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Background: Fibroblast growth factor receptor (FGFR) signalling has been implicated in pancreas carcinogenesis. We
investigated the effect of FGFR inhibition in pancreatic cancer in complementary cancer models derived from cell lines and
patient-derived primary tumour explants.

Methods: The effects of FGFR signalling inhibition in pancreatic cancer were evaluated using anti-FRS2 shRNA and dovitinib.
Pancreatic cancers with varying sensitivity to dovitinib were evaluated to determine potential predictive biomarkers of efficacy.
Primary pancreatic explants with opposite extreme of biomarker expression were selected from 13 tumours for in vivo dovitinib
treatment.

Results: Treatment with anti-FRS2 shRNA induced significant in vitro cell kill in pancreatic cancer cells. Dovitinib treatment
achieved similar effects and was mediated by Akt/Mcl-1 signalling in sensitive cells. Dovitinib efficacy correlated with FRS2
phosphorylation status, FGFR2 mRNA level and FGFR2 IIIb expression but not phosphorylation status of VEGFR2 and PDGFRb.
Using FGFR2 mRNA level, a proof-of-concept study using primary pancreatic cancer explants correctly identified the tumours’
sensitivity to dovitinib.

Conclusion: Inhibiting FGFR signalling using shRNA and dovitinib achieved significant anti-cancer cancer effects in pancreatic
cancer. The effect was more pronounced in FGFR2 IIIb overexpressing pancreatic cancer that may be dependent on aberrant
stimulation by stromal-derived FGF ligands.

Pancreatic cancer remains a highly fatal disease despite efforts to
improve the treatment over last several decades (American Cancer
Society, 2011). Fibroblast growth factor receptors (FGFRs) are
transmembrane proteins that, on binding with FGF ligands, trigger
the phosphorylation of FGFR substrate 2 (FRS2), a key adaptor
protein that is largely specific to FGFRs (Wesche et al, 2011).
Phosphorylated FRS2 then recruits and activates elements of the
Ras/MAPK and PI3K/Akt pathways. Fibroblast growth factor
receptor signalling is terminated when the FGF–FGFR complex is
endocytosed and ubiquitinatised. Fibroblast growth factor receptor
signalling has also been shown to have an important role in

pancreatic ductal and stromal hyperplasia, and cancer progression.
Several FGFs including FGF1, 2, 7 and 10 are overexpressed in
pancreatic cancer (Kornmann et al, 1998; Mahadevan and Hoff,
2007). FGF2 stimulation has been linked to increased pancreatic
cancer cell proliferation, motility, invasion and stromal hyperplasia
(Escaffit et al, 2000; Kuniyasu et al, 2001; Nomura et al, 2008). The
overexpression of FGF7, a soluble stromal factor, was linked to
pancreatic cancer progression and increased metastatic potential
(Yi et al, 1994; Zang et al, 2009). Preclinical studies showed that
alterations in FGFR1 signalling modulated growth in pancreatic
cancer cells (Liu et al, 2007; Chen et al, 2010). Elevated FGFR2
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expression is associated with more advanced disease and shorter
patient survival (Yamanaka et al, 1993; Ohta et al, 1995; Cho et al,
2007), whereas increased FGFR2 phosphorylation has been
associated with enhanced pancreatic cancer cell proliferation,
migration, invasion, survival and tumour angiogenesis (Nomura
et al, 2008; Katoh and Katoh, 2009; Wesche et al, 2011).
In addition, FGFR2 amplification was detected in a subset of
pancreatic cancers during a genome-wide analysis (Nowak et al,
2005). As such, FGFR signalling may be a valid therapeutic target
in pancreatic cancer.

Our group previously established a primary pancreatic cancer
explant model by implanting and propagating surgically resected
tumour tissues in SCID mice (Hylander et al, 2005; Philip et al,
2009). The primary tumours were maintained in vivo without
passage through cell line phase and the model has been shown to
closely mirror the biology of the donor patients’ tumours (Philip
et al, 2009). This platform has been used by us and others
(Hylander et al, 2005; Rubio-Viqueira et al, 2006) in evaluating
anti-cancer drugs preclinically.

Dovitinib is a highly potent inhibitor of FGFRs with kinase
IC50o10 nmol l� 1; other targets include VEGFR2 and PDGFRb
(kinase IC50410 nmol l� 1) (Lee, 2005). Preclinically, the small
molecule has demonstrated FGFR-dependent anti-tumour effects
in a breast cancer model independent of its activity against VEGFR
and PDGFRb (Dey et al, 2010). Taeger et al (2011) had previously
reported the anti-proliferative and -metastatic effects of dovitinib
in pancreatic cancer cell line model though the relationship to the
underlying FGFR signalling activity was unclear. In this report,
we extend this by investigating whether underlying FGFR
signalling will affect the effect of a potent FGFR inhibitor such
as dovitinib in pancreatic cancer using a complement of cell lines
and primary patient-derived explant models. We hypothesise that
pancreatic tumour with heighted FGFR signalling is more sensitive
to the anti-cancer effects of agents inhibiting FGFR signalling.

MATERIALS AND METHODS

Drug. Dovitinib was obtained from Novartis Institutes for
Biomedical Research (Basel, Switzerland). For in vitro proliferation
assays, dovitinib was prepared as a 10 mmol l� 1 solution in
DMSO. For in vivo xenograft studies, dovitinib solution was
formulated as 4 mg ml� 1 in water for oral gavage.

Cell lines and in vitro studies. Human pancreatic cancer cell lines
L3.6PL, Panc4.30 and Panc2.13 were gifted by Dr Manuel Hidalgo
(Johns Hopkins University); and AsPC1, SU86.86 and Panc02.03
were from American Type Culture Collection (ATCC, Manassas,
VA, USA). All of the pancreatic cancer cell lines were maintained
in DMEM (Life Technologies, Grand Island, NY, USA) supple-
mented with 10% FBS (Sigma, St Louis, MO, USA) and penicillin–
streptomycin and incubated at 37 1C in a fully humidified
atmosphere containing 5% CO2. Pancreatic cell cultures were
seeded into 24-well plates and treated with DMSO or indicated
agents. Then cells were harvested and the extent of cell death was
evaluated by Trypan blue stain counting by TC10 (Bio-Rad,
Richmond, CA, USA). Each experiment was performed in
triplicate.

RNA interference and gene overexpression studies. A constitu-
tively active form of Akt1 (CA-Akt1) and Mcl-1 cDNA (Upstate,
Lake Placid, NY, USA) was generously provided by Dr Shengbing
Huang (Mayo Clinic, Rochester, MN, USA) (Rahmani et al, 2003)
for gene overexpression studies. Briefly, cDNA was cloned into
pCDH1-MCS1-EF1-Puro vector (System Bioscience, Mountain
View, CA, USA) for lentivirus packaging in 293 TN cells.
Pancreatic cells were infected with lentivirus with multiplicity of
infection (MOI) of 5 under selective Puromycin (1 mg ml� 1).

RNA interference was based on pGreenPuro system (System
Bioscience) expressing small hairpin RNA (shRNA). pGreen-
FRS2a, pGreen-Mcl-1 and pGreenPuro-vec constructs, encoding
shRNA for FRS2a (sh-FRS2), Mcl-1 (shMcl-1) or a negative
control (vector) respectively, were prepared by inserting the target
sequence for human FRS2a (shRNA1: 50-CCGTGATAGACATC-
GAGAGAA-30 or shRNA2: 50-CCGTGCAGAAGAATTATTT-30)
or Mcl-1 (50-GGACTTTTATACCTGTTAT-30) into pGreenPuro.
293 TN cell was stably transfected with the constructs and three
packaging plasmids using Lipofectamine 2000 reagent (Invitrogen)
to package lentivirus; and then pancreatic cells were infected with
lentivirus with multiplicity of infection of 5. Clones with stable
downregulated FRS2a or Mcl-1 expression were selected with
puromycin (1 mg ml� 1).

Immunoblotting. For immunoblot analysis, the cells were treated
with the indicated agents and then collected in lysis buffer (Cell
Signaling, Danvers, MA, USA). Total protein was quantified using
Coomassie protein assay reagent (Bio-Rad). An equal amount of
protein (60mg) was separated by SDS–PAGE and electrotransferred
onto nitrocellulose membrane. The following primary antibodies
were used: FGFR2, VEGFR1, p-VEGFR2 (Y1214) and VEGFR2,
p-PDGFRb (Y751) and PDGFRb (1 : 1000, R&D Systems,
Minneapolis, MN, USA); Mcl-1 (1 : 1000, BD PharMingen, Sparks,
MD, USA); p-Akt(S473), Akt, p-Erk1/2(T202/T204), Erk,
p-GSK3b(S9), GSK-3b, Bid, tBid, cyclin D1, cleaved caspase 3,
cleaved poly(ADP-ribose) polymerase (PARP), human Bcl-2 and
Bcl-xL (1 : 1000–1 : 5000, Cell Signaling); p-FRS2a(Y196) and FRS2a
(1 : 200, Santa Cruz Biotechnology, Santa Cruz, CA, USA). b-actin
(1 : 500,000, Sigma) was measured as control for equal loading. Blots
were exposed to HRP-conjugated goat anti-mouse or goat anti-
rabbit IgG secondary antibodies (1 : 5000, KPL, Gaithersburg, MD,
USA) and then developed by enhanced chemiluminescence (Pierce,
Rockford, IL, USA). For semi-quantitative analysis, protein
expression was quantified by densitometric analysis using Quantity
One 4.6.5 (Bio-Rad). FRS2 phosphorylation ratio is calculated by
the equation (p-FRS2a/FRS2a). In Figure 2F, FGFR2 expression,
and the phosphorylation status of FRS2, VEGFR2 and PDGFRb
were compared (‘normalised’) to b-actin of L3.6PL and expressed
as ratio.

RNA extraction and RT–PCR for FGFRs and subtypes. RNA
from pancreatic cells or tumours was extracted using TRIzol
reagent (Invitrogen) according to the manufacturers’ protocol.
cDNA was obtained from 5 mg of total RNA, using the SuperScript
III Reverse Transcriptase kit (Invitrogen) with oligos-dT primers.
Semi-quantitative PCR was performed as follows: 2 ml of 10�
Buffer (Roche, Indianapolis, IN, USA), 0.2 ml of Taq polymerase
(5 U ml� 1 Roche), 0.4 ml of 10 mM dNTP mix (Roche), 0.1 ml of
each primer (100 mM), 1 ml of cDNA, filled to a final volume of 20 ml
with sterile H2O. Thermal cycling reaction using an Icycler device
(Bio-Rad) was: 94 1C for 2 min; followed by 25–35 cycles of 95 1C
for 30 s, 60 1C for 30 s, 72 1C for 45 s for detection of FGFR2. The
amplified products were further extended by additional incubation
at 72 1C for 10 min. PCR products were then loaded on a 1%
agarose gel containing ethidium bromide. All quantitations were
normalised to GAPDH. FGFR2 and GAPDH primers were as
follows: FGFR1(IIIb) forward 50-ACCAGTCTGCGTGGCTCAC
T-30, reverse 50-TGCCGGCCTCTCTTCCA-30; FGFR1(IIIc) forward,
50-GGACTCTCCCATCACTCTGCAT-30, reverse 50-CCCCTGTG
CAATAGATGATGATC-30; FGFR2 forward, 50-TGACATTAACC
GTGTTCCTGAG-30, reverse 50-TGGCGAGTCCAAAGTCTGCTA
T-30; FGFR2(IIIb) forward, 50-GATAAATAGTTCCAATGCA
GAAGTGCT-30, reverse 50-TGCCCTATATAATTGGAGACCTTA
CA-30; FGFR2 (IIIc) forward, 50-GGATATCCTTTCACTCTG
CATGGT-30, reverse, 50-TGGAGTAAATGGCTATCTCCAGGTA
-30; GAPDH forward, 50-GAAGGCTGGGGCTCATTTG-30, reverse
50-AGGGGCCATCCACAG-TCTTC-30.
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Immunohistochemistry. Tumour tissue was fixed overnight in
10% neutral-buffered formalin at room temperature, transferred to
70% ethanol and processed for paraffin embedding using a Thermo
Electron Excelsior tissue processor (Pittsburgh, PA, USA). Paraffin
blocks were sectioned to 4 mm thickness and placed on positively
charged glass slides. Tissues were stained using a Discovery
automated slide machine (Ventana Medical Systems, Tucson, AZ,
USA). The primary antibodies used were Ki67 (1 : 750 dilution,
Novocastra Laboratories, Newcastle upon Tyne, UK), and CD34
(EK-MP.12, 1 : 100 dilution, Accurate Chemical & Scientific Corp,
Westbury, NY, USA). Secondary antibody was a goat anti-rabbit
F(ab0)2 biotinylated antibody, 1 : 100 dilution (Jackson Immuno-
Research, West Grove, PA, USA). Sections were counter-stained
with hematoxylin to enhance visualisation of tissue morphology.
General tissue morphology was evaluated using H&E staining. For
TUNEL assay, tissue samples were embedded in paraffin and cut
into 4-mm-thick consecutive sections. After deparaffinised in three
changes of xylene and rehydrated in descending concentrations of
ethanol, the sections were treated with 20 mg ml� 1 proteinase K at
37 1C for 15 min and then incubated with TDT buffer containing
12.5 mm biotinylated dUTP (Boehrinnger Mannheim, Mannheim,
Germany) and 0.15 units per ml TDT (Takara, Kyoto, Japan) at
37 1C for 70 min. After terminated in terminating buffer (300 mm
sodium chloride and 30 mm sodium citrate), the sections were
incubated in streptavidin–peroxidase complex for 30 min and then
developed with diaminobenzidine-tetra-hydrochloride for 1–5 min
as a substrate. A pathologist, blinded to the treatments applied,
analysed the staining semi-quantitatively and five representative
high power fields per slide were evaluated for each marker. The
proportion of tumour nuclei-stained positive were scored for Ki67
and TUNEL and expressed as percentage; and the number of
tumour microvessels was scored per high power field to determine
the microvessel density. The five representative high power fields
were then averaged to determine the score for the slide.

In vivo xenograft studies. The patient-derived primary pancreatic
tumours #12424 and #10978 were previously established and
maintained by the laboratory of Dr Elizabeth Repasky at Roswell
Park Cancer Institute (RPCI, Buffalo, NY, USA) (Hylander et al,
2005). These primary tumours were maintained in mice and have
never been passaged through cell lines. Tumours used here are
generated from third and fourth passage generation for #12424 and
#10978, respectively. Donor tumours were resected, minced into

small pieces, resuspended in PBS and implanted s.c. into the right
hind flanks of female immunodeficient nu/nu mice (6–8 weeks old,
18–22 g, Charles River Laboratories, Wilmington, MA, USA).
L3.6PL or Su8686 cells (5� 106) were injected s.c. into the flank of
SCID mice (RPCI). Tumours were monitored until they reached a
mean tumour volume of 100 or 250 mm3. Mice were assigned
randomly to different groups (five mice per treatment group)
before starting dovitinib dosing. Dovitinib was administered by
oral gavage once daily at 40 mg kg� 1. Tumour volume was
measured in two dimensions (length and width) twice weekly using
Ultra Cal-IV calipers and was analysed using studylog software
(Studylog Systems, San Francisco, CA, USA). Tumour volume
(mm3)¼ (length � width2)/2. Per cent tumour growth inhibition
(TGI) was determined as [1� (change in mean tumour volume
after 28 days of dovitinib treatment)/(change in mean tumour
volume after 28 days of vehicle treatment)]� 100. Mouse body
weights were also recorded twice weekly and the mice were
observed daily. Mice with tumour volumesX2,000 mm3 or with
losses in body weightX20% from their initial body weight were
promptly euthanised per Institutional Animal Care and Use
Committee guidelines. All animal studies using primary pancreatic
tumours and cell lines were approved by the Institutional Animal
Care and Use Committee of RPCI (Workman et al, 2010). The
oversight also included the handling of the human primary
pancreatic tumours.

Statistical analysis. The reported values represent the means±s.d.
for at least three independent experiments performed in triplicate.
The significance of differences between experimental variables was
determined using Student’s t-test.

RESULTS

Inhibition of FGFR signalling by FRS2a knockdown exerted
potent pro-apoptotic effects in pancreatic cancer cell lines.
FRS2a, a downstream adaptor protein for FGFR1–4, has a key role
in mediating FGF signalling. We evaluated the effects of FRS2
knockdown using shRNA in pancreatic cancer cell lines to
determine the dependency of cell viability on FGF signalling.
Compared with the empty vector counterpart, FRS2a expression
was mostly abrogated by shRNA1 or shRNA2 in L3.6PL, Panc4.30
and AsPC1 cells (Figure 1A). FRS2a-targeting shRNAs induced
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Figure 1. Inhibition of FGFR signalling by FRS2a knockdown exerted pro-apoptotic effects in pancreatic cancer cell lines, and was
mediated via Akt/Mcl-1 axis. (A) Effect of FRS2a-targeting shRNAs on FGFR downstream signalling pathways in L3.6PL, Panc4.30 and AsPC1.
Cells were infected with lentivirus-targeting shRNA1 (50-CCGTGATAGACATCGAGAGAA-30) or shRNA2 (50-CCGTGCAGAAGAATTATTT-30).
Knockdown of FRS2a was confirmed and downstream signalling molecules were detected by immunoblotting. shRNA1 had higher efficiency in
the knockdown. (B) The cell-killing effects of FRS2a-targeting shRNA1 and 2. The extent of cell death following infection with sh-FRS2a
(shRNA1) lentivirus or vector was determined by Trypan blue stain according to Materials and Methods. In each case, values represent the
means±s.d. for three experiments (*Po0.05, compared with negative control).
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marked decrease of phosphorylated AKT or ERK, with a decrease
in Mcl-1 and cleaved Bid expression. These changes were
accompanied by increased cell death compared with empty vector
counterparts (Figure 1B; Po0.05), suggesting the dependence of
L3.6PL, Panc4.30 and AsPC1 on FGFR signalling, and that the
AKT and ERK pathways may have a functional role in FRS2a
shRNA-induced cell death.

Dovitinib treatment exerted significant pro-apoptotic effect in
pancreatic cancer cell lines with heightened FGFR signalling
activation. We next evaluated the feasibility of targeting FGFR
signalling in pancreatic cancer using dovitinib, a potent pan-FGFR
small molecule inhibitor. Dovitinib is also a potent inhibitor of

PDGFRb and VEGFR2, though Dey et al (2010) previously
demonstrated that the major effects of dovitinib were primarily
related to FGFR blockade. The dose–response effect of dovitinib
was evaluated in a panel of six human pancreatic cancer cell lines
(L3.6PL, Panc4.30, AsPC1, Panc2.13, SU86.86 and Panc02.03).
In Figure 2A, pancreatic cancer cells were treated with increasing
concentrations of dovitinib (0–10 mM) for 3 days. Using 10 mM as a
cutoff, Panc2.13, SU86.86 and Panc02.03 were considered as
resistant (IC50 not identified), and L3.6PL, Panc4.30 and AsPC1
sensitive to dovitinib treatment (IC50o10 mM). The expression of
FGFR1–4 was determined in Figure 2B and were not significantly
different between dovitinib-sensitive and –resistant cell lines
(Supplementary Figure S1). We evaluated the status of apoptotic
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elevated p-FRS2/FRS2 ratio. (A) Dose–response of the in vitro anti-cancer effects of dovitinib in six pancreatic cancer cell lines. Pancreatic cancer
cells were exposed to 0–10mM dovitinib for 3 days. The extent of cell death was monitored by Trypan blue stain according to Materials and
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markers in Figure 2C and observed marked mitochondrial-
mediated apoptosis with cleavage of caspase 3 and PARP in
sensitive cell lines compared with resistant cell lines.

The expression of signalling proteins downstream to FGFRs of
sensitive cell lines were then compared with resistant cells to
elucidate the underlying mechanisms of dovitinib’s pro-apoptotic
effect. FGF2 stimulation following serum starvation, to eliminate
signal by other growth factors, was used to better characterise
dovitinib’s effect on FGFR signalling. Western blot analysis
validated the presence of FGFR2 and FRS2a in all cell lines tested
(Figure 2D). The expression of p-FRS2a (Y196), a docking site for
Grb2-Sos complexes, was decreased with dovitinib treatment in
both sensitive and resistant cell lines, indicating inhibition of
FGFRs by dovitinib. Decreased p-FRS2a expression by dovitinib
treatment was associated with marked decrease in the phosphory-
lation (activation) of AKT, GSK-3b and Erk in both sensitive and
resistant cell lines, suggesting that Akt and Erk signalling inhibition
were pharmacodynamics downstream effects by dovitinib but did
not predict anti-cancer effect.

The expression of Bcl-2 family members were analysed and no
major changes in expression of Bcl-2 and Bcl-xL proteins

were observed following treatment. Interestingly, Mcl-1 was
downregulated with dovitinib treatment in sensitive cell lines
but no significant changes in Mcl-1 level was observed in resistant
cell lines. In the sensitive but not resistant cell lines, dovitinib
treatment decreased Bid expression, a key BH3 domain-only
protein, with associated increase in cleaved Bid (tBid). No changes
were observed in other BH3 domain-only proteins (Bim, PUMA
and Bad, data not shown). This suggests that dovitinib treatment
induced Bid cleavage by caspase 8 to tBid, which translocated to
mitochondria and induced apoptosis via cytochrome c release.
Cyclin D1, a cell proliferation marker, was decreased more
significantly following dovitinib treatment in sensitive cells and
not the resistant cells.

To investigate whether the activity of FGFR, VEGFR2 and
PDGFRb signalling affect dovitinib’s pro-apoptotic effect, we
contrasted FGFR1–4 expression (Figure 2B), and phosphorylation
ratio of FRS2a (Figure 2D), VEGFR2 and PDGFRb (Figure 2E)
between untreated sensitive and resistant cells. There was
significantly elevated FGFR signalling activity in untreated
dovitinib-sensitive cells, as measured by higher FRS2 phosphoryla-
tion ratio, than resistant cells (P¼ 0.0079) but not that of VEGFR2
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and PDGFRb (Figure 2F); and, there was no correlation between
dovitinib sensitivity and FGFR1–4 expression (Supplementary
Figure S1).

AKT/Mcl-1 axis mediates dovitinib’s pro-apoptotic effect in
sensitive but not resistant cells. The PI3K/Akt and MAPK
pathways are key mediators of FGF signalling with the former
being a primary transmitter of anti-apoptotic signals in cancer
cells (Beenken and Mohammadi, 2009; Wesche et al, 2011).

To investigate whether Akt signalling had a functional role in
mediating dovitinib-induced apoptosis, sensitive cell lines were
stably transfected with a constitutively active AKT1 (CA-AKT1)
and two single clones for each were selected for analysis
(Figure 3A). Overexpression of CA-AKT1 dramatically increased
the expression of Mcl-1 and phosphorylated GSK-3b, indicating
the AKT-dependent regulation of Mcl-1. Notably, no cleaved Bid
was detected in CA-AKT1-treated sensitive cells. Compared with
empty vector counterparts, cell death after treatment with dovitinib
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was substantially reduced in CA-AKT1-treated cells (Po0.01 in
Figure 3B). We next investigated the role of Mcl-1 by performing
studies to overexpress and knockdown Mcl-1 in sensitive and
resistant cell lines, respectively. Compared with empty vector
counterparts, ectopic expression of Mcl-1 in sensitive cell lines
dramatically reduced cell deaths by dovitinib (Figure 3C; Po0.01).

Conversely, Mcl-1 abrogation using shRNA significantly increased
cell death in dovitinib-resistant cell lines (Figure 3D; Po0.05),
suggesting Mcl-1 had a functional role in mediating dovitnib’s
anti-cancer effect.

Taken together, these results indicate that, in sensitive cells, the
AKT/Mcl-1 is a key mediator of dovitinib’s pro-apoptotic effect.
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However, the signalling cascades linking Akt to Mcl-1 remained to
be elucidated. Previous studies indicated that GSK-3b, inactivated
by Akt, phosphorylates Mcl-1 on Serine 159, an event that
promoted Mcl-1 degradation (Maurer et al, 2006; Ding et al, 2007).
Here, overexpression of CA-AKT1 potentiated phosphorylated
GSK-3b (inactivation), supporting GSK-3b as an intermediate
regulator of Mcl-1.

Dovitinib’s anti-cancer effects correlated with FGFR2 IIIb
mRNA level in pancreatic cancer. Our in vitro studies in
Figure 2F showed that dovitinib’s pro-apoptotic effect was most
pronounced in pancreatic cells with heightened FGFR signalling as
indicated by increased FRS2 phosphorylation ratio. As we did not
detect significant difference in the expression level of FGFR1–4
between dovitinib-sensitive and -resistant cells, we investigated
their mRNA expression level and found a significantly higher
FGFR2 mRNA level in the sensitive cells (L3.6PL, Panc4.30 and
AsPC1) than the resistant (Panc2.13, SU8686 and Panc02.03)
(Figure 4A) but not FGFR1, 3, 4 (Supplementary Figure S2A).

The importance of FGFR1 and 2 in pancreas carcinogenesis had
previously been reported and the phenotype may be altered by the
variation in the splicing in the Ig-like domain III of the receptor
(IIIb and IIIc isoforms) (Nomura et al, 2008; Chen et al, 2010).
Relationship between dovitinib’s pro-apoptotic and expression
of IIIb and IIIc isoforms of FGFR1 and 2 was then investigated.
We observed significantly higher FGFR2 IIIb mRNA level in
dovitinib-sensitive pancreatic cells than resistant cells (Figure 4B)
but the same was not observed for FGFR2 IIIc and FGFR1 isoforms
(Supplementary Figure S2B).

Next, we investigated if the above in vitro observation could be
similarly observed in vivo, and SCID mice bearing tumours derived
from high (L3.6PL) and low (SU86.86) FGFR2 mRNA expressing
cell lines in SCID mice were treated with dovitinib (Figure 4C).
Significant tumour growth inhibition was observed in L3.6PL
following dovitinib treatment but not SU86.86, consistent with
observations from in vitro studies.

FGFR2 mRNA expression predicted for dovitinib efficacy in
patient-derived primary pancreatic cancer explant model. Based
on studies above, we hypothesised that dovitinib exerts significant
tumour growth inhibition in primary pancreas tumours with
a high FGFR2 mRNA level but not in low-expressing tumours.
A panel of 13 patient-derived primary pancreas cancer explants
was evaluated for FGFR2 mRNA expression by RT–PCR
(Figure 5A), and primary tumours #12424 (high FGFR2 mRNA
level) and #10978 (low FGFR2 mRNA level) were selected for
in vivo efficacy studies. Following 28 days of dovitinib treatment,
compared with control, significant tumour growth inhibition was
observed in #12424 (TGI 91.9%) and not in #10978 (TGI 15.8%)
(Figure 5B). There was no significant difference in body weights
and side effects between the vehicle and dovitinib-treated animals
at the dose evaluated (Supplementary Figure S3).

Representative tumours were harvested at the end of 28 days of
treatment and analysed for changes in the FGFR pathway
signalling proteins. The FGFR2 IIIb mRNA level was higher in
the untreated tumours of #12424 (dovitinib-sensitive) than the
resistant #10978 (Figure 5C). In the dovitinib-sensitive #12424,
dovitinib-treated tumour had decreased expression of p-FRS2a,
p-AKT, p-ERK and Mcl-1 than control (Figure 5D). The
expression of VEGFR2 and PDGFRb were not significantly
different following treatment. Hematoxylin and eosin staining
showed broad necrosis of core tumour tissue in dovitinib-treated
tumours (Figure 5E, arrow). The microvessel density, evaluated by
CD34, was significantly less in dovitinib-treated tumour (4.5±0.6)
than control (7.0±0.4, Po0.05). TUNEL expression was
significantly higher in the dovitinib-treated (50.0±3.2) than
control (0.4±0.2, Po0.0001), whereas the proliferative index
Ki67 was not significantly different between dovitinib-treated
(92±4) and control (84±9, P40.05).

DISCUSSION

The clinical development of molecularly targeted drugs had largely
failed in pancreatic cancer so far despite encouraging preclinical
rationales. The failure may be due to the highly heterogeneous
nature of the disease (Jones et al, 2008). FGF/FGFR signalling has
been implicated in pancreatic carcinogenesis and an understanding
of the susceptible molecular characteristics may facilitate the
development of FGFR inhibitors. A main aim of this report was to
determine whether FGFR signalling activity influenced the efficacy
of a potent FGFR inhibitor in pancreatic cancer. Using gene
manipulation techniques, we confirmed that FGFR signalling
inhibition by FRS2a gene knockdown did exert pro-apoptotic
effects in pancreatic cancer cell lines. We then showed that
treatment with dovitinib, a potent FGFR multikinase inhibitor,
achieved effects similar to FRS2a gene knockdown in two
complementary preclinical models derived from cell lines and
patient-derived primary tumour explants. The next aim was to
identify the molecular features associated with dovitinib efficacy.
In contrast to report of Taeger et al (2011) that focused primarily
on the pharmacodynamics effects of dovitinib , we evaluated
dovitinib in a panel of pancreas cancer cell lines and primary
tumour explants with varying degree of dovitinib sensitivity, and
showed that pancreatic cancers with heightened FGFR signalling
were predisposed to dovitinib’s anti-cancer effect. In addition, we
found that FGFR2 mRNA level, particularly FGFR2 IIIb isoform,
may be predictive of dovitinib sensitivity.

Dovitinib, in addition to FGFRs, also abrogates VEGFR2
and PDGFRb signalling in the low nanomolar concentration
range (Lee, 2005). Taeger et al (2011) showed that dovitinib’s
anti-cancer effects in pancreatic cancer were related to
co-inhibition of these kinases and the relative contribution of

Figure 5. FGFR2 mRNA expression level predicts for dovitinib sensitivity in patient-derived primary pancreatic cancer explant model.
(A) Expression levels of FGFR2 mRNA were determined in 13 patient-derived primary pancreatic tumours. Transcript levels were measured by
semi-quantitative RT–PCR analysis with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as control. The FGFR2 mRNA level was normalised
to GAPDH for each tumour and presented in the bar chart. (B) Primary pancreatic tumour #12424 (high FGFR2 mRNA level) and #10978 (low level)
were implanted s.c. into the right hind flanks of female immunodeficient nu/nu mice, and treated with vehicle (n¼5) or dovitinib (n¼ 5) orally once
daily at 40 mg kg� 1 when the tumours grew to pre-determined size. Tumour volume and mice weight were monitored twice weekly over the
course of the study. (C) mRNA level of FGFR2 IIIb and IIIc subtypes by RT–PCR in untreated #12424 and #10978 were normalised to GAPDH, and
presented in bar charts. (D) Lysates from #12424 tumours treated with 40 mg kg� 1 dovitinib or vehicle were subject to immunoblotting as
indicated. (E) Immunohistochemical staining of pancreatic tumours treated with dovitinib and vehicle. The harvested tumours from primary tumour
#12424 were processed and the slides were stained with antibodies to H&E (magnification, �100), CD34 (magnification, �100), Ki67
(magnification, �100) or TUNEL (magnification, � 200 in #12424 group and � 100 in SU86.86 group). Representative fields are shown. Arrow
indicates necrosis. The expression level of CD34, Ki67 and TUNEL of representative fields were scored by a pathologist blinded to treatment
applied, and presented in scatterplots.

FGFR inhibitor in pancreatic cancer BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2013.754 327

http://www.bjcancer.com


respective receptor signalling was difficult to determine. Dey et al
(2010) reported that, in breast cancer model, dovitinib’s
anti-cancer effects were mediated primarily by FGFR inhibition
and not VEGFR2 and PDGFRb. Here, we found that dovitinib’s
anti-cancer effects were related directly to elevated FGFR pathway
activation/phosphorylation status in untreated/control pancreatic
cancer cells but not to that of VEGFR2 and PDGFRb signalling.
Next, using FGFR2 mRNA expression level as a surrogate for
FGFR activity, we correctly identified one dovitinib-sensitive
and one -resistant tumour from a panel of 13 patient-derived
primary pancreatic cancer explants. Furthermore, dovitinib’s
efficacy seemed to be related to the expression level of FGFR2
IIIb isoform and not of FGFR2 IIIc. As such, evidence so far
seemed to suggest that FGFR pathway inhibition is more likely the
predominant contributor to dovitnib’s anti-cancer effects in
pancreatic cancer.

The intracellular kinase domain of FGFRs is structurally similar
to VEGFR2 and PDGFR. The extracellular domains II and III of
FGFRs constitute the binding site for FGF ligands (Wesche et al,
2011). Alternative splicing in domain III in FGFR1–3, not FGFR4,
creates isoforms (IIIb and IIIc) with varying binding affinity to
various FGF ligands (Katoh and Katoh, 2009). Physiologically,
FGFR IIIb and IIIc isoforms are differentially expressed in
epithelial and mesenchymal cell types, respectively, and are
regulated by distinct groups of FGF ligands. Altered splicing in
FGFRs switches ligand-binding affinity and can allow tumour cells
to be stimulated by a broader range of FGFs than under
physiological conditions, leading to aberrant paracrine signalling
loop (Brooks et al, 2012). In prostate cancer, gain in FGFR2 IIIc
and loss of FGFR2 IIIb expression was linked to progression from
androgen dependence to independence; and in rat bladder cancer,
gain in FGFR2 IIIc expression was associated with epithelial-
to-mesenchymal transition (Yan et al, 1993; Baum et al, 2008).
FGFR2 IIIc overexpression was linked to increased pancreatic
cancer cell proliferation and conferred stem cell-like phenotype,
and correlated with earlier liver recurrence in pancreatic cancer
patients following surgical resection (Ishiwata et al, 2012).

Our study is the first to report on the relationship between
FGFR2 IIIb expression and susceptibility to a potent FGFR
inhibitor. Dovitinib inhibits FGFR signalling by interrupting the
intracellular kinase activity and as such, splice variations in the
FGF ligand-binding domain III should not significantly affect
dovitinib’s effect on these isoforms. Moreover, dovitinib success-
fully abrogated the phosphorylation of FRS2 that is a downstream
signalling adaptor to FGFR1–4. The differential impact of dovitinib
is thus more likely due to preferential targeting of pancreatic
cancers overexpressing FGFR2 IIIb that are dependent on
paracrine regulation by mesenchymal-derived FGF ligands.
FGF7, FGF10 and FGF22 are subfamily of FGFs secreted by
mesenchymal cells such as fibroblasts, endothelial and inflamma-
tory cells that specifically bind to FGFR2 IIIb on epithelial cells to
regulate embryogenesis and adult tissue homoeostasis (Katoh,
2008). FGFR2 IIIb overexpression was linked to poorer prognosis
in pancreatic cancer patients and interactions between stromal-
derived FGF10 and FGFR2 IIIb enhanced pancreatic cancer cell
migration and invasion in in vitro studies (Nomura et al, 2008).
FGF7 overexpression had also been linked to pancreatic cancer
aggressiveness (Yi et al, 1994; Zang et al, 2009).

Interestingly, even though we observed a differential expression
of FGFR2 mRNA level between dovitinib-sensitive and -resistant
cells, the same was not true for FGFR2 protein by immunobloting.
However, it was clear that there was heightened FGFR signalling
indicated by increased FRS2 phosphorylation in the sensitive cells.
According to current understanding of receptor tyrosine kinase
physiology (Wesche et al, 2011), a potential explanation is that,
in sensitive cells, FGFR2 degradation and recycling was accelerated
following increased FGFR2 activation that led to a compensatory

increase in FGFR2 gene transcription to maintain a steady supply
of FGFR2 ready for ligand binding. The end result is thus no
significant difference in receptor expression between cells with and
without heighted FGFR2 signalling activity.

CONCLUSION

In summary, we showed that dovitinib’s anti-cancer effect in
pancreatic cancer correlated with the underlying FGFR signalling
activity, and the efficacy may be most pronounced in cancer cells
overexpressing FGFR2. We propose that FGFR2 IIIb overexpres-
sion enhances cancer cells’ ability to interact with and become
dependent on paracrine stimulation by mesenchymal-derived FGF
ligands. Such hypothesis will need further investigation and be
validated in other cancer types. We plan to investigate the
relevance of these potential predictive biomarkers in ongoing
pancreatic cancer clinical trials using dovitinib at our institution
(ClinicalTrials.gov ID NCT01497392).
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