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Abstract: Interest in the third-row transition metal osmium and its compounds as potential anti-
cancer agents has grown in recent years. Here, we synthesized the osmium(VI) nitrido complex
Na[OsVI(N)(tpm)2] (tpm = [5-(Thien-2-yl)-1H-pyrazol-3-yl]methanol), which exhibited a greater
inhibitory effect on the cell viabilities of the cervical, ovarian, and breast cancer cell lines compared
with cisplatin. Proteomics analysis revealed that Na[OsVI(N)(tpm)2] modulates the expression of
protein-transportation-associated, DNA-metabolism-associated, and oxidative-stress-associated pro-
teins in HepG2 cells. Perturbation of protein expression activity by the complex in cancer cells affects
the functions of the mitochondria, resulting in high levels of cellular oxidative stress and low rates of
cell survival. Moreover, it caused G2/M phase cell cycle arrest and caspase-mediated apoptosis of
HepG2 cells. This study reveals a new high-valent osmium complex as an anticancer agent candidate
modulating protein homeostasis.
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1. Introduction

Cancer is a leading cause of death worldwide [1] and chemotherapy remains the
outstanding effective strategy for prolonging patient survival. The clinical success of
platinum-based anticancer drugs such as cisplatin, carboplatin, and oxaliplatin has stim-
ulated extensive investigations into new metallodrugs with improved pharmacological
properties, which may reduce side effects, such as kidney toxicity and nausea, and overcome
drug resistance [2–4]. Recently, other metal-based compounds with potential anti-cancer
properties have been reported [5,6]. Ruthenium compounds are a potential alternative to
platinum-based drugs owing to their chemical and pharmacological properties. A number
of ruthenium-based complexes have been reported to have promising anticancer activity,
two of which are still in clinical trials [7,8]. Osmium offers several features that are dis-
tinct from ruthenium, including a preference for higher stable oxidation states, stronger p
back-donation from lower oxidation states, stronger spin-orbit coupling, and slower ligand
exchange kinetics. In addition, osmium is relatively inert and stable under physiological
conditions, making it a promising anticancer agent candidate. Sadler et al. reported a
library of half-sandwich “pianostool” osmium(II) arene complexes that displayed increased
anticancer activity [9]. Our previous data showed that osmium(VI) nitrido compounds with
tridentate Schiff bases [10,11] and monodentate azole heterocycle ligands had anticancer
properties in vitro and in vivo by targeting DNA strands [12]. Recently, we reported a new
osmium(VI) nitrido complex bearing a nonplanar tetradentate ligand with potent anti-
cancer activity. It causes mitochondrial damage and induces liver cancer cell bimodal death
via oncosis and apoptosis [5]. Lippard et al. found that the cellular response evoked by
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anti-proliferating osmium(VI) nitrido compounds with bidentate lipophilic N,N-chelating
ligands could be tuned by subtle ligand modifications [13]. In addition, osmium(VI) nitrido
complexes more effectively inhibited the growth of breast cancer stem cells compared with
platinum-based anticancer drugs, suggesting that osmium(VI) nitrido complexes might
decrease tumor survival, proliferation, metastasis, and recurrence [14–18].

Herein, we report and characterize a new osmium(VI) nitrido complex Na[OsVI(N)(tpm)2]
(tpm = [5-(thien-2-yl)-1H-pyrazol-3-yl]methanol), which has two bidentate pyrazolate ligands.
It undergoes different anticancer mechanism from cisplatin and our previous nitrido-osmium
complexes. We investigated its anticancer activity in seven human cancer cell lines, including
one cancer stem cell line and one cisplatin-resistant cell line. Proteomic analysis suggested that
HepG2 cells’ treatment with Na[OsVI(N)(tpm)2] regulated protein homeostasis decreased the
proteomic pathway of DNA repair and increased the pathways of DNA damage and DNA
replication pressure, resulting in oxidative stress evidenced by an increase in reactive oxygen
species (ROS) and a reduction in mitochondrial membrane potential (MMP). The complex
arrested the cell cycle in the G2/M phase and activated the caspase-mediated apoptosis pathway
of cancer cells. Furthermore, the anticancer activity of Na[OsVI(N)(tpm)2] was examined in an
animal model, showing that the tumour significantly decreased in vivo.

2. Results and Discussion

2.1. Synthesis and Characterization of the Na[OsVI(N)(tpm)2] Complex

Pyrazole derivatives are important pharmacophores in medicine that display diverse
pharmacological activities, such as antitumor, antioxidant, antibacterial, and anti-inflammatory
activities. Therefore, a large number of transition metal complexes have been synthesized
and applied in medicine [19,20]. Herein, we synthesized a new anionic osmium(VI) ni-
trido complex bearing a pyrazolate ligand. The reaction of (nBu4N)[OsVI(N)Cl4] [21] with
two equivalents of [5-(Thien-2-yl)-1H-pyrazol-3-yl]methanol (tpm) in methanol took place
in the presence of NaOH. The product Na[OsVI(N)(tpm)2] was characterized by elemental
analysis, 1H NMR spectroscopy, infrared spectroscopy, electrospray ionization mass spec-
trometry and ICP-MS (Figures S1–S3, Table S3). Additionally, the X-ray crystal structure
of Na[OsVI(N)(tpm)2] was determined (Figure 1 and Tables S1 and S2). It showed that the
osmium centre is coordinated by two deprotonated tpm ligands and one nitrido ligand. The
Os≡N bond distance is 1.649(9) Å and the IR stretch for Os≡N occurs as a medium band at
1107 cm–1, which are comparable to other osmium nitrido complexes [22]. The stability of the
complex was observed by UV/Visible spectroscopy (Figure S4). It is stable in DMSO for 72 h;
however, the absorption peak blue shifts and declines slightly in PBS (phosphate-buffered
saline, pH 7.0) containing 3% DMSO. It should be noted that the ligand pyrazolate N has
been deprotonated owing to its reaction with osmium salt in the presence of NaOH. When
Na[OsVI(N)(tpm)2] is dissolved in PBS, protonation is preferred at the ligand N, changing the
absorption. On the other hand, the 30 µM complex is stable in the presence of the high concen-
tration biological reductant glutathione (GSH), showing the similar blue shift in UV/Visible
spectra (Figure S5).
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2.2. Anticancer Ability of the Na[OsVI(N)(tpm)2]

The anticancer ability of Na[OsVI(N)(tpm)2] was investigated by screening its an-
tiproliferation in seven cancer cell lines, including HeLa (cervical), HepG2 (liver), A549
(lung), A2780 (ovarian), and MDA-MB-231 (breast) cells, as well as a liver cancer stem
cell line (HepG2-stem) and a cisplatin-resistant cell line (A549CIS) [23,24]. As shown in
Table 1, the complex exhibited significant anti-cancer activity with IC50 values in the range
of 5.6–15.3 µM. The antiproliferation of clinically used cisplatin after 48 h of treatment
was also examined for comparison [11]. We found that the complex robustly inhibited the
growth of both the HepG2 and HepG2-stem cell lines, although it had a greater inhibitory
effect on the cell viabilities of the cervical, ovarian, and breast cancer cell lines compared
with cisplatin. We have also evaluated the antiproliferation of complex towards human
normal liver cell line (LO-2). It was found that the compound is less cytotoxic to normal
cells, with an IC50 value of 28.5 µM, than cancer cells. Notably, the compound can also
reduce the proliferation of cisplatin-resistant cells. This compound is nearly as effective in
cisplatin-resistant cells, with a resistance factor (RF) of 1.3. The RF determined for cisplatin
was 12.2, which is 9.4-fold greater than that of Na[OsVI(N)(tpm)2].

Table 1. The half inhibition concentration (IC50) of Na[OsVI(N)(tpm)2] and cisplatin on human cell
lines for 48 h.

Cell Lines Na[OsVI(N)(tpm)2] Cisplatin

HeLa 10.8 ± 1.0 13.4 ± 0.7
A2780 5.6 ± 0.4 15.9 ± 0.9

MDAMB231 9.1 ± 0.6 11.3 ± 1.6
HepG2 6.5 ± 1.1 4.9 ± 0.3

HepG2-stem 8.2 ± 0.8 3.3 ± 0.2
LO-2 28.5 ± 5.1 5.0 ± 0.3
A549 11.5 ± 0.8 12.3 ± 1.5

A549CIS 15.3 ± 2.0 149.6 ± 10.6
RI 1 1.3 12.2

1 RF: resistance factor calculated as RI = IC50(A549CIS)/IC50(A549).

2.3. Proteomics Analysis

To gain insight into the molecular effects of Na[OsVI(N)(tpm)2] on HepG2 cells, we per-
formed proteomic analysis of cells after 8 h and 24 h of treatment with Na[OsVI(N)(tpm)2]
by mass spectrometry. Gene Ontology (GO) analysis revealed that the expression of proteins
in the cells after 8 h and 24 h of treatment had distinct proteomic features (Figure 2A). After
8 h of treatment with Na[OsVI(N)(tpm)2], the expression levels of proteins involved in pro-
tein transportation and localization decreased by at least 1.5-fold, while proteins involved
in cytoskeletal organization and morphogenesis of the epithelium increased by at least
1.5-fold, indicating that Na[OsVI(N)(tpm)2] altered the dynamics of the cells and affected
cell infiltration. Interestingly, 24 h of treatment with Na[OsVI(N)(tpm)2] decreased the
expression of proteins involved in DNA metabolism, the cell cycle, nucleic acid metabolism,
and DNA damage repair, while increasing protein expression for the oxoacid, amide, and
antibiotic metabolic process and the response to unfolded proteins (Figure 2A). The top
categories from the GO analysis of up- and downregulated proteins after 24 h of treatment
with Na[OsVI(N)(tpm)2] were oxoacid and DNA metabolic processes, respectively. All
of the proteins in these two categories are shown in the heat map (Figure 2B). Proteins
involved in oxoacid metabolism play key roles in cancer treatment [25,26]. The DNA
metabolic process contains a large number of proteins associated with DNA replication and
DNA damage, which may be the molecular mechanisms behind the observed increased
cell apoptosis after drug treatment [27].

In the case of the DNA metabolic process, the abundances of 27 proteins were sig-
nificantly altered. These proteins play a role in DNA replication and repair (Figure 2B).
Reduced expression of these genes may lead to the accumulation of DNA damage to cells
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and reduce cell proliferation, which in turn promotes cell apoptosis [27]. INTS3 can com-
bine with hSSB1 to form a complex to regulate the stability of p53 [28]. The INTS3 gene
is highly expressed in many hepatocellular carcinoma cell lines. SMARCA1 is associated
with chromatin remodelling. Mutations of this gene in HCC tumours may significantly
contribute to the occurrence of hepatocyte tumours [29]. TOP2A (topoisomerase II α) is
overexpressed in HCC cell lines. TOP2A is a cellular topoisomerase that determines the
tumour cell response to chemotherapeutics and can also be used as a biomarker of drug
resistance in cancer [30–32].
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Figure 2. (A) Gene ontology analysis for downregulated and upregulated proteins after 8 or 24 h of
treatment with Na[OsVI(N)(tpm)2]. (B) The heat map shows the fold change in expression of the
downregulated proteins in terms of the DNA metabolic process and the upregulated proteins in
terms of the oxoacid metabolic process after 24 h Na[OsVI(N)(tpm)2] treatment from panel (A).

Moreover, DDB2 expression greatly decreases after Na[OsVI(N)(tpm)2] treatment.
DDB2 interacts with DDB1 to form a UV-DDB complex that senses UV-induced DNA
damage and initiates DNA repair through nucleotide resection (the NER pathway) and
repair [33]. Interestingly, DDB2 can inhibit the proliferation and migration of cancer cells
mediated through PAQR3 [34]. In addition, DDB2 directly interacts with LRH-1 and
facilitates LRH-1 protein ubiquitination and degradation, which are involved in sugar
and lipid metabolism and protein ubiquitination [35]. The decreased expression of DDB2
after Na[OsVI(N)(tpm)2] treatment suggests that these DDB2 pathways may be impaired,
resulting in cellular damage.

TYMS (thymidine synthase), the only enzyme involved in folic acid metabolism [36],
is essential for regulating normal DNA replication and is an important target for some
chemotherapy drugs. Thymidylate synthase is induced by the transcription factor LSF/TFCP2,
which plays an important role in the proliferation and drug resistance of hepatocellular carci-
noma [37]. TYMS can be inhibited by drugs that inhibit DNA synthesis and replication [38].
Thymidine synthase, four methylene folate reductases, two hydrogen pyrimidine dehydroge-
nases, and thymidine phosphatase are key enzymes that determine the sensitivity or resistance
to drugs [39].

In the case of the oxoacid metabolic process, the expression of GCLM increased
greatly (Figure 2B). The glutamate-cysteine ligase regulatory subunit is encoded by the
GCLM gene and is the first rate-limiting enzyme in glutathione synthesis. The enzyme
consists of two subunits, a heavy catalytic subunit (glutamate-cysteine ligase regulatory
subunit (GCLM)) and a light regulatory subunit (glutamate-cysteine ligase catalytic subunit
(GCLC)). In response to various oxidative stresses, GCLM can be regulated through the
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electrophile response element (EPRE) [40]. EPRE has been found to be an indicator of
oxidative stress [41]. Our data suggest that Na[OsVI(N)(tpm)2] regulates the cellular redox
state to affect the survival of cancer cells.

Another protein that is highly upregulated after Na[OsVI(N)(tpm)2] treatment is
KYNU. The kynurenine pathway is the major metabolic pathway of the amino acid trypto-
phan. Kynureninase or L-kynurenine hydrolase (KYNU) is an important enzyme in this
pathway. It is a PLP-dependent enzyme that catalyses the cleavage of kynurenine (Kyn)
into anthranilic acid (Ant) [42]. In some cancer transcription analyses, KYNU often has
abnormal expression and, in non-targeted metabolomics analysis, KYNU in the kynurenine
pathway is regarded as a potential chemotherapy target [43]. KYNU was downregulated in
highly invasive cell lines, which was associated with tumour inhibition in osteosarcoma. In
addition, KYNU significantly decreased in most cancer cells and appeared to be associated
with the infiltration of cancer cells [44].

Overall, these data consistently suggest that treatment of cancer cells with Na[OsVI(N)(tpm)2]
decreases the DNA repair capacity while increasing DNA damage accumulation and DNA repli-
cation pressure, resulting in cellular oxidative stress and cell apoptosis.

2.4. Effects of Na[OsVI(N)(tpm)2] on Cell Cycle and Apoptosis

To determine whether Na[OsVI(N)(tpm)2] triggers the mechanisms of cell cycle arrest
and apoptosis, we examined the counteraction of Na[OsVI(N)(tpm)2] on cell cycle progres-
sion in HepG2 cancer cells by flow cytometry analysis (Figure 3A). The cells were treated
with the complex at 3.25, 6.5, and 13 µM. Compared with the control, treatment with 3.25
µM for 12 h caused a slight increase in the percentage of cells in the G1 phase from 63.65%
to 67.67%. Treatment with Na[OsVI(N)(tpm)2] at 13 µM led to mainly G2/M phase arrest,
where the percentages of cells increased from 8.47% to 15.72%. We further examined the
expression levels of key proteins that promote the G2/M phase transition. The level of
cyclin B1, which is responsible for the cell cycle transition from the G2 phase to the M
phase, binds to the activated form of CDC2 to form a complex to ensure that the cells enter
the M phase properly [45,46].
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Figure 3. (A) Cell cycle distribution of HepG2 cancer cells exposed to the Na[OsVI(N)(tpm)2] complex
for 12 h. (B) The expression levels of cyclin B1 and p-CDC2 in HepG2 cells were assessed by Western
blot after treatment with Na[OsVI(N)(tpm)2] for 24 h.

Western blot analysis showed that the expression levels of cyclin B1 and p-CDC2
remarkably increased after treatment with the Na[OsVI(N)(tpm)2] (4, 8, and 12 µM). Our
data suggest that the Na[OsVI(N)(tpm)2] compound may cause G2/M phase arrest by
inducing the formation of the cyclin B1/p-CDC2 complex to perturb the protein dynamics
of the cell cycle (Figure 3B).

In order to investigate whether Na[OsVI(N)(tpm)2] triggers cell apoptosis, HepG2 can-
cer cells and HepG2-stem cancer stem cells were treated with Na[OsVI(N)(tpm)2] for 24 h
and subjected to flow cytometry analysis. Apoptosis is a programmed cell death process
and many metal-based anticancer drugs have been reported to be anti-proliferative by in-
ducing apoptosis [47–49]. As shown in Figure 4A, in an Na[OsVI(N)(tpm)2] concentration-
dependent manner, the apoptotic (early and late apoptotic cells) proportion of HepG2
cancer cells increased from 5.21% to 38.35%, where late apoptosis was more significant.
Compared with the control treated with DMSO, apoptosis of HepG2-stem cells treated
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with the Na[OsVI(N)(tpm)2] significantly increased from 5.02% to 64.9%, which was at-
tributed equally to both early and late apoptosis. These results suggested that cell death
after treatment with Na[OsVI(N)(tpm)2] was mainly induced through apoptosis. Previous
studies have shown that caspases are a family of cysteinyl aspartate-specific proteases
comprising 12 human members, most of which play key roles in programmed cell death.
Caspases-8/9 are the initiator caspases of extrinsic apoptosis, while caspase-3 is an execu-
tioner of apoptosis [50]. In addition, cleavage of poly-(ADP-ribose)-polymerase-1 (PARP-1)
is one of the imperative indicators for caspase-mediated apoptosis [51]. To investigate
whether Na[OsVI(N)(tpm)2]-induced apoptosis is mediated by caspases, we examined the
protein levels of caspases and cleaved-PARP-1 in Na[OsVI(N)(tpm)2]-treated HepG2 cells
by Western blotting. As shown in Figure 4B, Na[OsVI(N)(tpm)2] displayed the sequential
activation of caspases 9 and 3, which indicated that Na[OsVI(N)(tpm)2] can induce cell
apoptosis [52]. From the perspective of cell morphology, as shown in Figure S6, the cells
were observed to gradually shrink, becoming round and detached, which is consistent with
the morphological characteristics of apoptosis.
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Figure 4. (A) Apoptosis analysis of HepG2 cancer cells and HepG2-stem cancer stem cells after 24 h
of exposure to the Na[OsVI(N)(tpm)2] complex as determined by flow cytometry using Annexin
V-FITC/PI staining. (B) The expression levels of several proteins involved in apoptosis in HepG2
cells were assessed by Western blot after treatment with Na[OsVI(N)(tpm)2] for 24 h.

2.5. Mitochondrial Membrane Potential (MMP) Analysis and ROS Analysis

Evidence has confirmed that Na[OsVI(N)(tpm)2] induces apoptosis via a caspase-3/9-
dependent pathway. To further investigate the upstream signaling pathways in HepG2
cells, the cells were exposed to Na[OsVI(N)(tpm)2] to detect the MMP and levels of ROS
production.

The red/green fluorescence of 5,5′,6,6′-tetrachloro-1,1′-3,3′-tetraethyl- benzimidazolyl-
carbocyanine iodide (JC-1), a mitochondria-selective fluorescent probe, was detected by
confocal microscopy [53] (Figure 5A) and flow cytometry (Figure 5B). When the mitochon-
drial membrane potential is high, JC-1 accumulates in the matrix of the mitochondria to
form polymers (J-aggregates) with red fluorescence. When the mitochondrial membrane
potential is low, JC-1 exists as a monomer with a green fluorescence signal. As shown
in Figure 5A, with increasing concentrations of Na[OsVI(N)(tpm)2], the red fluorescence
decreased and the green fluorescence increased. Significant red fluorescence was observed
in HepG2 cells in the control group and only green fluorescence was detected in the posi-
tive control group treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP). The
decline in mitochondrial membrane potential (MMP) indicated that the early stages of
apoptosis were induced by Na[OsVI(N)(tpm)2].

Reactive oxygen species (ROS) are the main molecules produced by oxidative stress
in the body and have been recognized as important factors in tumorigenesis, tumor de-
velopment, and tumor recurrence. In recent years, studies have found that ROS and cell
apoptosis are closely related. Therefore, progressive concentrations of Na[OsVI(N)(tpm)2]
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(3.25, 6.5, or 13 µM) were added to HepG2 cells for 3 h and an inverted fluorescence mi-
croscope was used to detect the oxidation of the sensitive fluorescence probe DCFH-DA
by measuring the fluorescence intensity to test the content of intracellular ROS. As shown
in Figure 6, compared with the negative control group, the fluorescence intensity of each
treatment group obviously increased, which indicated that the complex promoted HepG2
cells to release ROS. This result is in accordance with proteomics analysis.
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Figure 5. (A) Effect of Na[OsVI(N)(tpm)2] (6.5, 13, or 26 µM) incubated for 12 h, a blank control,
and the positive control carbonyl cyanide m-chlorophenylhydrazone (CCCP) (10 µM) incubated for
20 min on the mitochondrial membrane potential of HepG2 cells by confocal microscopy. (B) Effect
of the complex Na[OsVI(N)(tpm)2] (6.5, 13, or 26 µM) incubated for 12 h on the mitochondrial
membrane potential of HepG2 cells by flow cytometry and quantitative analysis with histograms.
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2.6. Anticancer Activity of Na[OsVI(N)(tpm)2] In Vivo

To reveal the anticancer activity of Na[OsVI(N)(tpm)2] in vivo, we examined the ther-
apeutic effects of Na[OsVI(N)(tpm)2] in a human cancer xenografted in nude mouse model
(Figure 7). We successfully established a xenograft tumor model in nude mice using HepG2
cells. HepG2 cell-bearing nude mice were randomly divided into the vehicle control group,
two Na[OsVI(N)(tpm)2]-treated groups (0.2 and 1 mg/kg), and one cisplatin-treated group
(1 mg/kg). Mice were treated with the different complexes via intravenous tail injection
every 4 days. The tumor volumes and the mouse weights were measured every 2 days.
After 24 days of treatment, the tumors from each group were excised and weighed. As
shown in Figure 7A,B, the mice treated with Na[OsVI(N)(tpm)2] displayed a significant
reduction in both tumor volume and weight compared with the vehicle control group.
Dose-dependent inhibition of tumor growth after Na[OsVI(N)(tpm)2] treatment at 0.2 and
1 mg/kg showed relative tumor regression rates of 30.6% and 55.8%, respectively. The
inhibitory effect of Na[OsVI(N)(tpm)2] on tumor growth was similar to that of cisplatin
(57.8%) at the same concentration. Moreover, the body weights of the mice treated with
Na[OsVI(N)(tpm)2] did not decrease significantly (Figure 7C), indicating that this com-
plex possesses low toxicity compared with cisplatin. Together, our results suggest that
Na[OsVI(N)(tpm)2] retains anticancer activity in vivo.
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treated group vs. vehicle control group, ** p < 0.01. (C) Animal body weight growth curves. (D) Pho-
tograph of the mice in all groups on day 29. (E) Photograph of the tumors in all groups on day 29. Os
represents Na[OsVI(N)(tpm)2]. Data are presented as the mean ± S.D. (n = 5).
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3. Materials and Methods
3.1. Instrumentation

UV/Visible spectra were recorded on a Shimadzu UV2450-2550 spectrophotometer
(Shimadzu, Kyoto, Japan) in 1 cm cuvettes. The infrared spectrum was obtained from KBr
plates using a Nicolet AVATAR 360 FTIR spectrophotometer (Nicolet, Madison, WI, USA).
1H-NMR spectrum was recorded on a Bruker DPX 400 spectrometer (Bruker, Karlsruhe,
Germany). Elemental analysis was performed on a Vario EL cube CHNs analyzer (Ele-
mentar, Frankfort, Germany). X-ray crystallography was carried out with a SMART CCD
(Bruker, Karlsruhe, Germany). ESI mass spectra were recorded on a PE-SCIEX API 365
triple quadruple mass spectrometer (AB Sciex, Boston, MA, USA).

3.2. Materials

In this study, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)
and cisplatin were purchased from Alfa and used as received. FITC Annexin V Appoptosis
Detection Kit I was purchased from BD Pharmingen™ (Lake Franklin, NJ, USA). Reactive
oxygen species assay kit and mitochondrial membrane potential assay kit with JC-1 were
obtained from Beyotime. β-Actin (CST, 13E5, #4970), Cyclin B1 (CST, D5C10, #12231),
Caspase 3 (CST, D3R6Y, #14220), Cl-PARP1 (Abcam, ab4830), Cl-caspase 3 (Abcam, ab32042),
Caspase 9 (Abcam, ab202068), and phospho-CDC2/CDK1 (R&D,Y15) were used as primary
antibodies and prepared by 1:1000. HRP AffiniPure Goat Anti-Rabbit (BOSTER) was used
as a secondary antibody. CST (Cell Signaling Technology, Danvers, MA, USA).

3.3. Synthesis of Complex

Here, [nBu4N][OsVI(N)(Cl)4] (235.2 mg, 0.4 mmol) and [5-(Thien-2-yl)-1H-pyrazol-3-
yl]methanol) (144.2 mg, 0.8 mmol) were fixed and 15 mL of methanol was added at room
temperature, then it was stirred and, after they were completely dissolved, 5 mg/mL of
NaOH of methanol solution was added to adjust the pH to 9. The mixture continuously
stirred at room temperature for 12 h; the resulting yellow precipitate was filtered out using
methanol washing and vacuum drying. The filtrate was volatilized at room temperature.
After a few weeks, the needle yellow transparent crystal was obtained. Yield: 81.6%. IR(KBr,
v/cm−1): ν (Os≡N) 1107 cm−1; ν (C=N) 146 cm−1; ν (C(=C)-H) 3125 cm−1. 1H NMR
(400 MHz, d6-DMSO): δ 7.46 (s, 1H), δ 7.35(s, 1H), δ 7.07 (m, 1H), δ 5.2(d,1H), δ 4.9 (d, 1H).
CHN, found: C, 33.04; H, 2.50; N, 11.41; S, 10.48. Calcd. for C16H12N5NaO2S2Os•CH3OH:
C, 33.16; H, 2.62; N, 11.37; S, 10.42. ESI-MS: m/z = −562, [OsVI(N)(tpm)2]−.

3.4. X-ray Crystallography

Suitable single crystals were mounted with glue at the end of a glass fiber. X-ray
diffraction data were collected on a XtaLab PRO MM007HF DW Diffractometer System
equipped with a MicroMax-007DW Micro Focus X-ray generator and Pilatus 200 K silicon
diarray detector (Rigaku, Tokyo, Japan, Cu Kα, λ = 1.54184 Å) under 293 K. Data reductions
were performed on CrysAlisPro 1.171.39.28b (Rigaku OD, 2015). Structure solution was
carried out using SHELXT and refinement with SHELXL, within the OLEX2 graphical inter-
face [54–56]. Restraints (SADI and DFIX) were applied for disordered methanol molecules.
All non-hydrogen atoms were refined first isotropically and then anisotropically. All of
the hydrogen atoms of the ligands were placed in calculated positions with fixed isotropic
thermal parameters and included in the structure factor calculations in the final stage of
full-matrix least-squares refinement. CCDC no. 2009053 contains the supplementary crys-
tallographic data for the complex Na[OsVI(N)(tpm)2]•CH3OH. All data can be obtained
free from The Cambridge Crystallographic Data Centre.

3.5. Stability of Na[OsVI(N)(tpm)2] in DMSO and in Aqueous Solutions in the Absence or
Presence of GSH

The stability of Na[OsVI(N)(tpm)2] was examined by UV/Vis absorption spectra. The
complex was dissolved in DMSO as stock solution. The UV/Vis absorption spectra were
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recorded at different time intervals. Na[OsVI(N)(tpm)2] was further diluted with PBS (3%
DMSO) to give a final concentration of 30 µM and incubated at room temperature. The
UV/Vis absorption spectra were recorded at different time intervals. Na[OsVI(N)(tpm)2]
was incubated with GSH in PBS (3% DMSO) at room temperature. The UV/Vis absorption
spectra were recorded at different time intervals.

3.6. Cell Culture Conditions

Cell lines used in this work including cervical epithelioid carcinoma (HeLa), liver
hepatocellular carcinoma (HepG2) and its stem cell (HepG2-stem), lung carcinoma (A549)
and its cisplatin-resistant daughter cell (A549CIS), ovarian carcinoma (A2780), and breast
adenocarcinoma (MDA-MB-231) were kept in 10 cm2 culture plates at 37 ◦C/5% CO2.
HeLa, A549, A549CIS, and MDA-MB-231 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Gibco) and HepG2 and A2780 cells were cultured in Roswell Park
Memorial Institute (RPMI 1640; Gibco), supplemented with 1% penicillin-streptomycin
(Gibco), 1% GlutaMAX (Gibco), and 10% fetal bovine serum (Gibco). Human normal liver
cell line LO-2 (HL-7702) was obtained from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China). LO-2 was cultured in RPMI 1640 and supplemented with 1%
penicillin-streptomycin, 1% GlutaMAX, and 20% fetal bovine serum.

3.7. MTT Assay

Cells were rinsed with PBS and detached with 0.25% trypsin-EDTA (Gibco). Then, cells
with a density of 5 × 104 cells/mL were counted and added into the 96-well plate. Cells
were incubated for 24 h and then the solution containing the tested compound and positive
control cisplatin was added. The compound was solved in DMSO as stock solution and
then diluted with culture medium, and the percentage of DMSO was under 1%. Cisplatin
was solved in 0.9%NaCl and then diluted with culture medium. After 48 h, drug solutions
were replaced by 0.5 mg/mL MTT solution. After incubation for 1.5 h at 37 ◦C, the old
solution was removed and DMSO was added, then the 96-well plate was vortexed for
15 min in the dark. OD values at a wavelength of 570 nm were read by Infinite M200 (Swiss,
Tecan). The curve was fitted using the logarithmic interpolation in Origin software and
the half inhibition concentration (IC50) was calculated. Each experiment was repeated
three times.

3.8. Proteomic Analysis

HepG2 cells were treated with Na[OsVI(N)(tpm)2] at a concentration of 6.5 µM for
8 and 24 h in a CO2 incubator at 37 ◦C. Equal amounts of DMSO were added to HepG2
cells as a positive control. The cells were then rinsed with cold PBS three times. Lyse cells
with freshly prepared 8 M urea lysis buffer (8 M urea in 20 mM Tris-HCl, pH 8.0) contained
protease inhibitor, 1 mM PMSF (phenylmethanesulfonylfluoride), 1 mM Na3VO4, and
1 mM NaF. They were kept on ice for 10 min and scraped to collect cell lysis into a 1.5 mL
tube. The sample was clarified by centrifugation at 13,000–13,500 rpm for 15 min at 4 ◦C.
The clarified supernatant may be stored at −80 ◦C and protein concentration was then
measured. The volume of samples containing a certain amount of proteins (50 µg) was
measured. Fourfold volume of ice-cold acetone was added to the sample solution (acetone
is kept at −20 ◦C). The sample solution was immediately well mixed with acetone and
keep at −20 ◦C for 30 min to overnight. Centrifugation with 13,000 rpm at 4 ◦C for 20 min
was performed. The protein pellet was finally dried and stored at −80 ◦C. The protein
pellet was suspended in urea buffer and then denatured protein at 60 ◦C for 10 min. DTT
was added to a final concentration of 5 mM. It was incubated at room temperature for
20 min. Iodoacetamide was added to a final concentration of 25 mM at room temperature
for 30 min in the dark. Then, 100 mM of Tris-HCl (pH 8.0) was added to the sample to dilute
urea to 1 M. Trypsin was added to the sample at a ratio of 1:50–1:100 (trypsin/protein),
following incubation at 37 ◦C for 16 h. Proteolysis was stopped by adding formic acid to a
final concentration of 5% and centrifuging at 14,000 rpm for 15 min. The resulting peptides
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were desalted through StageTips [57,58]. For each sample, three biological replicates were
prepared. The samples were re-dissolved with H2O (containing 0.1% formic acid, v/v) for
subsequent HPLC-MS/MS analysis.

MS analysis was performed with a LTQ Orbitrap Velos Orbitrap MS (Thermo) con-
nected online with an HPLC. The analytical column was a self-packed PicoTip® column
(360 µm outer diameter, 75 µm inner diameter, 15 µm tip, New Objective) packed with
10 cm length of C18 material (ODS-A C18 5-µm beads, YMC) with a high-pressure injection
pump (Next Advance). The mobile phases of HPLC are A (0.1% formic acid in HPLC grade
H2O, volume percentage) and B (0.1% formic acid in HPLC grade acetonitrile, volume
percentage). Three micrograms of the sample were loaded onto the analytical column by
the auto-sampler and rinsed with 2% B for 6 min and, subsequently, eluted with a linear
gradient B from 2% to 40% for 120 min. For the MS analysis, LTQ-Orbitrap Velos mass
spectrometer (Thermo Fisher Scientific) was operated in a data-dependent mode, cycling
through a high-resolution (6000 at 400 m/z) full scan MS1 (300–2000 m/z) in Orbitrap
followed by CID MS2 scans in LTQ on the 20 most abundant ions from the immediate
preceding full scan. The selected ions were isolated with a 2 Da mass window and put into
an exclusion list for 60 s after they were first selected for CID.

The differentially expressed proteins (1.5-fold changes after the Na[OsVI(N)(tpm)2]
treatment) identified by mass spectrometry analysis were subjected to Gene Ontology (GO)
analysis, as described previously [59]. The top six GO terms under the biological process
category were retrieved for profiling the functional enrichment of up- and downregulated
gene products, respectively.

3.9. Cell Cycle Analysis

HepG2 cells were rinsed with PBS and detached with 0.25% trypsin-EDTA (Gibco).
Then, cells with a density of 1 × 105 cells/mL were counted and 2 mL was added into
the six-well plate. After being cultured for 24 h, Na[OsVI(N)(tpm)2] at the indicated
concentrations was added and reacted for 12 h. Cells were collected and 70% pre-cooled
ethanol was used to fix cell at 4 ◦C for 24 h. Before staining, cells were washed twice with
PBS. After being re-suspended with PBS, RNase and propidium iodide were added and
stained for 30 min in the dark, and cells were prepared for analysis. The cells were then
determined by a flow cytometer (BD Accuri™ C6, Franklin Lakes, NJ, USA).

3.10. Apoptosis Evaluation

HepG2 cells were rinsed with PBS and suspended with 0.25% trypsin-EDTA (Gibco).
Then, cells with a density of 1× 105 cells/mL were counted and 2 mL was added into the six-
well plate. After being cultured for 24 h, Na[OsVI(N)(tpm)2] at the indicated concentrations
was added and reacted for 24 h. HepG2 cells were suspended with EDTA-free trypsin
(Gibco) and rinsed twice with cold PBS. Then, cells were resuspended in 1X binding buffer.
Then, 5 µL FITC Annexin V and 5 µL PI were added to 100 µL of the solution (1 × 105 cells).
The cells were gently vortexed and stained for 15 min at RT in the dark. Then, 400 µL of 1X
binding buffer was added to each sample. It was analysed by flow cytometry for 1 h. Flow
cytometric analysis was performed with a flow cytometer (BD Accuri™ C6, USA).

3.11. Western Blot Analysis

HepG2 with a density of 1 × 106 cells/mL was counted and 2 mL/well was added
into the six-well plate. After being cultured for 24 h, Na[OsVI(N)(tpm)2] at the indicated
concentrations was added and reacted for 24 h. Cells were scraped with a scraper, collected,
and washed twice with cold PBS. Cells were lysed with a cell lysis buffer, of which the
main active component is 1% Triton X-100, with protease inhibitor phenylmethanesulfonyl
fluoride (PMSF). Protein quantifications were measured using the BCA Protein Assay Kit
(Beyotime) by Infinite M200 (Männedorf, Swiss, Tecan). Equal amounts of cellular proteins
were mixed with SDS-PAGE Sample Loading Buffer, 5X (Beyotime), boiled at 95 ◦C for
5 min, and run on 12–15% separation gel. Protein was transferred to the nitrocellulose
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membrane (BOSTER). The membrane was blocked with 5% nonfat milk in TBST (1X, 0.1%
Tween-20) for 40 min at RT, washed with TBST for 5 s, and then probed with primary
antibody at 4 ◦C overnight followed by secondary antibody. Next, the ECL Plus detection
kit (Beyotime) was added and the membrane was visualized using High ChemiDoc XRS
(Bio-Rad ChemiDoc XRS+, Hercules, CA, USA).

3.12. Analysis of Mitochondrial Membrane Potential (MMP)
3.12.1. Flow Cytometry

In this study, 2 mL HepG2 cells with a density of 2 × 105 cells/mL were counted
and added into the six-well plate. After being cultured for 24 h, Na[OsVI(N)(tpm)2] at the
indicated concentrations was added and the cells were further cultured for 12 h. The cells
were collected and resuspended in 1 mL JC-1 dyestuff and placed into a cell incubator for
20 min. Subsequently, the cells were rinsed twice with pre-cooling JC-1 staining buffer and
measured by flow cytometry; 10,000 cells were acquired for each sample.

3.12.2. Confocal Microscopy

HepG2 cells were seeded in a glass bottom dish (35 mm dish with a 10 mm bottom
well, 4 × 105 cells/well). After being cultured for 24 h, Na[OsVI(N)(tpm)2] at the indicated
concentrations was added and the cells were further cultured for 12 h. After removal of
culture medium, cells were washed with PBS. Then, 1 mL fresh medium and 1 mL JC-1
dyestuff were added to each dish and placed into a cell incubator for 20 min. Cells were
washed twice with pre-cooling JC-1 staining buffer and incubated with 2 mL fresh medium.
LSM 880 confocal laser scanning microscope was adopted for observation and photo taking.

3.13. Detection of Intracellular Reactive Oxygen Species (ROS) by DCFH-DA

HepG2 cells were rinsed with PBS and suspended with 0.25% trypsin-EDTA. Then,
cells with a density of 1× 105 cells/mL were counted and 2 mL was added into the six-well
plate. After being cultured for 24 h, different concentrations of drugs were added. Then,
the cells were placed in an incubator for further 3 h. The old liquid was replaced with the
diluted DCFH-DA probe (10 µmol/L). The volume is 1 mL per well. After 20 min, the cells
were rinsed three times with serum-free cell culture medium. The green fluorescence of
each sample was then observed by an inverted fluorescence microscope.

3.14. Cell Morphology Observed by an Inverted Microscope

HepG2 cells were rinsed with PBS and suspended with 0.25% trypsin-EDTA (Gibco).
Then, cells with a density of 1 × 105 cells/mL were counted and 2 mL was added into the
six-well plate. After being cultured for 24 h, different concentrations of Na[OsVI(N)(tpm)2]
(6.5, 13, and 26 µmol/L, respectively) were added. Then, the cells were placed into an
incubator for a further 3 h and the cell morphology of each group was directly observed
with an inverted microscope.

3.15. Xenograft in Nude Mice

Nude mice were obtained from the Hunan SJA Laboratory Animal Co., Ltd. (Chang-
sha, China). HepG2 cells were suspended with 0.1 mL serum free culture medium and
were injected subcutaneously in the right blank of nude mice (4 weeks old). Tumour
size was measured with digital caliper and calculated as the following formula: tumour
volume (mm3) = longest diameter (mm) × [shortest diameter (mm)]2/2. After 5 days,
HepG2-bearing nude mice were randomly assigned into four different treatment groups.
Mice were injected with complex (solvent: PBS with 1% DMSO) at the dose of 0.2 and
1 mg/kg body weight and 1 mg/kg cisplatin (solvent: PBS) via tail intravenous injection
every 4 days. The tumour volume and the mice weight were detected every 2 days. The
treated mice were scarified at the end of the studied period (29 days) with anatomical
separation of tumour nodules. The tumours were weighed and photographed.

The inhibition rate of tumour growth was determined using the following formulas:
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Tumour growth inhibition rate (%) = (1−mean tumour weight of the treatment/mean
tumour weight of the negative group) × 100%.

All measurements were expressed as mean ± SD, using SPSS 10.0 for statistical analysis.

4. Conclusions

In summary, an osmium(VI) nitrido complex Na[OsVI(N)(tpm)2] bearing a pyrazolate
ligand was synthesized and characterized. It exhibits cytotoxicity against cancer cell lines,
cancer stem cells, and cisplatin-resistant cells. The compound induces apoptosis and cell
cycle arrest towards HepG2 cells. In addition, caspase activation and oxidative stress in the
cells after Na[OsVI(N)(tpm)2] treatment suggest that apoptosis occurs through intrinsic
(mitochondrial) pathways. It can regulate protein homeostasis by mobilizing different
functional branches of the protein network at different time points during treatment.
Protein-transportation-associated proteins were significantly downregulated at earlier time
points after Na[OsVI(N)(tpm)2] treatment. Furthermore, DNA-metabolism-associated and
oxidative-stress-associated proteins were significantly downregulated and upregulated,
respectively, at later time points after Na[OsVI(N)(tpm)2] treatment, suggesting that the
complex can decrease DNA repair capacity while increasing DNA damage accumulation
and DNA replication pressure, which may increase oxidative stress in the cells. Our study
reveals a new high-valent osmium complex as a promising anticancer agent candidate
targeting protein homeostasis.
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