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CA1 and CA3 differentially support spontaneous
retrieval of episodic contexts within human
hippocampal subfields
Halle R. Dimsdale-Zucker 1,2, Maureen Ritchey3, Arne D. Ekstrom1,2, Andrew P. Yonelinas1,2,4

& Charan Ranganath1,2

The hippocampus plays a critical role in spatial and episodic memory. Mechanistic models

predict that hippocampal subfields have computational specializations that differentially

support memory. However, there is little empirical evidence suggesting differences between

the subfields, particularly in humans. To clarify how hippocampal subfields support human

spatial and episodic memory, we developed a virtual reality paradigm where participants

passively navigated through houses (spatial contexts) across a series of videos (episodic

contexts). We then used multivariate analyses of high-resolution fMRI data to identify neural

representations of contextual information during recollection. Multi-voxel pattern similarity

analyses revealed that CA1 represented objects that shared an episodic context as more

similar than those from different episodic contexts. CA23DG showed the opposite pattern,

differentiating between objects encountered in the same episodic context. The

complementary characteristics of these subfields explain how we can parse our experiences

into cohesive episodes while retaining the specific details that support vivid recollection.
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Considerable evidence suggests that the hippocampus is
essential for episodic memory and that it plays a particular
role in binding information about items and the context in

which they were encountered1,2. Most mechanistic models sug-
gest that the hippocampal subfields play complementary roles in
spatial and/or episodic memory3–7. Although these models gen-
erally predict large differences between neural coding in CA1 and
CA3, between-subfield differences at the level of single units in
rodents and in overall activity in human fMRI studies have been
relatively modest. Indeed, both CA1 and CA3 have been impli-
cated in representations of temporal8,9 and spatial10,11 contextual
information. One suggestion12 is that the different computations
supported by CA3 and CA1 should be most apparent when one
analyzes the population-level activity patterns elicited by different
contexts—whereas CA3 should differentiate between specific
experiences in the same context and CA1 should globally dif-
ferentiate between different contexts.

One way to do this is with pattern similarity (PS) analyses. We
can think of PS analyses as capturing the activity across voxels
that act as spatiotemporal filters sampling from blood vessels,
which, in turn, respond to fluctuations in activity from large
populations of neurons13. Voxel PS analysis is analogous to
population vector analysis approaches used in single unit
recordings (e.g., ref. 14). If we assume that activity in each voxel
reflects the outcome of vascular sampling of neural responses
from large, distributed populations, then the voxel pattern is a
filtered, macro-scale analog of the neural population vector. Just
as different population vectors reflect changes in the relative firing
rates across different neurons across two conditions, different
voxel patterns may reflect changes in the underlying population-
level response across two conditions.

Here, we used high-resolution fMRI and multivariate analysis
methods to test how different hippocampal subfields contribute to
representations of spatial and episodic context. We designed a

virtual reality environment consisting of two houses (spatial
contexts; Fig. 1). After becoming familiarized with the spatial
layouts of each house, participants viewed a series of 20 videos
(episodic contexts) depicting first-person navigation through each
house while they encountered a series of objects. Each object was
studied only once and was uniquely placed in a single house
within a single video. Following this study phase, we scanned
participants while they performed an item recognition test that
required them to differentiate between studied and novel objects.
Although the items were displayed without any contextual
information, based on cognitive models of recognition memory
and models of human hippocampal function, we predicted that
recollection-based item recognition should trigger reactivation of
information about the context in which that item was encoun-
tered1,2. Accordingly, we tested whether multi-voxel patterns
elicited during item recognition carried information about the
associated spatial (house) or episodic (same house and video)
context.

Results
Behavioral results. Behavioral data are presented in Supple-
mentary Table 1. Recognition memory performance was indexed
by evaluating responses to new and old items in the object
recognition test completed during MRI scanning. Accuracy was
high for both hits (“remember” hit rate = 0.68 [SD = 0.17];
“familiar” hit rate = 0.25 [SD = 0.15]) and correct rejections (cor-
rect rejection rate = 0.90 [SD = 0.04]). False alarms were not
present for the majority of participants (N = 17 with no
“remember” false alarms; N = 3 with no “familiar” false alarms),
therefore we did not compute discriminability indices. Remember
rates varied by spatial context, t(22) = 3.33, p = 0.003, d = 0.21,
such that recognition was slightly lower for items that had been
studied in the gray house.

Encoding

Object recognition (fMRI)

Representational similarity analysis (RSA)

Same video
Same house

Different video
Same house

×10 objects

Different video
Different house

×20 videos

×10 objects

Fig. 1 Experimental approach. Participants encoded objects uniquely located within one of two spatial locations (spatial contexts) across a series of 20
videos (episodic contexts). Next, they were scanned while performing an object recognition test which required differentiating old and new objects
presented without any contextual information. We used representational similarity analyses (RSA) to examine the similarity of voxel patterns elicited by
each recollected object relative to other recollected objects that were studied in the same (or different) spatial and episodic context. This figure is not
included under the Creative Commons licence for the article; all rights reserved
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Because participants’ responses in the scanner were based
on subjective measures of recollection, we directly assessed
memory for the spatial context associated with each item in
a test administered immediately after MRI scanning. Overall,
spatial context memory was high (mean spatial context memory
hit rate = 0.71 [SD = 0.11]; Supplementary Table 1), and did
not reliably vary between the two spatial contexts, t(22) = 1.06,
p = 0.30, d = 0.19. Consistent with the idea that item recollection
involves activation of associated information, memory for
spatial context was higher for items endorsed as remembered
than for those endorsed as familiar, F(1, 22) = 74.72, p< 0.001,
ηp

2 = 0.51.

fMRI results. Many standard-resolution and high-resolution
fMRI studies have reported enhanced hippocampal activity dur-
ing successful recollection and/or retrieval of spatial source
information (for a review, see ref. 15). Consistent with these prior
studies, whole-brain voxel-wise comparisons revealed increased
activity in the left hippocampus during recollection hit trials as
compared to activity during familiarity hit trials and misses (FWE
corrected p< 0.05; Supplementary Fig. 2a, Supplementary
Table 2). Estimated hemodynamic response functions for each
subfield for this contrast as well as univariate estimates of subfield
activity for each spatial context can be found in Supplementary
Figs. 3 and 4, respectively. Outside of the hippocampus, activation
in medial prefrontal cortex and other regions in the “core recol-
lection network”16 was increased during recollection trials as
compared to familiar hits and misses (Supplementary Fig. 2B).
These results suggest a general role for the hippocampus in item
recollection in addition to the differential roles the subfields play
to support memory for contextual information.

Having established hippocampal recruitment for item recollec-
tion, we proceeded to investigate whether hippocampal activity

patterns carried information related to spontaneous retrieval of
spatial and episodic contexts for these recollected trials.

As shown in Fig. 1, we estimated single-trial multi-voxel
patterns within regions of interest (ROIs) corresponding to CA1
and a combined CA2/CA3/dentate gyrus (CA23DG) subregion
within the body of hippocampus. Distributions of single-trial
activity estimates are included in Supplementary Figure 6 and
representative PS values are shown in Supplementary Figure 7.
Specifically, we computed voxel PS between trial pairs for
recollected items that shared the same episodic context (i.e.,
same video/same house), shared the same spatial context but with
different episodic contexts (different video/same house), or were
associated with different episodic and spatial contexts (different
video/different house). To maximize the likelihood of identifying
trials that were associated with successful context retrieval, we
restricted analyses to trials that were associated with correct
recollection-based item recognition and correct identification of
spatial context (house) in the post-scan context memory test.

To test whether regions carried information about an item’s
encoding context (spatial/house, episodic/house and video), we
fitted a mixed model with a random effect of subject17 testing for
effects of ROI (CA1, CA23DG), context similarity (same episodic,
same spatial, different context), and hemisphere (left, right), as
well as their interactions on PS values. There was a significant
ROI × context similarity × hemisphere interaction (χ2(2) = 13.30,
p = 0.001). Follow up analyses revealed that this was driven
by a reliable interaction between ROI and context similarity in left
(χ2(2) = 15.64, p< .001) but not right (χ2(2) = 1.65, p = 0.44; see
Supplementary Figure 5). To further break down this interaction,
we conducted separate analyses restricted to left hemisphere in
our ROIs to assess representation of context similarity.

To investigate whether regions carried information about an
item’s spatial encoding context (house), we compared PS values
for items that had been studied in the same house or different
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Fig. 2 Pattern similarity in CA1 and CA23DG is sensitive to episodic context. Pattern similarity was higher in left CA1 for items studied in the same video
(Same Video Same House) than for items in different videos (Different Video Same House). Left CA23DG showed a reversal of this pattern such that
pattern similarity was higher for items studied between videos vs. within the same video. Neither CA1 nor CA23DG patterns were sensitive to spatial
context similarity alone
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house. In the same house condition, we eliminated trial pairs that
had been studied within the same video to ensure that any
observed effects could uniquely be attributed to spatial context
similarity and not episodic context similarity. Based on traditional
models3,18, we expected to see greater PS for same-house as
compared to different-house pairs in CA23DG but not in CA1.
As can be seen in Fig. 2, neither CA23DG (χ2(1) = 0.08, p = 0.78)
nor CA1 (χ2(1) = 0.03, p = 0.86) systematically differed in their
representation based on an item’s spatial context. These results
indicate that neither CA1 nor CA23DG were differentially
sensitive to spatial context similarity alone.

To investigate whether activity patterns in hippocampal
subfields carried information about episodic context, we com-
pared PS values between pairs of trials that were studied in the
same video (which necessarily meant that that the items had also
been studied in the same spatial context) against PS values for
pairs of trials that were studied in different videos that depicted
the same spatial context. Some models3,12 predict that
CA1 should treat items from the same episodic context as more
similar to one another than CA23DG. Indeed, in CA1,
activity patterns were more similar across pairs of items from
the same episodic context than across pairs from different videos
(χ2(1) = 6.50, p = 0.01). Intriguingly, CA23DG showed the reverse
pattern; that is, PS was significantly lower for items in the same
video than for items in different videos (χ2(1) = 10, p = 0.002). We
observed a significant interaction, (χ2(1) = 15.45, p< 0.001; Fig. 2),
indicating that the PS profiles of CA1 and CA23DG were
qualitatively different for episodic context similarity.

A control analysis was performed to ensure that our results
could not merely be explained by the number of trials in each
condition since the same video/same house condition necessarily
had the smallest number of trial pairs contributing to the PS
analysis. To do this, we took the condition with the fewest number
of trial pairs on a subject-by-subject basis and randomly selected a
matching number of trial pairs from all other conditions. For
example, if a participant had 152 trial pairs in the same-video/
same-house condition, we randomly selected 152 trial pairs for all
other conditions by generating a random sequence of numbers of
length 152 and then using this random sequence to index trial
pairs for selection in the mixed modeling of PS. We repeated
this simulation 1000 times and looked to see whether our observed
χ2 values for the critical interaction of ROI × context similarity ×
hemisphere interaction were significant at a threshold of p< 0.05
(Supplementary Figure 9). Across nearly all of these random
samples of trials, the effect was statistically significant.

We next investigated whether the effects of episodic context on
PS were driven by just a few influential voxels. To better
characterize the nature of the observed patterns, we repeated
our analyses dropping five influential voxels in three different
ways. First, we identified voxels that consistently had the largest
absolute magnitude of response across all trials. These voxels
could drive the PS result by increasing the magnitude of the
observed correlations. Second, we identified voxels that had
the largest standard deviation in their response across all trials.
These voxels could contribute to PS differences due to their
variability, thereby driving the observed between-condition
differences. Third, we identified voxels that had the largest mean
squared differences between trial pairs in the same video/same
house and different video/same house conditions. We defined
voxel variability relative to these two conditions since we
observed a significant difference in the ROIs only in the episodic
context condition. These voxels could lead to inflated PS and
the observed between-condition differences due to systematic
variability between the contexts. Across all three approaches,
dropping influential voxels did not change the observed pattern
of results.

An additional control analysis was performed to ensure that
differences in PS on the basis of context similarity did not simply
reflect differences in reaction times between conditions19. As
suggested by Todd et al.19, we re-modeled our data including a
random effect of the reaction time difference in trial pairs that
went into the PS analyses. Results remained unchanged after
removing the effect of reaction time differences for all
comparisons of interest (Supplementary Figure 10).

To show the specificity of these effects to CA1 and CA23DG,
we repeated our PS analyses using entorhinal cortex and
subiculum instead (Supplementary Figure 8). These regions are in
the hippocampal formation, but not considered to be subfields of
the hippocampus proper. For episodic context similarity,
neither entorhinal cortex (left: (χ2(1) = 0.09, p = 0.77; right:
(χ2(1) = 0.51, p = 0.47) nor subiculum (left: (χ2(1) = 0.15,
p = 0.70; right: (χ2(1) = 3.75, p = 0.053) differed in their
representation based on an object’s episodic context. For spatial
context similarity, neither entorhinal cortex (left: (χ2(1) = 0.64,
p = 0.42; right: (χ2(1) = 1.79, p = 0.18) nor subiculum
(left: (χ2(1) = 0.15, p = 0.70; right: (χ2(1) = 0.08, p = 0.77) were
differentially sensitive to spatial context alone.

Discussion
Our results reveal striking differences in retrieval of contextual
information across the hippocampal subfields and provide a rare
statistical dissociation between CA1 and CA23DG. In CA1,
activity patterns were more similar across trials that involved
recollection of the same episodic context (same video) than across
trials that involved retrieval of different episodic contexts
(different videos); in CA23DG, PS was lower between trials that
were associated with the same episodic context than between
trials that were associated with different episodic contexts. These
results are consistent with the idea that CA1 represents global
contextual regularities across items (“pattern completion”),
whereas CA23DG exaggerates differences between items that
have competing associations within the same episodic context
(“pattern separation”). Together, CA1 and CA23DG can play
complementary roles in supporting episodic memory by allowing
one to remember specific items, as well as their relationships,
within a shared context.

Differences between the subfields are a prominent component
of models of subfield function3,12, which, in turn, are based on
anatomical differences in the inputs, connections, and firing
properties of the subfields20. Studies in rodents have reported
differences between spatial coding in CA1 and CA3 following
changes in the environment21,22, when learning spatial tasks such
as the watermaze23, in distinguishing non-spatial sequences24,
and in contextual fear conditioning paradigms25. However, we
are not aware of any prior findings in humans that have reported
dissociations between the roles of CA1 and CA23DG during
spontaneous retrieval of contextual information.

One previous human fMRI study reported a statistical dis-
sociation between CA1 and CA23DG as participants monitored
the spatial layouts of cities that varied in similarity26. Stokes et al.
found that CA23DG represented cities with the same layout as
more similar than cities with different layouts whereas CA1 was
not sensitive to the change in layouts26. One critical difference
between their study and ours is that Stokes et al.26 directly
assessed memory for spatial layouts, whereas we assessed inci-
dental retrieval of contextual information during item recogni-
tion. Our results challenge traditional notions that CA3 is
particularly sensitive to changes in spatial contexts12,26 in that PS
values were not sensitive to spatial context information alone. The
findings indicate that, although space may be important in
defining an episodic context, spatial context alone does not
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account for differences between representations in CA1 and
CA23DG during memory retrieval.

The present results converge with other findings10 showing
that, when spatial information alone is insufficient to resolve
context, spatial information does not drive representations within
CA3. Our findings also accord with Leutgeb and Leutgeb’s12

proposal that CA3 can differentiate between different sensory
cues that are encountered in the same place.

Our findings dovetail with extant evidence that CA1 plays a
critical role in representing time8,27–29, in representing sequences
of ordered information24,30–36, and in using this temporal
information to define episodes37–39 under demands that mimic a
realistic, real-world episodic context. Additionally, our findings
support the idea that CA1 is critical for distinguishing similar
episodic contexts3, given that we saw greater PS in CA1 for items
within the same video as compared with those that occurred
between videos.

The fact that CA23DG showed lower neural similarity for
items encountered during the same video, as compared to items
encountered during different videos, seems at odds with theories
proposing a critical role for CA23DG in episodic memory
retrieval3. Examined more closely, however, the results align with
recent findings indicating that the hippocampus differentiates
between related information in an episode40–43. For instance,
building on the theory of Marr18, it has been argued that dentate
gyrus and CA3 work together to distinguish related information
(i.e., “pattern separation”; for a review see ref. 44). Our finding that
CA23DG is more likely to individuate objects within a video—
resulting in lower neural similarity—is consistent with the idea
that CA3 generally pushes apart representations of similar items
(see also refs. 45–47 for related findings).

Another possibility is that the coding scheme of CA23DG may
be flexible based on the elements that have priority in the task4. In
some tasks, such as those involving spatial navigation, distin-
guishing between competing spatial representations may be
essential to correct navigation and subsequent memory perfor-
mance46, and, thus, CA23DG may be pushed toward orthogo-
nalization. Successful performance on our task requires one to
differentiate between representations of items encountered in the
same video that share a spatial environment. However, if we
could construct a task in which there were lower demands to
orthogonalize item-specific features, we might expect CA23DG to
show a representational scheme more consistent with pattern
completion. That is, we would expect CA23DG to show increased
similarity for items in the same context relative to items
encountered in different contexts.

In one recent demonstration of the flexibility of coding
schemes in CA23DG, Aly et al.48 asked participants to deploy
attention either to objects within a context (pieces of art) or to the
context itself (the layout of the room). Critically, stimuli were
identical between the conditions but participants’ attentional state
varied based on the task demands. They found that CA23DG, but
not CA1, showed a greater match in its profile of activity to the
task-relevant attention state. This task-driven modulation
of activity was related to increased subsequent memory for
incidentally encoded information48. In a related study, they
replicated the finding that attention state-specific patterns of
activity in CA23DG were uniquely related to subsequent memory
for the studied items49. Such findings indicate that the coding
scheme in CA23DG can change according to task demands, and
this can have consequences for later memory performance.

Both temporal and spatial details are key defining features of
episodic memories50, but, until now, it was not clear how these
spatiotemporal contexts are represented by the hippocampus
during retrieval. CA1 and CA23DG exhibited activity patterns
that were sensitive to retrieved episodic context information in

the absence of memory differences for the objects themselves. The
complementary characteristics of these subfields explain how we
can parse our experiences into cohesive episodes while retaining
the specific details that support vivid recollection7,51–53.

Methods
Participants. Twenty-eight participants took part in the study. Of these, one failed
to complete their MRI session due to technical malfunctions with the scanner. An
additional four subjects were excluded due to not having at least two usable runs of
fMRI data (either due to excessive motion, N = 2, exiting the MRI scanner between
runs, N = 1, or low behavioral performance resulting in correctly recollected trials
only in a single run, N = 1). Analyses presented are from the remaining twenty-
three participants (Nfemale = 11, mean age = 19.5 years). The study was approved by
the Institutional Review Board of the University of California, Davis, and all
participants provided written informed consent at the time of the study.

Stimuli and materials. Study materials included two virtual homes created in
Google SketchUp (https://www.sketchup.com/, version 15.3.329). Homes were
matched for total virtual square area and subdivided into two rooms. Each house
contained ten pieces of landmark furniture that shared semantic labels (e.g.,
“couch”) but differed in appearance (e.g., angular gray couch vs. plush green couch)
between the two homes. Exterior color, wall color, room orientation, and
decoration style also differed between houses (Supplementary Fig. 1).

Three-hundred neutral objects (e.g., football helmet, suitcase, teddy bear,
vase, and phone booth) were selected from the Google SketchUp image library.
Two-hundred and forty of these objects were randomly selected and positioned
within the homes in sets of ten objects. Object assignment to homes was random
and was house- and video-unique so that 12 lists of objects were assigned to each
home. To determine object placement, rooms were divided into eighths, all possible
combinations of five positions were generated, and objects were randomly assigned
to one of these combinations. Thus, object configurations within each room
(and thus within each house) were video-unique.

Videos depicting trajectories through the houses were generated using Google
SketchUp’s animation feature. Videos were exported for each house both with
landmark furniture only and for each of the 12 videos with objects within each
home. Trajectories did not change between videos within a home. Each video was
~1 min 40 s in duration.

Procedure. After providing informed consent, participants practiced the four
phases of the task using an example video recorded in the experimenter’s (HDZ’s)
house. Phase one consisted of context familiarization, phase two object encoding,
phase three object recognition (scanned), and phase four location recognition.

In the context familiarization phase, participants passively viewed videos of the
two homes with landmark furniture but devoid of any other objects. Androgynous
names (“Alex”, “Jamie”) were randomly assigned to each house and a label with the
owner’s name appeared above the video for all presentations (e.g., “Jamie’s House”).
After watching the video tours of both Alex and Jamie’s houses twice, participants
were presented with a blank map that included rectangles where the houses were
located and the street between the houses but no other contextual details. Maps
were generated for the purposes of strengthening participants’ representations of
the houses (spatial contexts). Participants were given up to 10 min to draw maps of
each house including the location of doors, walls, furniture, and the owner’s name
associated with each house to ensure thorough knowledge of the spatial layouts.
Before progressing to the object encoding phase, the experimenter reviewed the
accuracy of their maps using a transparency overlay and corrected any mistakes.

Following context familiarization, participants progressed to the object
encoding phase. During this phase, participants viewed a series of 20 videos. Each
video depicted passive navigation through one of the two homes, with ten different
objects placed along the trajectory. At the end of each video, a still frame of each of
the ten objects in situ in the house appeared one at a time in random order for 4 s
while the participant judged whether the object was worth more than $50 (yes/no).
Responses were recorded via keypress but were not analyzed. After making this
value judgment, the still frame of the object was replaced by a birds-eye-view
perspective map of the house where each room was divided into quadrants with
numeric labels. Participants indicated the quadrant number where the object had
been located during the video via keypress (1–8). Again, responses were recorded
but not analyzed as the purpose of these encoding judgments was to solidify
participants’ memory both for object identities and their locations. In total,
participants saw ten videos in each house presented such that the order of the
houses alternated across even and odd videos (e.g., house1/video1, house2/video2,
house1/video3, house2/video4, etc.). The ten videos were randomly selected from
the pool of 12 videos in each house and the order of video presentation was
uniquely randomized for each participant. This phase took roughly 1 h to complete.

The object recognition test phase took place across four runs in the MRI
scanner following acquisition of structural scans. Sixty-three still images were
presented in each run for 3 s with a jittered inter-trial interval ranging from 2 to 8 s.
All 200 studied objects were presented with an additional 52 new, unstudied
objects. New objects were randomly selected from a pool of objects that were not
presented in either house. While the image was on the screen, participants made
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recognition judgments (“remember”, “feels familiar”, “new”) via an MRI-compatible
button box. Participants were instructed to make a “remember” response when they
could bring to mind a specific detail from when they had studied the object, “feels
familiar” if they thought they had studied the object but were unable to retrieve a
specific detail, and “new” for objects that they did not think they had studied during
object encoding. Critically, no house or video information was re-presented to
participants in these object images. Following four runs of the object recognition
task, participants additionally completed a spatial localizer task in which they saw
short videos (15 s) and still frames from both houses with landmark furniture but
no objects. The results of this scan will not be discussed further here.

During the final phase of the experiment, participants were brought back to
the lab to complete a spatial context memory test. In this phase, participants were
re-presented with the 200 studied objects, and they were asked to recall where
(house and room) each object had been studied (Alex room 1, Alex room 2, Jamie
room 1, Jamie room 2; names were presented in the same orientation as the
houses). Images remained on the screen for 3 s while participants made their
response. Data from this phase were used to ensure that item memory did not
differ as a function of spatial context.

fMRI acquisition and pre-processing. Scans were acquired on a Siemens Skyra
3T scanner with a 32 channel head coil. Two sets of structural images were
acquired to enable subfield segmentation: A T1-weighted magnetization prepared
rapid acquisition gradient echo (MP-RAGE) pulse sequence image (1 mm3 iso-
tropic voxels) and a high-resolution T2-weighted image (TR = 4200 ms; TE = 93
ms; field of view = 200 mm2; flip angle = 139°; bandwidth = 199 Hz/pixel; voxel size
= 0.4 × 0.4 × 1.9 mm; 58 coronal slices acquired perpendicular to the long-axis of
the hippocampus). High-resolution functional (T2*) images were acquired
using a multiband gradient echo planar (EPI) imaging sequence (TR = 2010 ms;
TE = 25 ms; field of view = 216 mm; image matrix = 144 × 152; flip angle = 79°;
bandwidth = 1240 Hx/pixel; partial phase Fourier = 6/8; parallel imaging =
GRAPPA acceleration factor 2 with 36 reference lines; multiband factor = 2;
52 oblique axial slices acquired parallel to the long-axis of the hippocampus slices;
voxel size = 1.5 mm3 isotropic).

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used for image pre-processing.
Functional EPI images were realigned to the first image and resliced. No slice
timing correction was performed due to the acquisition of multiple simultaneous
slices with the multiband sequence. Co-registration between the native-space ROIs
defined in T2 space and the functional images was done with SPM’s Coregister:
Estimate and Reslice procedure. This procedure uses the normalized mutual
information cost function between a reference (mean functional) image and source
(T2) image to compute and apply a voxel-by-voxel affine transformation matrix.
This transformation matrix was then applied to the subfield ROIs that had been
defined in T2 space (see 'ROI segmentation') to bring them into register with the
functional images (Supplementary Figure 11). The T1 image was co-registered to
the mean EPI. Then, nonlinear spatial normalization parameters were derived by
segmenting the coregistered T1 image. For the voxel-wise univariate analyses, these
normalization parameters were applied to the contrast images to bring all images
into MNI space before group analysis. Contrast images were additionally smoothed
with a 3 mm FWHM Gaussian kernel. Quality assurance (QA) included identifying
suspect timepoints via custom code (https://github.com/memobc/memolab-fmri-
qa) defined as time-points in excess of 0.5 mm frame displacement (based on54 or
1.5% global mean signal change (based on ARTRepair recommendations55). Runs
were excluded if the frame displacement exceeded the voxel size. Two participants
were excluded for motion in excess of these thresholds and one run was excluded
from another participant based on these criteria.

ROI segmentation. Hippocampal subfield ROIs were segmented using the ASHS
toolbox56 with the UPenn atlas. Segmented ROIs were co-registered to the mean
functional image and split into masks for each ROI of interest. We took a con-
servative segmentation approach in which we combined subfields DG, CA3, and
CA2 into a combined region based on prior high-resolution fMRI work26,57,58

despite ASHS segmentations for each subfield. Head, body, and tail were manually
defined but subfield comparisons were limited to the body where boundaries
between CA1 and CA23DG can be most clearly and reliably delineated59.
Disappearance of the gyrus intralimbicus was used as the head/body boundary70

and presence of the wing of the ambient cistern demarcated body/tail61.

Data analysis. ROI summary statistics, including PS analyses, were computed
using custom code implemented in MATLAB r2014b (www.mathworks.com) and
R version 3.3.2 (http://www.R-project.org). Statistical comparisons were conducted
in R including linear mixed models implemented with lme462. Our mixed models
included fixed effects of condition, ROI, and hemisphere as well as a random
subject intercept. P-values were obtained by comparing a full model with the
effect of interest against a reduced model without this effect and quantified with
Chi-squared likelihood ratio tests17,60,63–65. Cohen’s d effect sizes for within-
subject paired samples t-tests were computed correcting for correlation between
means as suggested by Dunlap et al.66.

Univariate fMRI analyses. Six conditions of interest (remember and familiar hits
split by house, correct rejections, false alarms) were modeled with event-related
stick function regressors. Six motion parameters and additional spike regressors as
identified by our QA scripts were also included in the model. Trials of no interest
(e.g., where no response was made) were included as a nuisance regressor.
“Recollection” trials were defined as trials on which a subject correctly endorsed
remembering an item that had been presented during encoding. “Familiarity” trials
were defined as trials on which a subject correctly endorsed having seen an item
but did not endorse being able to remember any specific details about its initial
presentation67. Because there were not enough familiarity trials to analyze this
condition separately, comparisons of interest combined familiar hits with miss
trials.

Contrast maps for recollection-related activity were computed by comparing
the activation difference for recollection hit trials as compared to the combined
activity for familiarity hit trials and misses. T-maps were cluster corrected at
FWE < 0.05 using a combined voxel-wise threshold (p< 0.001) and cluster extent
(k = 88).

PS analyses. PS analyses13 were conducted on beta maps generated from
unsmoothed data in native subject space. Following the procedure described by
Mumford68,69, single trial models were generated to estimate the unique beta map
for every trial in a run (N = 63). Within each single trial model, the first regressor
modeled the trial of interest with a stick function, the second regressor modeled all
other trials in that run, six regressors were used to capture motion, and any
additional spike regressors as identified by our QA scripts were used to capture
additional residual variance. Following beta estimation, outlier values were iden-
tified by setting a z-scored beta threshold of 0.7–0.85 based on visual inspection of
the distribution of z-scored beta values for all subjects. This resulted in an average
of 9.87% (mean = 6.22 trials, SD = 7.10 trials) excluded beta values per run for each
participant.

Voxel-wise patterns of hemodynamic activity were separately extracted for each
ROI from the single trial beta images. Within each ROI, correlations (Pearson’s r)
were computed between these trial-wise betas to yield a trial-by-trial correlation
matrix that related each voxel’s signal on a trial to all other trials across all runs. We
restricted comparisons to those trials for which participants made a correct
“remember” response (during MRI scanning) and correctly identified an item’s
spatial (house) context (post-MRI spatial source task). Statistical analyses tested for
differences in correlations between trial pairs on the basis of encoding context
(same vs. different house, same vs. different video within a house). Only between-
run correlations were used to maximize the number of possible trial pairs without
mixing within- and between-run correlations. Trial pairs of interest were extracted
from these trial-by-trial correlation matrices. For all conditions, we restricted our
trial pairs to those where participants made both a correct remember response as
well as a correct house source memory judgment.

Data availability. Minimally processed data needed to regenerate analyses and
figures can be found online (https://osf.io/5th8r/) as well as relevant analysis code
(https://github.com/hallez/abcdcon_pub). All other data that support the findings
of this study are available from the corresponding author upon reasonable request.
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