20.76

RSCR 2.89 .03a 20.75

LSCR 2.60 .04a 20.65

RPCR 2.63 .03a 20.66

RC(CG) 2.97 .03a 20.67

AD, axial diffusivity; BCC, body of corpus callosum; Del, deletion;
Dup, duplication; FA, fractional anisotropy; FDR, false discovery rate;
LALIC, left anterior limb of the internal capsule; LC(CG), left cingulum
(cingulate gyrus portion); LILF, left inferior longitudinal fasciculus;
LPCR, left posterior corona radiata; LPLIC, left posterior limb of the
internal capsule; LSCR, left superior corona radiata; LSLF, left
superior longitudinal fasciculus; MD, mean diffusivity; RACR, right
anterior corona radiata; RC(CG), right cingulum (cingulate gyrus
portion); RD, radial diffusivity; ROI, region of interest; RPCR, right
posterior corona radiata; RPLIC, right posterior limb of the internal
capsule; RPTR, right posterior thalamic radiation; RSCR, right
superior corona radiata; RSLF, right superior longitudinal fasciculus;
SCC, splenium of the corpus callosum.

ap , .05.
bp , .01.
cp , .001.
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contribution seems to be stronger. The global decreased RD in
the corpus callosum (and other areas) found here could be a
result of increased axonal density that may also explain the
increased WM volume found previously in the corpus callosum
in healthy individuals with the deletion (12,13). Furthermore,
areas with reduced AD could be a result of reduced axonal
integrity.
Biologica
Increased FA arising from abnormal WM organization has
been reported before in patients with Williams syndrome, a
chromosomal disorder associated with visuospatial deficits,
in which higher FA in the superior longitudinal fasciculus
tract was correlated with deficits in visuospatial construc-
tion (50). The globally increased FA in the deletion group
could point to either a compensatory mechanism in
response to primary deficits, as a protection against disease
onset, or a diffuse dysregulation of neuronal dynamics,
increasing the risk for psychiatric disorder. Hence, a central
question is how each gene within this CNV region could
contribute to this phenotype. All four genes in this region are
highly conserved and expressed in human central nervous
system, and may play a role in 15q11.2 BP1-BP2–associ-
ated phenotypes. Moreover, mutations in each gene were
associated with different disorders: NIPA1 with autosomal-
dominant hereditary spastic paraplegia (17), NIPA2 with
childhood absence epilepsy (19), TUBGCP5 with ADHD and
obsessive-compulsive disorder (20), and CYFIP1 with
increasing susceptibility to ASD (51) and with schizophrenia
(52). Furthermore, dysregulations in mechanisms related to
NIPA1 and CYFIP1 genes might have an impact on WM
microstructure. NIPA1 was found to inhibit the BMP
signaling via interaction with BMP receptor type II (18),
which is crucial for typical axonal growth, guidance, and
differentiation. In a Drosophila model, enhanced BMP
signaling resulted in abnormal distal axonal overgrowth at
the presynaptic neuromuscular junction (53), which could
result in increased axonal density. CYFIP1, on the other
hand, has a crucial role in actin remodeling during neural
wiring, in which dysregulations could result in changes in
axonal density, organization, and myelination (54,55).

Recently, two articles by the same group [Green et al. (27)
and Hall et al. (28)] reported increased FA and decreased RD
and MD in FXS patients compared with IQ-matched control
subjects. There is, therefore, a marked degree of overlap be-
tween our current findings in 15q11.2 BP1-BP2 deletion and
WM changes in FXS, consistent a priori with the suggested
molecular link between CYFIP1 and FMRP. The question ari-
ses, what common neural mechanism(s) may contribute to this
overlap in WM phenotype? Here, evidence that both FMRP
and CYFIP1 influence diverse aspects of synaptic function, as
well as effects on dendritic architecture, may be of relevance
(56–58). Both Fmr1 knockout and Cyfip1 hemizygous-null adult
mice have in common an increased ratio of immature-to-
mature spines (59–63). While the relationship between
neuronal density and number of synapses per neuron is still
not well understood, the observed increased FA in FXS (26,27)
and 15q11.2 BP1-BP2 deletion (this study) could be caused by
an increased neuronal density as an adaptive response to an
increased number of immature spines and reduced functional
synapses.

Further speculations as to cellular/molecular mechanisms
underlying the observed WM changes should, at this stage,
be made with caution. DTI data are difficult to relate in a
definitive way to underlying cellular changes, and their
investigation would require postmortem or biopsy. To over-
come this, translational models of human disease in animals
are an attractive alternative to explore individual genotype-
phenotype relationships (64). Therefore, owing to the
l Psychiatry April 1, 2019; 85:563–572 www.sobp.org/journal 569
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potential role of CYFIP1 in WM microstructure phenotypes
associated with the 15q11.2 BP1-BP2 region, it would be
informative to assess DTI data using low-dosage Cyfip1
animal models. Furthermore, direct access to brain tissue
would allow an analysis of underlying cellular changes rele-
vant to the DTI findings.

Clinical phenotypes of reciprocal CNVs have been broadly
classified into four general categories: mirrored, identical,
overlapping, and unique (65). The 16p11.2 (66), 1q21.1 (67),
3q29 (68), and 17p11.2 (69) CNVs have been associated with
mirrored phenotypes. Comparable to what we have reported
here, increased FA was found in individuals with the 16p11.2
deletion, and opposite changes were found in individuals with
the reciprocal duplication (70). The extensive reciprocal effects
on WM reported here, and in previous studies (12,13), show
that the 15q11.2 BP1-BP2 also affects WM microstructure in a
dosage-dependent way. When it comes to neuropsychiatric
and behavioral findings at this locus, the picture is less clear
(6). The microdeletion has been associated with develop-
mental delay, schizophrenia, and autism, whereas duplication
is generally not considered as a risk locus for schizophrenia
(71) and has not come out as a significant risk variant for
developmental delay in recent large-scale genetic studies (72).
Moreover, the microdeletion has been shown to have a greater
impact on cognitive function in healthy individuals, particularly
in the acquisition of mathematical skills and reading, whereas
individuals in the duplication group performed similarly to the
NoCNV group (12,13). In this study, the microdeletion also
shows a greater impact on WM microstructure, with larger
effect sizes than the microduplication (Supplemental
Table S1), but the lack of cognitive data in this sample did
not allow us to find correlations between increased FA and
cognition.

A limitation of this study was the impossibility to correct
regions with crossing fibers, and reductions in the number of
fibers in these regions might give rise to increased FA. The fact
that we see an overall increased FA, and not only in crossing
fiber regions, makes this less likely to be the main cause of the
group differences. In the current analysis, we could not find a
sex-by-dosage interaction, but men showed larger effect sizes
than women (Supplemental Figure S2), suggesting sex-
dependent changes in WM. Although the molecular causality
behind this sex difference is still unclear, sex bias has been
observed in neurodevelopmental disorders (73). Moreover,
15q11.2 BP1-BP2 was shown to have a greater impact on
ASD-related phenotype in men than women (8). Further larger
studies will, however, be required to determine the exact
interaction of sex and 15q11.2 BP1-BP2 dosage.

Using complementary methods of analysis, this study
shows a consistent pattern of WM microstructure alter-
ations, which are consistent with recent FXS DTI studies,
beginning to reveal brain mechanisms underlying the com-
plex routes to psychopathology mediated by mutations at
the 15q11.2 BP1-BP2 cytogenetic region. The reciprocal
effects on WM microstructure, described here, suggest that
deviations from normal gene dosage in each direction can
lead to abnormalities in brain development, underlining the
importance of studying how reciprocal chromosomal im-
balances impact neural processes, which might have
important implications for therapeutic intervention.
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