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Abstract

It has long been known that structural chemistry shows an intriguing correspondence with Classical Invariant Theory (CIT).
Under this view, an algebraic binary form of the degree n corresponds to a chemical atom with valence n and each physical
molecule or ion has an invariant-theoretic counterpart. This theory was developed using the Aronhold symbolical approach
and the symbolical processes of convolution/transvection in CIT was characterized as a potential ‘‘accurate morphological
method’’. However, CIT has not been applied to the formal morphology of living organisms. Based on the morphological
interpretation of binary form, as well as the process of convolution/transvection, the First and Second Fundamental
Theorems of CIT and the Nullforms of CIT, we show how CIT can be applied to the structure of plants, especially when
conceptualized as a series of plant metamers (phytomers). We also show that the weight of the covariant/invariant that
describes a morphological structure is a criterion of simplicity and, therefore, we argue that this allows us to formulate a
parsimonious method of formal morphology. We demonstrate that the ‘‘theory of axilar bud’’ is the simplest treatment of
the grass seedling/embryo. Our interpretations also represent Troll’s bauplan of the angiosperms, the principle of variable
proportions, morphological misfits, the basic types of stem segmentation, and Goethe’s principle of metamorphosis in
terms of CIT. Binary forms of different degrees might describe any repeated module of plant organisms. As bacteria,
invertebrates, and higher vertebrates are all generally shared a metameric morphology, wider implications of the proposed
symmetry between CIT and formal morphology of plants are apparent.
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Introduction

Classical invariant theory (CIT) studies the intrinsic or geomet-

rical properties of polynomials, identifying those properties which

are unaffected by a change of variables [1,2]. The mathematical

parts of Introduction and all Methods outlined below are based

upon [1–4].

The simplest example of a polynomial is the binary form. More

accurately, the binary form is a homogeneous function of the

variables x~ x,yð Þ, which can be either real or complex:

Q xð Þ~Q x,yð Þ~
Xn

i~0

ai

n

i

� �
xn{iyi ðIÞ:

The integer n is the degree of the form.

Under the general transformation of variables: x,yð Þ?
a~xxzb~yy,c~xxzd~yyð Þ,the polynomial (I) is mapped to a new poly-

nomial, given by:

~QQ ~xx,~yyð Þ~Q a~xxzb~yy,c~xxzd~yyð Þ ðIIÞ:

An invariant of the binary form Q(x) is a function:

I ~aað Þ~(det A)gI að Þ,A[ GL 2ð Þ

depending on the coefficients of Q, which, up to a determinantal

factor (detA), does not change (is invariant) under the action (II) of

the general linear group, where:

A~
ab

cd

� �
~ad{bc

is nonsingular, i.e. an element of some general linear group GL(2).

A covariant is a function, depending both on its coefficients

and on the independent variables x = (x, y). Therefore:

J ~aa,~xxð Þ~det Að ÞgJ a,xð Þ,A [ GL 2ð Þ:

where g is the weight of the invariant (or covariant). The degree of

J is its degree in the independent variables, the order of J or I is its

degree in the coefficients a of the equation.

There are several Theorems in CIT. The most important

probably are the First and the Second Fundamental Theorems,

the Basis Hilbert’s Theorem and the Hilbert’s ‘‘theorem of zeros’’

(Nullstellensatz).

The First Fundamental Theorem states that every polynomial

covariant can be written as a bracket polynomial and the Second

Fundamental Theorem states that any identity between bracket

polynominals can be deduced from the Three Fundamental

Identities. Below I explain both theorems in more detail.
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If the invariant or covariant is equal to zero, it vanishes, and we

therefore may designate it ‘‘trivial’’. A binary form N xð Þ for which

all the invariants are trivial is known as a Nullform. In CIT,

Hilbert’s ‘‘theorem of zeros’’ provides the criteria of the Nullforms.

It has also been proved that if Q(x) is a binary form of degree n,

then there are a finite number of invariants and covariants C1 … CK

with the property that any other covariant or invariant of

Q(x) can be written as polynomial of these basic covariants and

invariants (Gordan Theorem of Finiteness). Hilbert proved the

more general version of Gordan’s Theorem (Basis Hilbert’s

Theorem), and we may say that these basic, ‘‘irreducible’’ or

‘‘elementary’’ invariants and covariants C1 … CK are a Hilbert

basis of form Q(x).

It has long been known that structural chemistry shows an

intriguing correspondence with CIT [1–3,5–7]. Under this view,

the invariant of a system of binary forms (quadratic, cubic etc.) is

the analogue of a chemical molecule composed of atoms of various

valences: an algebraic binary form of the degree n corresponds to a

chemical atom with valence n. Thus, each physical molecule or ion

has an invariant-theoretic counterpart [2], a linear form, for

example, corresponds to a hydrogen atom, a quadratic form to an

oxygen atom etc. [6]. This theory was developed using the

Aronhold symbolical method (see Methods) with a big number of

examples [3].

From being a popular mathematical theory at the turn of the

19th and 20th centuries, the CIT gradually lost interest in the

opinion of mathematicians after David Hilbert’s proof of the main

theorem of this theory – the Hilbert’s Basis Theorem. As far we

can judge, Hilbert never addressed Sylvester’s analogy [3,6].

However, physics have paid serious attention to this idea. For

example, Born [8] based the theory of homopolar valences in

multiatomic molecules on the analogy of Sylvester [6] as repre-

sented in [3] and Weyel with co-authors published at least two

papers [9,10] addressing this ‘‘formal, although very appealing

mathematical analogy’’ [9]. Latter, Griffith [11] suggested that

in his chemico-algebraic theory, Sylvester [6] had anticipated the

essential and central role of a certain type of algebra in the modern

theories of chemical valence, and that his theory therefore is a

‘‘partial anticipation’’ of modern quantum chemistry [11, see

also 12].

The basic symbolic process of invariant building in CIT

( ‘‘Faltungsprozess’’ or ‘‘Convolution’’; see Methods) was charac-

terized as an ‘‘accurate morphological method’’ [13] and previously

Sylvester called the algebra of the invariants of binary forms as

‘‘Analytical Morphology in its absolute sense’’ [14]. However, CIT has

never been applied to the morphology of living organisms.

Based on the morphological interpretation of binary form, as

well as the process of convolution/transvection of CIT, I show

here how CIT can be applied to the structure of plants, especially

when conceptualized as a series of plant metamers (phytomers).

Classical morphology of plants is not equal to phytonism, but the

concept of phytonism is the closest allusion to the basic principle of

morphology itself, to Goethe’s principle of metamorphosis,

according to which one and the same organ make its appearance

in multifarious forms [15]. The study of both morphology and

plant development, both past and present, has widely accepted

phytonism due to its accurate representation of plant form

[16–29]. We also show, that classical plant morphology is an

elementary instance of CIT. To do this, here we provide the

morphological interpretation of two general theorems of CIT: the

First and Second Fundamental Theorems. We also propose a

morphological interpretation of Hilbert’s Nullform as a framework

for future application of famous Hilbert’s ‘‘theorem of zeros’’ to

classical morphology.

Methods

Aronhold’s symbolical method proposed, that the binary form

Q xð Þ is symbolically the n-th power of the linear form (or

monomial):

axð Þ~a1xza2y ðIIIÞ:

Therefore we can replace Q(x) with a symbolic form:

Q xð Þ~Q x,yð Þ~
Xn

i~0

ai

n

i

� �
xn{iyi~

Xn

i~0

n

i

� �
a1

n{ia2
ixn{iyi~ a1xza2yð Þn~ axð Þn

where ai~a1
n{1a2

i,a~ a1,a2ð Þ ðIVÞ:

Each Q xð Þ will have a corresponding symbolic form which is

essentially found by replacing each coefficient by a symbolic

coefficient using equation (IV). We then may call the letter a a

‘‘symbolic letter’’ or ‘‘symbol’’ of the coefficients of binary form

Q xð Þ.
Equation (III) is also called a ‘‘bracket factor of the first kind’’.

A ‘‘bracket factor of the second kind’’ is the 262 determinant:

ab½ �~det
a1 a2

b1 b2

� �
~a1b2{a2b1 ðVÞ:

where a1,2 and b1,2 are symbolic letters.

Using the Aronhold symbolical method we may therefore re-

write complicated invariants of Q xð Þ as a simple sequence of

bracket factors of the first and second kind. The First Fundamental

Theorem of CIT states that if J(a, x) is a covariant of the binary

form (I), then the symbolic form of J can always be written as a

bracket polynomial P. The weight of the covariant is equal to the

number of bracket factors of the second kind in any monomial of P

and the degree of the covariant is the number of bracket factors of

the first kind of P.

We can associate an atom with bracket factor of the first kind

(III) [1–3,5–6]. The degree n of the factor of the first kind

corresponds to the valence of the atom. The connection between

two atoms can be described using a bracket factor of the second

kind (V)[1–3]. For example, the symbolic bracket polynomial

ab½ �2 axð Þn{2 bxð Þn{2
describes a molecule that consists of two

atoms: a and b. Since the bracket factor ab½ � occurs twice, there

will be two bonds between atom a and atom b. So, each bracket

factor of the first kind axð Þn{2
and bxð Þn{2

corresponds to n–2

free valences of atoms a and b accordingly [1–3].

Also, we may re-write any binary form axð Þn as polar forms:

axð Þn{1 ayð Þ, axð Þn{2 ayð Þ2 etc. Polar forms are comparable to

atoms of non-constant valence [3].

We may symbolically transit two bracket factors of the first kind

in a bracket factor of second kind [1–3] and call this transition a

‘‘Faltungsprozess’’ [3], or as a ‘‘process of convolution (‘‘Faltung’’)’’

[4] or, which is the same in our case [4], as a ‘‘transvection’’

(‘‘Uberschiebung’’) of two forms:

a,bð Þ? ab½ �:

‘‘Convolution’’ is similar to the process of saturation for of the

valences of atoms [1–3].

,
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For convolution a,bð Þk of forms axð Þn, bxð Þm, this is true:

a,bð Þk~ ab½ �k axð Þn{k bxð Þm{k ðVIÞ:

If k = 1 we may call equation (VI) Jacobian, and if k = 2,

equation (VI) is a Hessian of two binary forms. For example, an

atom of oxygen (valence = 2) corresponds to a binary form of the

second degree: vxð Þ2. The first and second convolutions of two

binary forms v1xð Þ2 and v2xð Þ2 therefore provide an invariant/

covariant corresponding to a hypothetical oxygen radical (the

trivial covariant Jacobian v1v2½ � v1xð Þ v2xð ÞÞ and a stable neutral

‘‘molecule’’ of oxygen the invariant Hessian v1v2½ �2
� �

For simplicity we may call a binary form of the second degree a

‘‘binary quadratic’’ (or simply ‘‘quadratic’’), a binary form of the

third degree a ‘‘binary cubic’’ (or simply ‘‘cubic’’) etc.

Results and Discussion

1. Morphological interpretation of the First Fundamental
Theorem of CIT

According to the phytonic theories each organ of a plant (shoot,

spikelet, flower etc.) is simply the repetition of phytomer that

principally includes the stem joint, the leaf, the axillary bud/

meristem, and the secondary roots [17,20,21,23,25,27]. We also

include in a phytomer the prophylls of the axillary’s bud (with

hypopodium and mesopodium, if present) [21,29]. It is not

necessary to always associate the bud with the leaf in whose axil it

occurs [23,27,29,30].

Because each plant phytomer generally connects with two other

neighbours in sequence (Figure 1A and B) and includes the bud,

or, in other words, connect with the phytomer of the next order,

we propose an analogy: in the simplest case the plant phytomer

itself corresponds to a binary cubic (Figure 1C) and a phytomer

with a reduced or non-functional axilar bud/meristem corre-

sponds to the polar of a binary cubic (Figure 1C). Binary forms of

degrees higher then three can represent a phytomer with serial or

collateral buds/meristems. Two connected phytomers can there-

fore be described by a Jacobian and (or) by a Hessian of two

bracket factors of the first kind, for example, of two binary cubics.

Therefore, a shoot or shoot-system built out of a chain of n

phytomers will always correspond to a covariant of n binary forms

represented by a symbolic bracket polynomial of bracket factors of

the first and second kind (Figure 1D). This provides a

morphological interpretation of the First Fundamental Theorem

of CIT, according to which the symbolic form of covariant J(a, x)

can always be written as a bracket polynomial P of both kinds of

factors [1,2,4].

Figure 1. A description of the repeated unit of Orontium aquaticum L. (Araceae) containing five phytomers. A Schematic image of O.
aquaticum [30]. B, Diagram of the repeated unit containing five phytomers [30]. C, A description of B by the covariant of five binary cubics. D,
Reducible covariant of five binary cubics corresponded to B. P – prophyll; E – mesophyll; M – monopodial leaf; S – sympodial leaf; X – first phytomer
of inflorescence; e – foliage leaf, c – cataphyll, s – sylleptic growth [30]. All morphological terminology and images are from [30].
doi:10.1371/journal.pone.0006969.g001
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The general morphological sense of the First Fundamental

Theorem of CIT therefore is obvious: any morphological structure

always can formally be expressed in terms of the parts and the

connection of these parts. In the context of phytonism, these parts

are equal to phytomers.

Irreducible invariants/covariants [1,2,4] may correspond to

elementary combinations of phytomers (roughly, to ‘‘articles’’

[30,31]). The invariant/covariant obviously may be reducible

even though the biological structure is never found in a reduced

form.

2. Morphological interpretation of the Second
Fundamental Theorem of CIT

According to the Second Fundamental Theorem of CIT, any

identity between bracket polynominals can be deduced from the

Three Fundamental Identities [1,2]. If formal morphology is an

elementary instance of CIT, all morphological problems will, in

principle, resolve using three simple rules, under a morphological

interpretation of the Fundamental Identities of CIT.

The First Fundamental Identity, ab½ �~{ ba½ �, states that the

connection of the lowest phytomer with the uppermost one is

principally equal to the opposite connection (Figure 2A) [see also 1, 2].

The Second Fundamental Identity, ab½ � cxð Þ~ ac½ � bxð Þz cb½ � axð Þ,
states that in the covariant abð Þ cxð Þ, the bracket factor of the second

kind ab½ � describes the connection between axð Þ and bxð Þ, so, if axð Þ
and bxð Þ describe two connected entities, then cxð Þ, (as well as (ax)

and bxð Þ in the same cases), are the reduced entity, located between,

above or below the connected entities. In other words, the Second

Identity proposes the correct way to visualize a member which has

disappeared from the sequence (Figure 2B).

According to Third Fundamental Identity of CIT, ab½ � cd½ �~
ac½ � bd½ �z cb½ � ad½ �. The Second and Third Identities are similar

[1,2,4] and in the case of so called ‘‘monostichous phyllotaxis’’

[31] it is easy to interpret the Third Identity exactly in the manner

of the Second.

To make a more general interpretation (Figure 2C) clear, we

need to consider that mosses, gymnosperms and angiosperms all

share two basic types of stems: holocyclic and mericyclic [17,24]

(Figure 3A and B). So, if ab½ � and cd½ � described the connection

between corresponded phytomers, then ab½ � cd½ � is an exact

description of the simple mericyclic stem. The covariant ab½ � cd½ �
therefore describes the fused pairs of phytomers ab½ � and cd½ �, and

the covariants ac½ � bd½ � and cb½ � ad½ � describe the linear sequences

of corresponded phytomers, but with reduced pairs bd½ � (or ac½ �)
and cb½ � respectively (Figure 2C). The Third Identity therefore

generally asserts the principal conformity of the two basic types of

stem.

Because the lateral branch of a mericyclic stem is also

mericyclic, the simplest description of the phytomer of a mericyclic

stem is the binary quartic (Figure 3C). In a simplest case mericyclic

stems may be therefore described using a covariants of a binary

quartics. This provides a description of Troll’s bauplan of the

angiosperm plant [32,33] and the principle of variable proportions

(Figure 3D–J) [32,33].

3. Morphological misfits, wholeness and the Nullforms of
CIT

According to Goethe, the plant body can be shown as the

metamorphosis of the ‘‘Leaf ‘‘ (‘‘Blatt’’) [15]. Using CIT we may

re-formulate this observation: Goethe’s ‘‘Blatt’’ corresponds to

Q xð Þ (or, generally, to system Q xð Þf gÞ and, therefore, phytomers

axð Þn, bxð Þn, gxð Þn etc are seen as symbolical representations of

Q xð Þ: Because a phytomer encloses all the basic organs, we may

also treat Q xð Þ as an entity corresponding to the whole plant, or

therefore we may understand the phytomers (ax)n, (bx)n, (gx)n etc.

as a parts that formally represent this whole [34].

If a plant is a single whole, then it does not make sense to treat

the structure of this plant in terms of a sequence of phytomers. In

the context of the current approach it means that all invariants/

covariants of the form N xð Þ corresponding to this plant, are equal

to zero. A binary form N xð Þ for which all the invariants vanish is

known as a Nullform [2]. Certain morphological misfits [31,

35–37] are therefore semantically identical to the Nullforms of

CIT. The shoot system of Utricularia’s species (Magnoliophyta,

Lentibulariaceae) is probably, the best-known example of this kind

[36,37]. Bryopsis corticulans (Chlorophyta, Bryopsidaceae) [38] is

another example.

4. Elementary examples of the application of CIT to plant
morphology

As shown above, the Third Identity of CIT generally asserts the

principal conformity of two basic types of a stem – mericyclic and

holocyclic. However due to the interpretation of the Third Identity

of CIT, just the description of the mericyclic stem in notation of

CIT (Figure 2C) shows that the mericyclic stem cannot be derived

from the holocyclic simply by vertical congenital fusion, as

Celakovsky suggested [17]. The notation of CIT itself therefore

provides not only a compressed manner to describe plants, but

sometimes is a way to understand the logic of the form. Another

example is a Nullform that, as suggested above, helps us to

understand the holistic approaches in plant morphology as a part

of a more general theory.

a. General remark: the weight of invariant/covariant and

morphological simplicity. Since Aristotle simplicity is widely

considered as the sigillum veri in science [39], especially in the case

of physic-chemical disciplines closely connected with math

[40,41]. It is obvious, however, that in classical biology the

simplicity postulate may also be a convenient instrument of

method [40]. It is also widely believed that simplicity is a reliable

guideline for judging the elegance of proofs [41], but like all

aesthetic principles, such a criterion may be subjective [39,41].

The problem of simplicity is therefore of central importance of the

epistemology of the natural sciences [39] but the concept of

simplicity requires objective formulation [39,41]. This has

unfortunately never been undertaken in the particular case of

the morphology of living organisms.

If we describe a morphological structure in the notation of CIT,

we can obviously treat the weight of the covariant/invariant that

we used as a measure of the simplicity of the description. In other

words, we can correspond to each combination of parts of a

morphological structure not only an algebraic invariant/covariant

but also some natural number, which is the weight of invariant/

covariant, the measure of its simplicity. CIT therefore helps us not

to discern, but more to express the most parsimonious explanation

we are looking for. Thus, if we have several alternative

morphological treatments of the same structure, we can select

the covariant/invariant with the minimum weight and reject the

alternatives.

b. A simple example: the double-needles of the umbrella

pine. The morphology of needles of Sciadopitys (the umbrella

pine, Sciadopityaceae), which appear to be born in the axils of

scale leaves, is controversial [34,42,43]. According to the one point

of view, the double-needle of Sciadopitys is a pair of fused leaves

born on a minimal shoot, axillary to the scale leaf [reviewed in 34,

42, 43]. According to the other view, the scale-leaf and double-

needle together are equivalent to one phyllome. In this case, the

Morphology & Invariant Theory
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needle represents the paired basal segments, which arise from the

scale-leaf and are fused in front of it [reviewed in 34].

From the shoot morphology of Sciadopitys [42] it is obvious that

the stem of this plant is mericyclic. If the needle represents the

minimum axilar shoot with a merycyclic stem, to describe the

needle we need at least three quartics. Again, the quartic axð Þ4
correspond to the phytomer with the scale leaf, the quartics bxð Þ4
and cxð Þ4 corresponds to the phytomers of the axial shoot. The

Figure 2. Three Fundamental Identitys of CIT and their morphological interpretation (A–C). The images of phytomers from [31] are re-
drawn without buds, reduced phytomers being drawn in a dotted line.
doi:10.1371/journal.pone.0006969.g002
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covariant ab½ � ac½ � axð Þ2 bxð Þ3 cxð Þ3 of weight two therefore describe

the double needle of the umbrella pine.

But if the double needle of the umbrella pine is equal to one

phyllome we need only one quartic axð Þ4 to describe the whole

needle. This quartic describes the phytomer with the appendicular

part divided into scale and the paired basal segments. So we have

to conclude that this treatment is more simple than the alternative

one.

Both alternative treatments, however, are questionable from the

pure morphological standpoint. If the needle of umbrella pine is a

shoot, where are the prophylls of this shoot? In addition, Carrier

[reviewed in 43] described the monstrous Sciadopitys needle where

the slightly bifid character of the extremity of the ordinary needle

had become very pronounced, and where a bud was developing

on the interval between the two points [reviewed in 43]. If the

needle of Sciadopitys is one phyllome, how do we explain this

unusual morphology of mutants?

This observation of Carrier [reviewed in 43] appears to be

strong evidence that the needles of Sciadopitys represented deeply

modified lateral shoots (‘‘phylloid shoots’’, ‘‘phylloclades’’, ‘‘clad-

odes’’ etc.), perhaps with reduced prophylls. In this case the

double-needle is actually composed of stem derivates.

However, if we treat the needle of the umbrella pine simple

as a pair of fused transversal prophylls of the bud that are born

in the axil of the scale, then we may associate these prophylls

with the same scale-leaf phytomer and again describe the

whole double needle of Sciadopitys only by single quartic (ax)4.

This solution is close to Engelmann and Mohl’s [reviewed

in 43] solutions and to the modern concept of a double-needle

[42].

Figure 3. Basic types of segmentation of a stem, descriptions of Troll’s bauplan of angiosperms and the principle of variable
proportions. All images A–E and G–J are re-drawn from [17] and [32] with or without modifications. A, Holocyclic stem [17] constructed from a
series of phytomers each occupying the entire diameter of the axis. B, Mericyclic stem [17] constructed from a series of phytomers each occupying
only a portion of the whole diameter of the axis. C, The phytomer of mericyclic stem and the corresponded binary quartic. The prophylls, the
hypopodium and the mesopodium are not shown. D, The bauplan of the angiosperm plant (‘‘Urpflanze’’) [32]. E, Same as D, but built up from the
primary root and shoot with mericyclic stem, each phytomer is drawn with the corresponding binary quartic, primary root drawn with the
corresponding binary quadratic. F, Brief notation [1] of covariant corresponded to D, E, and H–J. G–J, The principle of variable proportions [32]: the
same binary form corresponds to the phytomers themselves or to the parts of the primary thickening and modified shoot axis corresponding to
phytomers, that share the same position in bauplan D but generally differ with the shape and/or proportions (G). The phytomers or corresponded
parts of a shoot axis are drawn with prophylls/spines [18,32] and buds/areoles [18,32]. Each plant H (‘‘Pereskia’’, Cactaceace), I (‘‘Cylindropuntia’’,
Cactaceae), and J (‘‘Ferocactus’’, Cactaceae), as well as the bauplan D therefore may be described by a covariant of the kind F.
doi:10.1371/journal.pone.0006969.g003
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If the double-needle of Sciadopitys is a pair of fused lateral

prophylls, the bud observed by Carrier [reviewed in 43] represents

the apex of the axial shoot, which is normally non-developed.

So, there are two simplest treatments of the morphology of

needles of Sciadopitys, but only one of them explains the data

concerning the Sciadopitys mutants. Note that without of the

description of the needle of Sciadopitys in the notation of CIT, it

would not be obvious that the two treatments are equal in terms of

simplicity.

c. The axis with appendages or the chain of the

phytomers?. According to the ‘‘classical’’ theory there are

three basic plant organs: roots, stems and leaves. Stems are

subdivided into nodes and internodes; leaves are only found at the

nodes in a lateral position [32,33] (Figure 4A). Under this view,

a monocot seedling [44] can be describe by the following

covariant ri1½ � i1g1½ � g1i2½ � i2g2½ � g2i3½ � i3g3½ � g1w1½ � g2w2½ � g3w3½ � g3xð Þ
with a weight of nine (Figure 4C). Therefore, to provide a

complete treatment we need a simultaneous system [3,4] of four

binary forms.

Let us then make an alternative assumption, that the same seedling

is constructed from phytomers (Figure 4B). Under this view, we can

describe the seedling using an elementary system of binary

cubics, e. g. Q xð Þ~ axð Þ3~ bxð Þ3~ cxð Þ3; b,að Þ1~ ba½ � bxð Þ2 axð Þ2~0;
b,að Þ2~ ba½ �2 bxð Þ axð Þ~H; H,cð Þ~ ba½ �2 ac½ � bxð Þ cxð Þ2 (Figure 4D).

The weight of this irreducible covariant is three.

From anatomical and developmental points of view a

monopodial shoot with the holocyclic stem may equally be

described as a chain of phytomers or as a stem with adherent

leaves [45]. Which description is simpler?

If the shoot is a stem with leaves, let us for simplicity exclude

nodes and internodes and describe the stem only by one binary

form axð Þ2mz2
. Let us also describe each of m leaves by the linear

binary form (bx). In this case the covariant a1b½ � a2b½ � . . .
amb½ � axð Þmz2 of weight m corresponds to the whole shoot. But

if the shoot is a chain of the phytomers a1xð Þ3, a2xð Þ3,

a2xð Þ3. . . amxð Þ3, then we can describe it by the covariant

a1a2½ � a2a3½ � . . . am-1am½ � a1Xð Þ2 a2Xð Þ a3Xð Þ . . . amXð Þ2of the weight m{1:

Because in case m .0, m21,m, the second description is

simpler and must be accepted.

d. What solution of grass seedling is the simplest

one?. One of the most long-lasting and controversial discu-

ssions in the field of plant morphology concerns the organ

homologies of the grass embryo/seedling, and since the beginning

of the 19th century, more than 100 publications have addressed

this issue [reviewed in 44, 46].

There are two classical conflicting treatments of the scutellum

and coleoptile of the grass embryo: a. the coleoptile is the leaf of

the plumule, the scutellum being the cotyledon (Figure 4E and F),

or b. the scutellum and coleoptile together form a single cotyledon

[44,46] (Figure 4E and G).

It is not obvious which treatment simpler because in both cases

the seedling contain two non-reduced, ‘‘physically present’’

phytomers (Figure 4F and G).

If the scutellum and coleoptile together form a single cotyledon

(Figure 4E and G), we may describe the seedling by a Jacobian

ab½ � axð Þ2 bxð Þ2or by the Hessian ab½ �2 axð Þ bxð Þ. If (ax)3 and

(bx)3 are equal, the Jacobian ab½ � axð Þ2 bxð Þ2 is trivial. If axð Þ3 and

bxð Þ3 are different, the simplest description of the seedling is the

Jacobian ab½ � axð Þ2 bxð Þ2.

If the coleoptile is the leaf after the cotyledon, based on the

position of the coleoptile and distichous phyllotaxis (K) (diagnostic

to Poaceae) we must conclude that the first leaf after the cotyledon

in grasses is reduced to nothing (Figure 4F) or to the epiblast, a

small scale-like structure with no vascular bundles (Figure 4E). But

how does this reduced phytomer affect the complexity of the

seedling? To understand this we need a correct way to visualize a

member which has disappeared from the sequence. CIT,

particularly the Second Identity may help us in this situation.

In the case where we treat the coleoptile as a separate leaf after

the scutellum, we must describe the seedling by covariants

ab½ �2 axð Þ bxð Þ cxð Þ3 or ab½ � axð Þ2 bxð Þ2 cxð Þ3. Again if axð Þ3, bxð Þ3,

and cxð Þ3 are equal, the covariant ab½ � axð Þ2 bxð Þ2 cxð Þ3 vanishes,

but if axð Þ3, bxð Þ3, and cxð Þ3 are different, the same covariant is the

simplest description of the seedling.

Based on First and Second Identities:

1: ab½ �2 axð Þ bxð Þ cxð Þ3~ axð Þ3~ bxð Þ3~ cxð Þ3
n o

~ ab½ � cxð Þf g2 axð Þ bxð Þ cxð Þ~

~ ac½ � bxð Þz cb½ � axð Þf g2 axð Þ bxð Þ cxð Þ~

~ ac½ � bxð Þz bc½ � axð Þf g2 axð Þ bxð Þ cxð Þ~0;

2: ab½ � axð Þ bxð Þ cxð Þ3~ axð Þ3= bxð Þ3= cxð Þ3
n o

~ ac½ � axð Þ2 cxð Þ2 bxð Þ3z cb½ � cxð Þ2 bxð Þ2 axð Þ3:

All descriptions of the grass seedling/embryo are summarized in

Table 1. Based on this summary we must conclude that the

treatment ‘‘scutellum + coleoptile = cotyledon’’ is generally more

simple. This is in agreement with the current solution of the grass

seedling/embryo [44].

However, if we understand the bud of the grass seedling as a

lateral [23,47–50], then the coleoptile is seen to be a single

prophyll [23,47–50] of the lateral bud and we may therefore treat

the grass seedling as single phytomer [17,29], describe the seedling

only by single cubic axð Þ3~ axð Þ ayð Þ2 and by this way

Table 1. Descriptions of grass seedling/embryo based on the different treatments of coleoptile.

axð Þ3, bxð Þ3, and ªxð Þ3 are equal axð Þ3, bxð Þ3, and ªxð Þ3 are different

Coleoptile is the leaf of the plumule,
the scutellum being the cotyledon

ab½ � axð Þ2 bxð Þ2 cxð Þ3~0 or ab½ �2 axð Þ bxð Þ2 cxð Þ3~0 ab½ � axð Þ2 bxð Þ2 cxð Þ3~ ac½ � axð Þ2 cxð Þ2 bxð Þ3z cb½ � cxð Þ2 bxð Þ2 axð Þ3
n o

Scutellum and coleoptile together
form the single cotyledon

ab½ � axð Þ2 bxð Þ2~0 or ab½ �2 axð Þ bxð Þ ab½ � axð Þ2 bxð Þ2

doi:10.1371/journal.pone.0006969.t001
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Figure 4. Description of the bauplan of monocot seedling and grass embryo by covariants of different binary forms. A, The image of
the bauplan of a monocot seedling from [44], built from primary root, stem, and leaves; (rx) – linear binary form corresponding to primary root, (ijx)2

– quadratics, corresponding to hypocotyl (incl. shoot-born roots, coleorhiza and collar) and internodes; (gjx)2 – quadratics, corresponding to nodes,
(wjx) – linear binary forms, corresponding to cotyledon (drawn connected with endosperm) and upper leaves. B, The image of the same bauplan [44],
but built from three phytomers (drawn with corresponding binary cubics), all roots are secondary under this view. C–D, The description of a seedling
by covariants of ten binary forms (C) of degrees 1–2 or by irreducible covariant of three binary cubics (D). E, Image of a grass seedling from [44]; Co –
coleoptile, Ep – epiblast, Mesc – mesocotil, Sc – scutellum, H – hypocotyl (clz – coleorhiza, cr – collar, and r – roots); Lf – leaf. F, Composition of grass
seedling if the coleoptile is the first leaf of the plumule, the scutellum being the cotyledon, the reduced phytomer being drawn in a dotted line. G,
Composition of grass seedling in the case where scutellum and coleoptile together form a single cotyledon. All morphological terminology from [44].
doi:10.1371/journal.pone.0006969.g004
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demonstrate that the corresponding morphological treatment is

the most simple one.
e. Conclusions and closing comments. CIT can be

applied to the structure of plants, especially when conceptualized

as a series of plant metamers (phytomers). Whilst in the current

study we have concentrated on the relationship between the binary

form and the plant phytomer, this is the only one of many

examples of the branching and repetition of the morphological

and developmental units (cells, meristems, modules etc) that are

omnipresent in the plant kingdom [24,35,51].

Classical morphology has largely disappeared from scientific

discussions in the last ten years or so. Moreover, as Kaplan [33]

correctly indicated, the discipline of plant morphology in its pure

form has never been widely practiced in the United States. The

basic idea of classical morphological approach, as we interpret it, is

that there are general, pure mathematical laws of form that are

invariant among all organisms, i. e. independent from genetics,

embryology and other backgrounds. CIT provides a good

opportunity to demonstrate this. Indeed, as bacteria, invertebrates,

and higher vertebrates are all generally shared a metameric

morphology [52–57], much wider implications of the proposed

symmetry between CIT and classical morphology of plants are

apparent.
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