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Abstract: Sensitization to the adipokine leptin is a promising therapeutic strategy against obesity
and its comorbidities and has been proposed to contribute to the lasting metabolic benefits of Roux-
en-Y gastric bypass (RYGB) surgery. We formally tested this idea using Zucker fatty fa/fa rats as
an established genetic model of obesity, glucose intolerance, and fatty liver due to leptin receptor
deficiency. We show that the changes in body weight in these rats following RYGB largely overlaps
with that of diet-induced obese Wistar rats with intact leptin receptors. Further, food intake and
oral glucose tolerance were normalized in RYGB-treated Zucker fatty fa/fa rats to the levels of lean
Zucker fatty fa/+ controls, in association with increased glucagon-like peptide 1 (GLP-1) and insulin
release. In contrast, while fatty liver was also normalized in RYGB-treated Zucker fatty fa/fa rats,
their circulating levels of the liver enzyme alanine aminotransferase (ALT) remained elevated at the
level of obese Zucker fatty fa/fa controls. These findings suggest that the leptin system is not required
for the normalization of energy and glucose homeostasis associated with RYGB, but that its potential
contribution to the improvements in liver health postoperatively merits further investigation.

Keywords: Roux-en-Y gastric bypass surgery; energy homeostasis; glucose homeostasis; fatty liver;
leptin system; Zucker fatty fa/fa rats

1. Introduction

Bariatric surgery is currently the most effective treatment option against morbid obe-
sity, with numerous prospective clinical studies showing that Roux-en-Y gastric bypass
(RYGB) is associated with marked and sustained weight loss as well as long-term remis-
sion of type 2 diabetes and fatty liver disease [1–5]. Because RYGB reduces stomach size
and excludes the duodenum from contact with ingested food, physical restriction and
malabsorption of nutrients, respectively, were originally thought to mainly account for its
beneficial effects on energy and glucose homeostasis [6]. With the aid of rodent models
of RYGB, however, it is becoming increasingly evident that complex changes in various
molecular, cellular, and systems processes take place postoperatively [7–10], better under-
standing of which may guide the development of more effective, noninvasive treatments
against metabolic disease.

Leptin is a 16-kDa endocrine protein mainly released from white adipocytes and
circulates in proportion to fat mass, thereby serving as a negative feedback signal to the
brain about long-term energy stores [11,12]. Beyond its centrally-mediated effects on
suppressing appetite and increasing energy expenditure [11,12], leptin also lowers blood
glucose [13] and limits hepatic lipid accumulation [14,15]. Accordingly, leptin-deficient
ob/ob mice have severe hyperphagic obesity, hyperglycemia, and fatty liver [16,17]. On the
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other hand, diet-induced obesity is thought to arise from the development of central
leptin resistance as a result of persistently elevated circulating leptin levels [18,19] as well
as from complex pro-inflammatory processes that directly interfere with hypothalamic
leptin receptor signaling [20–23]. For these reasons, leptin supplementation to ob/ob mice
normalizes their metabolic status [24–27], whereas leptin sensitizers such as neutralizing
leptin antibodies [19], hypothalamic ER stress relievers [28–30], and other molecules [31,32]
have taken center stage in obesity drug development.

Because RYGB mainly reduces fat mass [33], it is associated with a marked reduc-
tion in circulating leptin levels [34–36]—even beyond chronic caloric restriction-induced
weight loss alone [37–42]. Nevertheless, endogenous leptin action has been proposed to
be enhanced postoperatively [43–48], thereby preventing the powerful counter-regulatory
response to depletion of energy stores which normally leads to weight-regain [11,12]. In-
deed, the disproportionately reduced circulating leptin levels associated with RYGB may in
itself enhance endogenous leptin action by reversing central leptin resistance [46]. Further,
the appetite suppressing effects of exogenous leptin are increased in RYGB-treated, diet-
induced obese Wistar rats associated with an attenuation of hypothalamic inflammation
and ER stress [45]. Studies using ob/ob mice directly aimed at assessing the requirement of
the leptin system for the beneficial outcomes of RYGB on energy and glucose homeostasis,
however, have yielded conflicting results [43,44]. Specifically, the sustained weight loss
and food intake suppression following RYGB was found to be preserved in one study [44],
but not in another [43], although in both studies RYGB failed to fully improve glycemic
control [43,44]. In contrast, weight loss and enhanced insulin sensitivity [49] as well as im-
proved fasting blood glucose levels and oral glucose tolerance [50] in leptin-unresponsive
db/db mice [51], which lack the intracellular signaling domain unique to leptin b receptors
due to an autosomal recessive point mutation in the leptin receptor gene [52], appear to be
largely preserved following RYGB.

Zucker fatty fa/fa rats are another genetic model of leptin receptor deficiency since they
harbor an autosomal recessive point mutation in the leptin receptor gene—distinct from the
db/db point mutation—which causes an inhibitory amino acid substitution in the extracellu-
lar domain common to all leptin receptor subtypes (a–f) [53–55]. As a result, Zucker fatty
fa/fa rats are obese and hyperlipidemic [56,57] and exhibit markedly impaired oral glucose
tolerance [57,58] as well as fatty liver [57,59]. Numerous studies have been performed
aimed at assessing the metabolic effects of RYGB on Zucker fatty fa/fa rats [60–64] and on
the inbred [65] Zucker diabetic fatty fa/fa rat strain [38,62,66–81], but their descriptions on
food intake are generally either incomplete [60–64,66–68,71,78,79,81] or, in many studies,
entirely missing [38,69,70,72–77,80]. Additionally, only a few of these studies incorporated
a lean control group in the form of heterozygous Zucker fatty fa/+ rats [60,62,63,76], which
is essential if any conclusions are to be drawn about whether RYGB normalizes metabolic
status. Surprisingly, all of these studies overlooked the role of leptin receptors in the lasting
metabolic benefits associated with RYGB. We therefore directly asked if leptin receptors are
required for RYGB to normalize energy and glucose homeostasis as well as fatty liver by
using Zucker fatty fa/fa rats.

2. Materials and Methods
2.1. Animals

Twenty-eight male Zucker fatty fa/fa and 12 Zucker fatty fa/+ rats were purchased
from Charles River, France, aged 6 weeks. Data from part of these rats (16 Zucker fatty
fa/fa and 5 Zucker fatty fa/+ rats) were previously reported [62] and were incorporated into
the present study to increase statistical power. All rats were individually housed under
ambient humidity and a temperature of 22 ◦C in a 12 h light/dark cycle with free access to
tap water and Purina 5008 Lab diet (Purina Mills, St. Louis, MO, USA, 16.7% of calories
from fat), unless otherwise stated. An additional group of 11 previously phenotyped male
Wistar that received RYGB at 11 weeks of age [82] were also incorporated into the present
study (Figure 1). These rats were placed under identical housing and surgical conditions
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as Zucker fatty rats, but were given an Altromin C1090-60 high-fat diet (Altromin, Lage,
Germany, 60% calories from fat) for 5-weeks preoperatively to induce obesity (478.8± 6.8 g)
and a choice between an Altromin C1090-60 high-fat diet and an Altromin C1090-10 low-fat
diet (Altromin, Lage, Germany, 10% kcal from fat) postoperatively to assess changes in
food preference [82]. All experiments were reviewed and approved by the Animal Care
Committee of the local government of Unterfranken, Bavaria, Germany (License numbers
55.2-2531.01-72/12 and 55.2-2532-2-467).
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Figure 1. Schematic of experimental design. RYGB: Roux-en-Y gastric bypass; POD: postoperative day; BW: body weight;
FI: food intake; OGTT: oral glucose tolerance test; DIO: diet-induced obese.

2.2. Surgeries

At 12 weeks of age, when Zucker fatty fa/fa rats developed obesity (443.1 ± 3.6 g),
they were randomly allocated to RYGB (n = 16) or sham (n = 12) surgeries (Figure 1).
The remaining 12 Zucker fatty fa/+ rats were also scheduled for sham surgery (Figure 1).
These group sizes are based on previous publications in which significant differences were
observed [62,83]. All surgeries were performed under sterile conditions in 6 h fasted rats by
an experienced bariatric surgeon after subcutaneous administration of 5 mg/kg carprofen
as analgesia and intraperitoneal administration of 1.25 mg/kg amoxicillin as prophylactic
antibiotic. Surgical anesthesia was induced with an isoflurane/oxygen mixture, and the
abdomen was then opened using a midline laparotomy and closed following procedures
using continuous suturing.

For the sham procedure, the gastro-esophageal junction and small intestine were first
mobilized. A gastrostomy on the anterior wall of the stomach was next performed followed
by a jejunostomy as previously described [62,83]. For the RYGB procedure, the jejunum
was first transected 15 cm below the pylorus. The stomach was next transected 3 mm
below the gastro-esophageal junction, and the stomach remnant was subsequently closed
to create the ∼15 cm biliopancreatic limb. To create the ∼80 cm alimentary limb, the aboral
jejunum was anastomosed in an end-to-side fashion to the small stomach pouch (which
was ∼5% of the original gastric volume). Finally, a 7-mm side-to-side jejuno-jejunostomy
between the biliopancreatic limb and the alimentary limb at the level of the lower jejunum
was performed to create a∼25 cm common channel as previously described [62,83].

2.3. Perioperative Care

Upon recovery from surgeries, rats were placed on a liquid diet (vanilla-flavored
Ensure, Abbott Laboratories, IL, USA, 22% calories from fat) for 6 days postoperatively
and then returned to their previous solid diet (Figure 1). For analgesia, they were subcuta-
neously administered 5 mg/kg carprofen once daily for the first 2 postoperative days.



Nutrients 2021, 13, 1544 4 of 16

2.4. Metabolic Measurements

Food intake was measured daily from postoperative day 6, while body weight was
measured daily throughout the 27-day monitoring period (Figure 1). An oral glucose
tolerance test (OGTT) was performed at the beginning of the dark cycle on postoperative
day 27 in Zucker fatty rats (Figure 1). For blood glucose measurements during the OGTT,
a small tail vein incision was made in 8 h fasted rats, and a drop of blood was directly
applied onto a glucometer (Breeze 2® glucometer, Bayer, Zurich, Switzerland) at baseline
and 15, 30, 60 and 120 min after 10 mL/kg body weight ingestion of a 25% glucose solution.
A further 100 µL of tail vein blood was collected at each time-point into tubes containing
EDTA. Plasma was isolated by centrifugation at 8000 rpm for 10 min at 4 ◦C and stored
at −20 ◦C. Homeostatic model of insulin resistance (HOMA-IR) was calculated by the
dividing the product of fasting plasma insulin (in µU/L) and blood glucose (in nmol/L)
levels by 22.5 [84]. Matsuda–DeFronzo insulin sensitivity index (ISI-M) was calculated
based on the results of the OGTT as follows:

ISI-M = 10,000/(G0 × I0 × Gmean × Imean)1/2 (1)

where G and I represents blood glucose (in mmol/dL) and plasma insulin (in mU/L) levels,
respectively, and ‘0’ and ‘mean’ indicates fasting value and mean value during the OGTT,
respectively [85].

2.5. Tissue Harvesting

At the 28th postoperative day, overnight-fasted Zucker Fatty rats were euthanized
by isoflurane overdose 45 min after a fixed meal of 3 g Purina 5008 diet. Cardiac blood
was collected into tubes containing EDTA and plasma was isolated by centrifugation at
8000 rpm for 10 min at 4 ◦C and stored at −20 ◦C. Epididymal white adipose tissue (eWAT)
and retroperitoneal white adipose tissue (rWAT) were dissected according to a standardized
protocol, weighed and summed to provide a measure of visceral WAT (vWAT) [86].

2.6. ELISAs

Plasma insulin was measured using an Ultrasensitive Rat Insulin ELISA kit (Mer-
codia AB, Uppsala, Sweden, #10-1251-10), plasma GLP-1 using a Rat GLP-1 ELISA kit
(EMD Millipore, MA, USA, #EZGLP1T-36 K), plasma leptin using a Rat Leptin ELISA
kit (Abcam, Cambridge, UK, #ab100773), plasma alanine transaminase (ALT) using a Rat
ALT Simplestep® ELISA kit (Abcam, Cambridge, UK #ab264579), and plasma aspartate
transaminase (AST) using a Rat AST Simplestep® ELISA kit (Abcam, Cambridge, UK,
#ab263883) according to the manufacturer’s instructions.

2.7. Bomb Calorimetry

Feces were collected from Zucker fatty rats on postoperative day 28, dried in an oven
and weighed. Fecal energy content (kcal/g) was then measured using ballistic bomb
calorimetry.

2.8. Liver Histology

Freshly harvested liver from Zucker fatty rats was fixed with 4% paraformaldehyde
for 24 h at room temperature and then embedded in paraffin blocks, cut into 2 µm-thick
sections and mounted on glass slides for hematoxylin and eosin (H&E) staining according
to a standard protocol. Representative images from each group were taken on a Keyence
BZ-1000 microscope at a magnification of 20×.
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2.9. Statistics

Statistical analysis was performed using GraphPad PRISM Version 8®. Data are
expressed as mean ± standard error of the mean (SEM). A one-way analysis of variance
(ANOVA) with Sidak’s post hoc test or two-tailed, unpaired t-test was used to determine
differences between groups.

3. Results
3.1. Leptin Receptors Are Not Required for RYGB to Normalize Energy Homeostasis

We first assessed body weight trajectories in lean, obese, and RYGB-treated Zucker
fatty rats over the course of a 27-day monitoring period (Figure 1). Consistent with the
leptin receptor-deficient state of Zucker fatty fa/fa rats, baseline body weights of RYGB-
treated (443.7 ± 2.8 g) and obese (442.3 ± 6.7 g) rats were significantly higher than lean
rats (348.8 ± 8.1 g; p < 0.0001 for both comparisons) (Figure 2a). From postoperative
day 3 onwards, both obese and lean rats progressively gained body weight (Figure 2a).
In contrast, RYGB-treated rats lost body weight until postoperative day 6, which then
largely stabilized and eventually converged with lean rats by study close at postoperative
day 27 (414.7 ± 12.5 g vs. 405.0 ± 10.7 g, respectively; p = 0.99) (Figure 2a).

To ascertain if the effect on body weight of our RYGB rat model is similar when
leptin receptors are intact, we incorporated data previously obtained from RYGB-treated,
diet-induced obese Wistar rats [82]. Because these rats weighed significantly more than
RYGB-treated Zucker fatty fa/fa rats at baseline (p < 0.01), body weights for this comparison
were expressed as percentage change (Figure 2b). This revealed similar percentage weight
loss for both groups during postoperative days 0–6, but RYGB-treated Zucker fatty fa/fa
rats then slightly regained body weight at postoperative day 9, whereas RYGB-treated
Wistar rats did so later at postoperative day 18 (Figure 2b). As a result, percentage weight
loss was significantly greater for RYGB-treated Wistar rats during postoperative days
9–15 (p < 0.05) (Figure 2b). However, percentage weight loss between groups was similar
from postoperative days 18–27, such that RYGB-treated Wistar rats weighed 6.7 ± 2.8%
less, whereas RYGB-treated Zucker fatty fa/fa rats weighed 5.6 ± 1.4% less compared with
baseline by study close at postoperative day 27 (p = 0.78) (Figure 2b).

In accordance with the changes in body weights between Zucker fatty rat groups,
average daily food intake of RYGB-treated rats was similar to lean rats (i.e., normalized)
from postoperative days 16–18 onwards, whereas it was always significantly lower than
obese rats (p < 0.0001) up until study close at postoperative days 25–27 (21.5 ± 1.8 kcal vs.
32.5 ± 0.9 kcal per day, respectively; p < 0.0001) (Figure 2c). Notably, average daily food
intake of RYGB-treated rats was significantly lower than lean rats from postoperative days
7–9 (p < 0.0001) to postoperative days 13–15 (p < 0.01), which we attribute to the longer
time it requires for the reconfigured gastrointestinal tract to fully heal.

To exclude malabsorption as a cause of changes in body weight in our RYGB rat
model, we measured energy content in fecal samples collected from Zucker fatty rats at
postoperative day 28 by bomb calorimetry. This revealed negligible differences between
groups (Figure 2d).

To determine the effects of RYGB on adiposity, vWAT was dissected and weighed from
Zucker fatty rats following euthanasia at postoperative day 28. This revealed that vWAT
of obese rats weighed significantly more than lean and RYGB-treated rats (28.4 ± 1.2 g vs.
8.0± 0.6 g and 18.6± 1.0 g, respectively; p < 0.0001 for both comparisons) (Figure 2e). Sidak
post hoc test also revealed that the vWAT of RYGB-treated rats weighed significantly more
than lean rats (p < 0.0001) (Figure 2e). These group differences in vWAT weights were fully
reflected in plasma leptin levels, which were the highest for obese rats (3.1 ± 0.11 µg/mL),
followed by RYGB-treated rats (1.9± 0.10 µg/mL), and then by lean rats (0.8± 0.07 µg/mL)
(Figure 2f).
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sham-operated fa/+ (lean) Zucker fatty rats (n = 12), sham-operated (obese) fa/fa Zucker fatty rats (n = 12), and RYGB-treated
fa/fa Zucker fatty rats (n = 16) during the 27-day monitoring period. (b) Percentage (%) body weight change relative
to baseline for RYGB-treated fa/fa rats (n = 16) in (a) and RYGB-treated Wistar rats (n = 11) from Dischinger et al. [82].
(c) Average daily food intake in kilocalories (kcal) in the rats from (a) during the 27-day monitoring period. (d) Fecal energy,
(e) visceral white adipose tissue weight and (f) plasma leptin in the rats from (a) at postoperative day 28. Data are presented
as mean ± SEM. Statistical significance was determined by one-way ANOVA with Sidak post hoc test in (a,c,e,f) and by
two-tailed, unpaired t-test in (b). §§§§ p < 0.0001 for sham-operated fa/+ vs. sham-operated fa/fa Zucker fatty rats, ** p < 0.01
and **** p < 0.0001 for RYGB-treated fa/fa vs. sham-operated fa/fa Zucker fatty rats and #### p < 0.0001, ### p < 0.001 and
## p < 0.01 for RYGB-treated fa/fa vs. sham-operated fa/+ Zucker fatty rats, and + p < 0.05 for RYGB-treated fa/fa Zucker fatty
vs. RYGB-treated Wistar rats.

3.2. Leptin Receptors Are Not Required for RYGB to Normalize Oral Glucose Tolerance

Next, to determine if leptin receptors are required for RYGB to normalize glycemic
control, an OGTT was performed at postoperative day 27 (Figure 1). Fasting blood
glucose levels at baseline were significantly higher for obese compared with lean rats
(105.8± 8.6 mg/dL vs. 80.8± 3.3 mg/dL, respectively; p = 0.01), whereas they were similar
for RYGB-treated rats (92.9 ± 3.7 mg/dL) compared with both lean (p = 0.23) and obese
(p = 0.27) rats (Figure 3a). During the OGTT, blood glucose levels peaked for lean rats at
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15 min and then steadily declined by 120 min (Figure 3a). In contrast, blood glucose levels
peaked for obese rats at 30 min but remained elevated at 60 min before slowly declining
by 120 min (Figure 3a). The blood glucose excursion curve for RYGB-treated rats during
the OGTT was markedly different to both lean and obese rats peaking at 15 min, then
steeply dropping to below baseline values at 60 min and then returning to near baseline
values at 120 min (Figure 3a). This blood glucose dynamic is similar to that described
for RYGB-treated, non-diabetic/diabetic patients during a mixed meal tolerance test and
has been attributed to increased glucose absorption and clearance [87,88]. Further, area
under the curve (AUC) analysis revealed a normalization of integrated blood glucose levels
during the OGTT for RYGB-treated rats (Figure 3a).
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vs. sham-operated fa/fa Zucker fatty rats, **** p < 0.0001, ** p < 0.001 and * p < 0.05 for RYGB-treated fa/fa vs. sham-operated
fa/fa Zucker fatty rats and #### p < 0.0001, ### p < 0.001, ## p < 0.01, # p < 0.05 for RYGB-treated fa/fa vs. sham-operated fa/+
Zucker fatty rats.
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Concerning plasma insulin levels, obese rats were hyperinsulinemic at baseline
(1.2 ± 0.2 nmol/L), with significantly higher plasma insulin levels compared with both
lean (0.14 ± 0.01 nmol/L) and RYGB-treated (0.39 ± 0.07 nmol/L) rats (p < 0.0001 for
both comparisons) (Figure 3b). During the OGTT, plasma insulin levels only slightly rose
for lean rats peaking at 15 min and then gradually declined by 120 min (Figure 3b). For
obese rats, plasma insulin levels peaked at 30 min, but remained elevated at 60 min before
gradually declining by 120 min (Figure 3b). Again, the plasma insulin curve for RYGB-
treated rats during the OGTT was qualitatively different from both lean and obese rats with
plasma insulin levels peaking at 15 min, but remaining elevated at 30 min, before steeply
declining to near baseline levels by 120 min (Figure 3b). This could be explained by the
increased release of the incretin GLP-1 in RYGB-treated rats, which also peaked 15 min into
the OGTT (Figure 3c). Again, the plasma profile of insulin and GLP-1 during the OGTT in
RYGB-treated rats is similar to that described for RYGB-treated, non-diabetic/diabetic pa-
tients during a mixed-meal tolerance test [87,88]. AUC analysis revealed similar integrated
circulating insulin levels during the OGTT for RYGB-treated compared with obese rats,
which were significantly higher than lean rats (p < 0.0001 for both comparisons) (Figure 3b).
On the other hand, AUC analysis revealed the highest integrated circulating GLP-1 levels
during the OGTT for RYGB-treated rats compared with both lean (p < 0.0001) and obese
(p < 0.001) rats (Figure 3c).

Based on the OGTT data, we calculated HOMA-IR indices, as an indicator of in-
sulin resistance [84], and found them to be normalized in RYGB-treated rats (Figure 3d).
In contrast, ISI-M indices, as an indicator of insulin sensitivity [85], were significantly
higher for lean rats compared with both obese and RYGB-treated rats (p < 0.0001 for both
comparisons) (Figure 3e).

3.3. Leptin Receptors Might Be Required for RYGB to Normalize Liver Health

Finally, to determine if leptin receptors are required for RYGB to normalize liver health,
we performed H&E staining on paraffin-embedded liver sections and also measured circu-
lating levels of the liver enzymes ALT and AST as indicators of liver damage. This revealed
that obese rats had markedly more hepatic lipid deposits than lean rats (Figure 4a), in line
with previous studies [57,59], whereas RYGB-treated rats had similar hepatic lipid deposits
compared with lean rats (Figure 4a). Interestingly, although circulating levels of ALT were
higher in obese rats compared with lean rats (0.92 ± 0.03 mg/mL vs. 0.52 ± 0.05 mg/mL;
p < 0.0001), again in line with previous studies [57,59], they remained elevated in RYGB-
treated rats (0.91 ± 0.06 mg/mL) (Figure 4b). In contrast, circulating levels of AST were
similar between groups (Figure 4c).
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4. Discussion

Zucker fatty fa/fa rats harbor an autosomal recessive point mutation in the leptin
receptor gene that negatively affects the extracellular domain common to all leptin recep-
tor subtypes (a–f) [53–55], making them an established genetic model of leptin receptor
deficiency. We obtained evidence using these rats that the leptin system is not required for
RYGB to normalize energy and glucose homeostasis, whereas it might play an independent
role in improving liver health.

The first studies aimed at assessing the requirement of the leptin system in the im-
provements in energy and glucose homeostasis associated with RYGB used leptin-deficient
ob/ob mice [43,44]. Our findings do not align with those of Hao et al. [43] who showed that
the changes in body weight of ob/ob and diet-induced obese mice following RYGB were
markedly different. A potential reason for the discrepancy with our findings is that the
RYGB mouse model of Hao et al. [43] is not associated with suppression of food intake and
instead causes malabsorption, unlike the RYGB-treated Zucker fatty fa/fa rats described
here. Our findings do, however, agree with those of Mokadem et al. [44] who showed
that RYGB induced sustained weight loss in ob/ob mice up until the end of the 6-week
monitoring period and reduced average food intake by 23%. In contrast, body weight
and oral glucose tolerance in the RYGB-treated ob/ob mice of Mokadem et al. [44] were not
normalized. The reasons for the discrepancies with our findings could be due to species
differences or the degree of diminished leptin action between ob/ob mouse (absolute) and
Zucker fatty fa/fa rat (severely diminished) models. In this regard, while Zucker fatty fa/fa
rats reduce food intake upon central leptin administration at pharmacological doses [89,90],
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they fail to do so to peripherally administered leptin [90]. Therefore, it is unlikely that
any residual circulating leptin action could contribute to the suppression of food intake in
RYGB-treated Zucker fatty fa/fa rats.

Because RYGB is very technically demanding to execute in mice, more studies have
been performed aimed at assessing its metabolic effects in Zucker fatty fa/fa [60–64] and
Zucker diabetic fatty fa/fa [38,62,66–80] rats. These studies, however, like those in db/db
mice [49,50], were not directly aimed at assessing the requirement of the leptin system
in the improvements in energy and glucose homeostasis associated with RYGB. This is
most likely why their details of food intake are either generally incomplete [60–64,66–
68,71,78,79,81], or missing [38,49,50,69,70,72–77,80], and their study conclusions are unre-
lated to leptin. Our findings differ from the studies showing a lack of sustained weight
loss associated with RYGB [38,64,68,71,74,75,78,80], but are in line with the majority that
do [61–63,66,67,69,72,76,79,81]. Further, our findings are consistent with the studies show-
ing suppression of average food intake associated with RYGB over the postoperative
monitoring period [62,66,67,71,78,79,81]. The reasons for the discrepancies between stud-
ies could be due to the age of rats when surgeries were performed, the postoperative
maintenance diet, the duration of the postoperative monitoring period, as well as the RYGB
model, which can vary significantly between laboratories [91]. Nevertheless, our study
extends previous work by showing a clear normalization of food intake by RYGB that
is sustained at a late postoperative time-point when body weight is also normalized by
the procedure.

Importantly, we could demonstrate that the changes in body weight over the course
of a 27-day monitoring period in RYGB-treated Zucker fatty fa/fa rats largely overlapped
with diet-induced obese Wistar rats that have intact leptin receptors. This is in line with
other studies showing similar 13% weight loss 11 days after RYGB in Zucker diabetic fatty
fa/fa rats and Sprague-Dawley rats [67], as well as similar body weight trajectories over
a lengthier 4-week postoperative monitoring period in these rats [68,78]. In contrast, the
potent weight lowering and appetite suppressing effects of various small molecule leptin
sensitizers in diet-induced obese mice are lost in both ob/ob and db/db mice [28,29,32]. These
findings collectively argue against sensitization to endogenous leptin playing a causal
role in the outcome of RYGB on energy homeostasis. A recent study using diet-induced
obese Wistar rats, however, reached the opposite conclusion [45]. A major limitation of this
study is that it focused only on the effects of exogenous leptin treatment [45]. Moreover,
food intake in the RYGB-treated rats of Chen et al. [45] returned to the levels of sham-
operated counterparts and was not affected when central leptin resistance was induced
pharmacologically [45].

With regards to glucose homeostasis, previous studies have consistently shown lower
fasting blood glucose and/or plasma insulin levels in RYGB-treated Zucker fatty fa/fa and
Zucker diabetic fatty fa/fa rats compared with sham-operated counterparts [38,61,63,64,
66–69,71,72,76,79,81]. Additionally, studies with a longitudinal design have shown that
RYGB improves oral glucose tolerance at postoperative days 21 and 30 compared with
baseline [74,79]. Because we included a lean control group in the form of sham-operated
fa/+ Zucker fatty rats, we could show a normalization of fasting plasma insulin levels and
HOMA-IR indices associated with RYGB, which is consistent with a previous study [63].
We further found normalized oral glucose tolerance, which differs from a previous study
in Zucker diabetic fatty fa/fa rats [76]. This discrepancy can possibly be attributed to strain
differences, since Zucker diabetic fatty fa/fa rats additionally harbor a point mutation
that affects insulin transcription in pancreatic beta cells [92], rendering them genuinely
diabetic unlike Zucker fatty fa/fa rats [65]. In contrast, we did not find significantly higher
ISI values in RYGB-treated Zucker fa/fa rats compared with sham-operated counterparts,
which differs from a previous study in which it was higher [61]. While we cannot offer an
explanation for this discrepancy, the evidence from studies on Zucker fatty and Zucker
diabetic fatty fa/fa rats generally suggests that leptin receptors are not required for the
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improvement/normalization of glucose homeostasis associated with RYGB [38,61,63,64,66–
69,71,72,74,76,79,81].

The global prevalence of fatty liver disease has risen dramatically alongside that of
obesity, and there currently exists no specific medical treatment [93]. Numerous prospective
clinical studies have shown, however, that RYGB is associated with a marked improvement
in liver health as determined histologically and reflected by a normalization of circu-
lating ALT and AST levels [94]. Similarly, there is ample evidence that leptin protects
against accumulation of liver fat [95], with rodent studies implicating leptin receptors
in the hypothalamus [15] and the dorsal vagal complex [14]. Further, leptin sensitizers
markedly improve fatty liver and lower circulating ALT/AST levels in diet-induced obese
mice [19,28,29]. We, however, found lower liver fat in RYGB-treated Zucker fatty fa/fa rats
compared with sham-operated counterparts, similar to a previous study [64] and also to
RYGB-treated ob/ob mice [44], suggesting that the leptin system is not required for this
metabolic benefit postoperatively. In contrast, circulating ALT levels between RYGB-treated
and sham-operated Zucker fatty fa/fa rats were similar. While this might suggest that leptin
receptors are required for the complete normalization of liver health associated with RYGB,
a previous study documented lower circulating ALT levels in RYGB-treated Zucker diabetic
fatty fa/fa rats compared with sham-operated counterparts [71]. Clearly, more in-depth
preclinical studies are needed on the extent to which RYGB improves fatty liver disease,
including its impact on inflammation and fibrosis, and the potential role played by the
leptin system.

If leptin is not required for the improved energy and glucose homeostasis associated
with RYGB, then this raises the obvious question as to which peripheral factors are required.
We confirmed that circulating levels of the anorexigenic and incretin gut hormone GLP-1
are increased by RYGB in Zucker fatty/Zucker diabetic fatty fa/fa rats [61,62,68,75,78,79].
However, rodent studies have shown that like leptin receptors, GLP-1 receptors are not
required for the effects of RYGB on body weight and glycemic control [96,97], although
there is pharmacological evidence suggesting that GLP-1 receptor signaling is required for
the postoperative improvement in oral glucose tolerance [98]. Similarly, the farnesoid X
receptor (FXR), which is a target of bile acids, is required for the improvements in glycemic
control associated with RYGB in mice [99]. Still, the peripheral factors required for the
improvements in energy homeostasis associated with RYGB remain unknown, and their
identification represents an important future line of investigation. Notably, Zucker fatty
fa/fa or Zucker diabetic fatty fa/fa rats, with their sustained suppression of food intake
following RYGB [66], may be the ideal model for such investigations. This is because food
intake suppression in RYGB-treated, diet-induced obese mice and rats tends to diminish
over time [9,45,67,82,97,99,100] or is even absent [43,78,96].

Strengths of the present study include the well-powered group sizes allowing for
robust statistical comparisons to be performed, as well as the incorporation of a lean
control group. Another study strength is the detailed reporting of body weight and food
intake absent in previous studies with RYGB-treated Zucker fatty fa/fa or Zucker diabetic
fatty fa/fa rats. We also directly compared body weight changes following RYGB in leptin
receptor-deficient and replete states, revealing the non-essential role of the leptin system in
the normalization of energy homeostasis postoperatively. A limitation of the present study
is that despite achieving the degree of food intake suppression associated with RYGB in
patients [101], the 30–40% weight loss characteristic of the procedure [3] was not reached.
However, when factoring in the rapid weight gain of sham-operated Zucker fatty fa/fa
rats, RYGB-treated rats weighed 25.5 ± 2.2% less, which resembles the clinical outcome.
Additionally, we did not directly compare the effects of RYGB on glucose homeostasis and
fatty liver with a diet-induced obese group in which endogenous leptin action could be
restored or enhanced, which needs to be performed in future studies. Finally, we did not
challenge RYGB-treated Zucker fatty fa/fa rats with a high-fat diet postoperatively, which
could have uncovered a more prominent role for the leptin system in preventing weight
regain [44].
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In summary, we have presented evidence arguing against the requirement of the leptin
system in the normalization of energy and glucose homeostasis associated with RYGB,
which is consistent with the majority of previous studies in Zucker fatty fa/fa and Zucker
diabetic fatty fa/fa rats as models of leptin receptor deficiency [61–63,66,67,69,72,76,79,81]
and thus places them in a new light.
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