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Abstract

The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing
methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions,
or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the
analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model
consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary
visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model
allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition
to processing opaque motion. We suggest that motion transparency helps to identify ‘‘danger zones’’ in motion crowds. For
instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also
for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis
suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions
that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a
precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single
point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in
videos are important features to describe the behavioral state of a motion crowd.
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Introduction

Due to the increasing urbanization, motion crowds become

more likely and solutions to prevent accidents or potential hazards

as a result of mass panics become more important. Designers of

public spaces and intelligent environments begin to consider

crowd-dynamics and crowd-environment interactions in everyday

situations as well as in exceptional situations such as mass panic

[1], [2]. Most public spaces are not equipped with an intelligent

crowd management system or automated surveillance system, as

suggested in [3], [4].

Research on motion crowds is interdisciplinary. Observing,

analyzing, and interpreting data includes the social science, the

computer science, and the neuroscience. It involves computer

vision to analyze captured video, to characterize, and to formalize

patterns of crowd dynamics. Developed metrics (level of service)

for crowd dynamics have been described as free, restricted, dense,

and jammed people flow [5], [6]. Measures determined during

automatic analysis include crowd density, location, and speed;

both for individuals and groups of people, as well as estimates of

pressure for groups of people. Descriptive models for pedestrian

flows are developed on the basis of gas kinetics or fluid dynamics

[7], [8]. Research in cognitive science and neuroscience can help

to develop assistive tools or an automated analysis of crowd

behavior that supports the detection of dangerous behavior. Our

goal is to provide a first module of such a system that can process

visual motion and extract motion features, including the case of

motion transparency as generated by certain crowd dynamics.

Motion transparency is perceived within image regions which

contain motion signals in one direction and motion signals in

sufficiently distinct direction. As such, motion transparency

involves materials that are transparent and the surfaces made of

such materials move differently. Likewise, such a percept could be

generated through compositions of multiple small opaque parts in

the visual field which move differently but coherently in front of a

coherently moving background [9], [10]. In our analysis, the

notion of motion transparency applies to situations in which the

motion signals are generated under limited spatial resolution

properties of the sensory acquisition and cortical processing. For

instance, motion transparency appears when pedestrians move in

different directions within the spatial integration region of a model

cell [11].
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In our model we use mechanisms that are inspired by the

structure and function of the visual system of the mammalian

brain. For example, in the primary visual cortex area (V1), simple

cells are selective to the light-dark and dark-light polarity of gray-

value edges while complex cells are sensitive to oriented edges,

independent of their local gray-value polarity [12]. Such contrast

edges can be detected by employing local, oriented filters.

Examples are Gabor filters [13], which are defined by spatial

frequencies, size, orientation, and temporal frequency. They

closely resemble properties of contrast sensitive cells in V1.

Applying such Gabor filters to videos provides features that are

used to establish spatio-temporal correspondences between suc-

ceeding frames and, thus, provides initial motion estimates. These

initial estimates are further processed in the hierarchy of areas in

visual cortex. The middle temporal area (MT) has been described

as a major stage for the integration and segregation of visual

motion [14]. Our model integrates initial motions in the image

plane within a spatial neighborhood for each velocity. Cells in the

dorsal part of the medial superior temporal area (MSTd) are

selective to large field motion patterns [15], [16], [17]. Our model

area MSTd employs different cell types to detect flow patterns of

expansion (EXP), contraction (CON), clockwise (CW), and

counterclockwise (CCW) rotation as well as linear combinations

thereof which result in patterns of spiral motion. Areas MT and

MST contain cells that are selective to spatial velocity gradients in

visual motion fields [18], [19], [20]. In our model we adopt cells

selective to velocity gradients to link their responses to a crowd

behavior of slow down which is a precursor for potentially

dangerous situations that often develop later in crowds undergoing

further periods of congestion and turbulence [2], [6]. Evidences

from neurophysiology about the selectivity of cells to optic flow

motivated us to develop a model of visual motion processing to

achieve a bio-inspired visual, motion-based characterization of

danger in motion crowds. Key stages of our model have been

developed in the context of figure-ground segregation [21] and the

neural representation and processing of motion transparency and

binocular transparency [22], [23]. Here, we demonstrate the

processing of videos by our model, where these videos show non-

dangerous and dangerous crowd behavior.

But how does motion transparency relate to dangerous crowd

behavior? Various proposals stress the difficulty of tracking or

disentangling individuals in densely packed motion crowds, as they

occur in routinely acquired videos, e.g., in subway stations, train

stations, in front of counters, at entry and exit locations of public

buildings (e.g., [24], [25], [26], [27]). For a low video resolution

and a passive camera at high elevation (no zoom, pitch, yaw, nor

roll), which is the image acquisition scenario we typically rely on,

persons only occupy a few pixels in the image plane. In addition,

partial occlusions of persons might occur due to an oblique

viewpoint. The small size of a person in the image and the partial

occlusion make it difficult to track single persons with their

individual movement. Only a large enough spatial resolution

allows for the segmentation of items and their motions [6]. Here,

we suggest a biologically inspired approach of motion processing

that does not require a high spatial resolution. Rather than trying

to recover trajectories of single persons, we characterize motions of

a larger group of people as they appear as a pattern. Some of these

larger patterns contain multiple motions. We define the presence

of multiple motions as motion transparency. Such appearance of

motion transparency relates in some cases to dangerous crowd

behavior.

In our model estimated motions from a group of people are

represented by a distribution. This distribution is bimodal in case

of motion transparency. To represent bimodal distributions, we

use a velocity space that encodes the likelihood of each velocity

vector. For instance, a rightward motion of one pixel speed per

frame is represented in polar space with the radial component

encoding speed and the angular component encoding direction. In

this example, the velocity is represented by a Gaussian likelihood

centered at zero degree direction and one pixel speed per frame.

In this velocity space, we apply a competitive interaction with a

positive center Gaussian kernel and negative surround Gaussian

kernel to improve the signal-to-noise ratio of encoded motions.

Most importantly, this interaction supports multimodal distribu-

tions in the velocity space given that multiple motions occur in the

video. The spread of the Gaussian in the velocity space is

parameterized by the standard deviations along the speed and

direction axes, namely sspeed and sdir, respectively. The values for

these standard deviations were derived from experimental data, as

discussed in detail in [21] and [22]. We visualize the velocity space

representation of the motions by reading out the modes of the

motion likelihood profile as present for each spatial region

encoded by a single MT motion sensitive cell. A flat distribution

represents ‘no motion’, a unimodal distribution indicates a ‘single

motion’, and a multimodal distribution implies ‘multiple motions’.

The presence of multiple motions is equivalent to the presence of

motion transparency.

The remaining part of our article is structured as follows: In

Section 2 we describe our model and the read-out that we use to

visualize the model’s various motion representations. Section 3

visualizes the detected motion of the model when processing

generated or recorded videos. Section 4 discusses our model

architecture, the detection of non-dangerous and dangerous crowd

behavior. We end with conclusions in Section 5.

Methods

Our model architecture, in a nutshell, consists of three model

areas located in the dorsal pathway in the primate visual cortex.

These model areas correspond to brain areas V1, MT, and MSTd,

respectively, see Figure 1. Each model area contains a generic

three-stage processing cascade (see e.g., [21], [22], [23]). These

stages define an initial filtering, a re-entry stage of modulating

feedback (FB), and a stage of competitive interaction. Since in the

current model we omitted FB from MSTd to MT and also do not

incorporate any FB for MSTd, the description of model areas

MSTd and MT simplifies. The next subsection describes model

area V1 with its initial motion detection and the three-stage

processing cascade. Then, we describe model area MT which

operates on a different spatial scale than V1 and also employs a

different pattern of local connectivity than V1. Model area MSTd

receives input from model area MT and detects motion patterns of

large spatial extent. Finally, we describe the read-out of the

likelihood representation of motions and their visualization.

2.1 Initial Motion Detection in Model Area V1
We describe the varying patterns of structured light in the image

sequences using the spatio-temporal function f (x,y,t) with the

spatial coordinates x and y, and the temporal coordinate t. Each

image frame of the video is convolved with Gabor filters of

different spatial resolution and orientation. Gabor filters resemble

the variability of selectivity of area V1 neurons [13]. Movement

over time causes a spatial shift of the respective visual structure in a

certain direction and for a certain amount. The scalar values of

direction and speed uniquely define a spatial shift in the image

plane. This vector is typically defined as velocity. Here, the spatial

resolution of a Gabor filter constrains the spatial displacement of

local, visual structure between frames that can be detected as

Motion-Based Analysis of Crowd Behavior
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initial motion velocity estimate. For a proper detection of such

displacements we account for the sampling theorem [28]. Thus,

for our detector we test spatial displacement of local structure

smaller than half of the wavelength of the Gabor filter’s peak

frequency selectivity. We use the convolution theorem to improve

computational performance. Each image frame f (x,y,t) is Fourier

transformed with respect to the spatial coordinates. This results in

f̂f (vx,vy,t), where we denote the Fourier-transformed expressions

using a hat-symbol atop. Spatial coordinates x and y change into

angular pixel frequencies vx and vy. These encode how often a

signal change occurs per pixel and the corresponding wavelength

specifies the number of pixels that define a full cycle. Note that we

do not apply a Fourier transform to the temporal dimension. The

spatial Gabor filters in the Fourier domain are defined as

f̂f Gabor(vx,vy; yk,vl ,s
y
l ,sr

l )~

1

2:p:sy
l
:sr

l

: exp ({
1

2
(
vrzvl

sr
l

)2z(
vy

s
y
l

)2

" #
):

ð1Þ

Equation (1) defines a parameterized Gaussian kernel of unit

integral that is centered at the frequency vr+vl in radial direction

and vy in angular direction with their respective standard

deviations sl
y = 1.5NvlNsin(Dy) and sl

r = 1.26NvlN(b-1)/(b+1). The

factors 1.5 and 1.26 define the overlap between neighboring filters

and have been chosen to improve the uniform coverage of the

frequency domain by these Gabor filters. The angular difference

Dy = 180u/Nori is defined using the number of orientations Nori.

The orientation of Gabor filters is defined by the angle yk. In

order to account for this orientation of Gabor filters, we apply the

following rotation transform vr~ cos (yk):vx{ sin (yk):vy and

vy~ sin (yk):vxz cos (yk):vyto the Cartesian system used for

the Fourier transform.

As pointed out above the modulation that the spatial frequency

selectivity of a Gabor filter imprints a modulation to the image

signal. This constrains the maximal displacement (or speed) of

local image structure that can be reliably detected. In order to

detect motions with different speeds (and direction) in the image,

we apply a filter bank of spatial frequency selectivity and spatial

orientations. In our definition, we conveniently express the motion

speeds sl in the image as multiples of the minimally detectable

speed s1~1:0pixel/frame which references the smallest Gabor

filter. The speed scaling scheme is defined by sl~s1
:b(l{1)

(l~1:::Nring) in which individual speeds are linked to wavelength

ll~g:s1
:bl{1 (l~1:::Nring, Nring~6, b~1:5). For this relation-

ship, we assume that the displacement Ds between frames is less or

equal to half of the wavelength l, which the Gabor filter is

maximally tuned for. Thus, the factor g $2 frame, here set to

g = 2.5 frame. For motion directions, we correlate image phase for

all orientations yk~k:p=Nori (k~1:::Nori, Nori~8). These

orientations are indexed by k. The angular frequency vl for the

Gabor filters is defined by vl~2p=ll N 1pixel/frame. Note that a

normal flow detector would test only the motion orthogonal to an

extracted orientation.

The filtering of an input signal with the above defined Gabor

filter kernel from Equation (1) is computed by using a multipli-

cation in the Fourier domain. The symbol F21 denotes the inverse

Fourier transform. Its application yields the complex numbers:

Figure 1. Depicts our biologically inspired proposal of visual motion processing that models the functions of primary visual area
(V1), middle temporal area (MT), and medial superior temporal area (MST) as well as their interaction, indicated by an arrow. We
consider cells from the dorsal part of area MST, referred to by MSTd, which respond to motion patterns. The three gray boxes show details of these
functions. The box to the lower-left shows V1 detecting initial motions from Gabor filtering results at multiple spatial scales. The box to the upper-left
shows the motion integration mechanisms of MT that encodes motion in neurons selective to a combination of motion speed and direction
(velocity). This velocity space representation is displayed here in a Cartesian coordinate frame for convenience. A center-surround interaction is
applied in these codomains of speed and direction. The box to the upper-right shows the globally defined motion patterns that extend over a large
region of the visual field and that are detected in model area MSTd receiving input from MT.
doi:10.1371/journal.pone.0053456.g001
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r(x,y,t; yk,vl ,s
y
l ,sr

l )~

F{1ff̂f (vx,vy,t):f̂f Gabor(vx,vy; yk,vl ,s
y
l ,sr

l )g:
ð2Þ

These complex numbers are used to define an amplitude and

angle. Our motion detector uses only the angle also referred to as

the local image phase Wk,l,t~ arg r(x,y; yk,vl ,s
y
l ,sr

l )
n o

. We only

use the image phase signal because it is largely insensitive to the

overall brightness changes in the spatio-temporal image sequence.

Note that evidence suggests that some V1 neurons encode local

image phase [29]. Initial motion is calculated with the extended

Hassenstein-Reichardt detector [30] using local image phase

values as input. Therefore, a local image phase

WDm,l
k,l,t ~ arg r(x{Dxl,m,y{Dyl,m; yk,vl ,s

y
l ,sr

l )
n o

ð3Þ

is spatially shifted by the horizontal Dxl,m~sl
: cos (qm)and vertical

Dyl,m~sl
: sin (qm) offset and is compared against the non-shifted,

but temporally delayed phase. The forward correlation from time

t0 to t1 is defined by

c
t0?t1
l,m ~

1

Nori

XNori

k~1

cos (WDm,l
k,l,t1

{Wk,l,t0
)

h iz
: ð4Þ

The rectified cosine-function defines the tuning between phase

differences and :½ �z~ max ( : ,0) denotes a half-wave rectifica-

tion to avoid negative amplitudes in the responses. After

rectification the correlation results from all orientations are

summed. The backward correlation c
L,t1?t0
l,m is analogously defined

by inverting the temporal order, correlating signals from frame

captured at t1 with those from the frame captured at t0. We do not

want to detect flicker motion that is characterized by the

simultaneous appearance of forward and backward correlations.

Thus, we subtract forward and backward correlations.

c(x,y,qm,sl)~ c
t1?t0
l,m {c

t0?t1
l,m

h iz
: ð5Þ

This subtraction results in a positive response in cases of

coherent motion along a given direction. Next, we describe the

mechanisms of the model area V1 that take the above correlation

result from Equation (5) as input.

2.2 Three-stage Processing Cascade for Model Area V1
The three-stage processing cascade is motivated by the layered

cortical processing of the visual cortex. This cascade utilizes model

cells or groups of cells as the basic computational unit. Their

response behavior can be characterized in accordance to their

biophysical properties in terms of changes in membrane potential

(voltage) when a cell receives excitatory or inhibitory input from

other cells [31]. For our computational analysis, we consider the

membrane potentials of a group of cells as mean activation level.

Since we abstract from biophysical and neural details of the model

components, we use the term activity or activation throughout the

rest of the paper in order to denote the responses of stages in our

model.

The first stage includes a spatial integration and nonlinear signal

enhancement defined by the ordinary differential equation (ODE):

_xx(1)
V1~{x

(1)
V1z(xFF

V1)a � Lvel : ð6aÞ

The signals xFF
V1 and x

(1)
V1 denote model activities of the input

signal which is the output of the initial motion detector, see

equation (5). These initial motions are considered as driving feed

forward signal. Formally, we have xFF
V1~c( .) and x

(1)
V1 is the

activity of the integration stage. In this stage, a quadratic function,

a = 2 in equation (6a), is applied to model a nonlinear signal

transfer applied to the motion detection outputs, which compresses

very low responses and amplifies higher level activations. After

applying the nonlinear transform, the signal is convolved with the

Gaussian filter Lvel, the convolution operating on motion speeds

and directions. We interpret this convolution as interaction

between model cells encoding similar motions. In our implemen-

tation we solve all ODEs, such as defined by equation (6a), by

using their steady-state solution. Iterations between different

frames of the input sequence are iterations of these steady state

solutions assumed for each individual frame.

In the second stage of the cascade, FB modulates driving forward

signals. Feedback originates from a visual area that is located

higher in the processing hierarchy than the one that is generating

the feeding signal. Activities in model area V1 are modulated by

activations accumulated in areas higher up in the hierarchy

concerned with motion (e.g. MT) and form processing (e.g. V2,

V4). This FB is represented at a lower spatial resolution than the

signal of the area which it is feeding into. Thus, FB helps to

disambiguate local motion which can be ambiguous due to the

aperture problem. It also enables signal propagation across

modeled visual space. We combine driving and FB signals through

modulation: Signals that encode the same motion are enhanced

while others remain the same. To be effective, a FB signal always

requires a driving forward signal; however, FB alone cannot

generate any signal enhancement. In formal terms, the signal x
(2)
V1

is formed by a non-linear combination of the FB signal xFB
V1 and

the driving forward signal x
(1)
V1 from the first stage

_xx(2)
V1~{x

(2)
V1zx

(1)
V1
:(1zc:xFB

V1), ð6bÞ

where c is a parameter that typically ranges between 10 and 100 to

amplify FB. Typically, values of x
(2)
V1 range between zero and one.

All equations and parameters appear without units, as we did not

aim for modeling the exact biophysical process of axons, synapses,

or neurons.

In the third stage of the cascade, signals are normalized by

dividing activity of a target cell by the activation summed over

encoded motions in a velocity neighborhood of the target cell. This

division keeps signal amplitudes bounded. In combination with the

FB modulation of the second stage, this normalization realizes a

biased competition that deemphasizes signals which encode

features that did not receive any enhancement by FB. Formally,

the signal x
(3)
V1 integrates the signal x

(2)
V1 of the second stage by

summing over all encoded motions, respectively, for each spatial

location which yields:

_xx(3)
V1~{AV1

:x(3)
V1zx

(2)
V1{BV1

:x(3)
V1
:
X

x
(2)
V1: ð6cÞ
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The symbols AV1 and BV1 denote constant parameters which

control the strength of normalization. Typically, parameter AV1

has a value of 0.1 and values of x
(3)
V1 range between zero and one.

Values for parameter BV1 are approximately one. The steady-state

solution of this Equation (6c) is x
(3)
V1~x

(2)
V1=(AV1zBV1

:Px
(2)
V1),

which shows the normalization property. Due to the division by

the sum, assuming BV1$1, values of x
(3)
V1 will not exceed the upper

limit of one. Since the sum ranges over all velocities, this

normalization favors a single motion vector. This is different for

model area MT, which we describe next.

2.3 Three-stage Processing Cascade for Area MT
The first stage uses an isotropic integration of signals from model

area V1 to model area MT. During integration the spatial

resolution is reduced by a factor of five which we link to a change

in receptive field (RF) size between V1 and MT cells. The RF

denotes the region in visual space (or in the image domain) in

which an input stimulus leads to a response of the target cell at a

fixed spatial reference position. In cortex the visual input is

mapped to representations in several areas in a visuotopic fashion,

i.e. preserving the neighborhood relations. For example, such a

mapping from the retina to the primary visual cortical area V1

resembles the high spatial resolution at the center of view (leading

to a magnification of the fovea) and lower resolution in the

periphery. In the application here, the relevance lies in the fact

that these two factors are different and must be considered in

conjunction in order to derive proper filter sizes to be used in

model implementations. The RF size in MT is about ten times

larger than that in V1 [32]; however, the magnification factor in

V1 is about one-fifth of that of MT [33]. This difference between

magnification and RF size might account for the Nyquist sampling

theorem, where MT applies a low-pass filter which restricts the

highest spatial frequency to at least half of the sampling frequency

[28]. In our implementation the down-scaling of spatial resolution

in representations is achieved in two steps. First, the input velocity

space is convolved with a Gaussian filter of appropriate size to

meet the sampling theorem [28]. We illustrate ‘‘appropriate’’ with

the following example: Assume that the maximum normalized

frequency is p. Then the power in the spectrum of the Gaussian

filtered signal with s at the sampling rate r is s/!(2p)Nexp(-(p/

rNs)2/2). For instance, for the sampling rate r = 5 we apply a

Gaussian filter with s = 5 pixel the power is exp(-p2/2)

100% = 0.72% of the maximum power s/!(2p). For the sampling

of V1 for MT activity, we use the same numbers as in the example.

Accordingly, and second, samples for every fifth value of the

filtered motion signal are selected. In cortex, integration in MT

leads to an increase in the direction tuning bandwidth (mean value

of 95u) compared to that of V1 (mean value of 68u) [34]. This

increase of bandwidth is an indicator for the integrative or

smoothing behavior of cells in area MT. In formal terms this

integration is denoted by.

_xx(1)
MT~{x

(1)
MTzf rate

sample((xFF
MT � Lspace)a) � Lvel : ð7aÞ

Motion signals from model area V1 xFF
MT~x

(3)
V1 are spatially

integrated by convolution with the Gaussian Lspace and subse-

quently sampled using f rate
sample, a linear interpolation for arbitrary

sampling rates. Then, the signal is exponentiated by a, like in the

Equation 6a. Finally, the sampled signal is smoothed in the

velocity domain by convolution with the Gaussian Lvel .

In the second stage of the cascade, FB from other model areas,

such as MSTd ( [22], see below) could be included, in principle.

Since we did not further investigate the tuning of cell responsive-

ness in MT driven by FB, the second stage response is denoted by

the identity x
(2)
MT~x

(1)
MT in its steady state.

The third stage of the cascade, calculates local center-surround

interaction between encoded motions. This interaction supports

similar motions and suppresses dissimilar ones. Formally, the

signal x
(2)
MT is convolved with Lz, a Gaussian filter that is defines

the support from similar motions in the velocity space. The

inhibitory field is computed by convolving the signal x
(2)
MT with the

Gaussian L{ that defines a field of local suppression. Typically,

this filter kernel connects to dissimilar motions. The supportive

and suppressive fields are combined in a competitive scheme that

uses divisive inhibition:

_xx(3)
MT~{AMT

:x(3)
MTzx

(2)
MT � Lz{BMT

:x(3)
MT
:(x(2)

MT � L{): ð7cÞ

The value of parameter AMT is typically set to 0.1, where values

of x
(3)
MT range between zero and one. Values for parameter BMT

range between 1 and 10. As defined in Equation (7c) this ‘soft’

competition between neighboring velocities enables the represen-

tation of multiple velocities. Unlike the normalization mechanism

in model area V1 that favors the encoding of a single motion. This

‘soft’ competition in model area MT is the main difference to

previous models of motion processing [35], [9], [36], [10], [37],

which leads to the desired properties that motion likelihood values

in the velocity representation can coexist, given that speeds and

directions are ‘‘sufficiently different’’. This is the prerequisite of

representing motion transparency as generated by specific motion

crowds.

2.4 Detection and Processing of Motion Patterns in Area
MSTd

The dorsal part of medial superior temporal area (MSTd)

contains cells selective for large field motion patterns [15], [16],

[20]. Such patterns are, for instance, generated on the retina

during self-motion. Movement along the direction of gaze results

in an expansion motion field with radially outward pointing

vectors. We call such a pattern a source, since people move in all

directions departing from the same spot. Movement in the

opposite direction of gaze gives a contraction motion field with

vectors radially inward pointing. This, we call a sink. Sinks

observed in motions of crowds relate to potential danger as they

describe a compression. A source or sink in the image plane can be

at various locations (u, v). Points in the image plane are referenced

to by (x, y). We define the angle y(x-u, y-v) = arctan2(y-v, x-u) with

respect to these source or sink locations (u, v). This angle is used to

define pattern flow vectors (cos(y), sin(y)) at locations (x, y) in the

image plane. For rotations of this local angle y by an additional

amount d, we define motion patterns of EXP, CON, CW, CCW,

and combinations thereof. For instance, d = p/2 defines a CCW

motion pattern. Such motion patterns are encoded in likelihood

values for motion directions Q defined by.

p(x,y,u,v,q,d) : ~

cos (q{y(x{u,y{v)zd)½ �z:Ls(x{u,y{v)§0:
ð8Þ

We use the half-wave rectified cosine-tuning [cos(N)]+ to define

likelihood values for motion patterns. Multiplication with the

Gaussian Ls weighs the influence of a motion pattern less the

further distant this motion is from the location (u, v). The
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parameter s denotes the standard deviation of the Gaussian and is

set to 80% of the visual field. We use these pre-defined motion

patterns from Equation (8) within the previously described three-

stage processing cascade.

The first stage of the cascade, the forward signal integration, is

described by:

_xx(1)
MST~{x

(1)
MST

z
X
x,y,q

p(x,y,u,v,q,d):
1

Nring

X
s

x
(3)
MT (x,y,q,s)

" #a( )
:
ð9aÞ

The mean value of the signal x
(3)
MT for all speeds is computed,

non-linearly enhanced (a = 2), and then projected onto the pre-

defined motion patterns. This projection is computed by the inner

product that ranges over the dimensions x, y, and Q and defines

likelihood values for motion patterns. The first-level Equation (9a)

temporally integrates these pattern likelihoods using the variable

x
(1)
MST . This variable depends on all sampled image locations (u, v)

combined with all sampled patterns d.

The second stage of the cascade again allows for an integration of

an FB signal which modulates the pattern likelihoods. Since we did

not incorporate a higher-order bias to enhance the responses of

motion pattern cells, the FB signal is set to zero and we use the

identity x
(2)
MST~x

(1)
MST .

The third stage of the cascade in model area MSTd normalizes

likelihood values with respect to all spatial locations (u, v). To

simplify, the center kernel takes directly the feeding signal x
(2)
MST ,

and the surround computes the mean over all spatial locations.

Center and surround signals are embedded into a competitive

scheme, expressed by:

_xx(3)
MST~{AMST

:x(3)
MSTzx

(2)
MST{

BMST

Nu
:Nv

:
X
u,v

x
(2)
MST : ð9cÞ

The 2nd term in Equation (9c) defines the center or supportive

signal and the 3rd term the surround or suppressive signal. In this

case, we use the surround to normalize likelihoods. The remaining

identifiers AMST, BMST, Nu, and Nv are parameter values. Table 1

lists all model parameters and their values that are kept constant

during simulations.

2.5 Read-out and Visualization of Encoded Velocities
All model areas use an explicit likelihood encoding for motion.

Our model includes three hierarchically organized areas for the

detection and integration of motion likelihoods, namely V1, MT,

and MSTd. In the first two model areas the likelihoods of local

velocities are encoded for different spatial detail and resolution.

The area MSTd encodes likelihoods for specific motion patterns,

or configurations of spatial flow. Velocity likelihood values are

read out from their respective representations for display purposes

by applying an iterative method. Velocity representations are

defined for each spatial location and encode the direction and

speed of a particular motion in the image. In the case of opaque

surfaces or crowds that move coherently in one direction, the

velocity space should contain a single peak of activation. This peak

defines the maximum likelihood estimate for the current motion

estimation. When multiple motions occur, as in the case of

transparent motion, the velocity space representation contains

multiple peaks. These are read out in an iterative fashion. The first

step of the method locates the maximum amplitude of the

responses in velocity space. If the maximum is below a certain

threshold value, ‘no motion’ is returned. Otherwise, a discretized

Gaussian is positioned with its mode at the location where the

maximum appears in the velocity space. The inner product

between the Gaussian weights and the filter responses for the

corresponding velocities is computed. The resulting sum of

weighted motion responses is normalized by the sum over the

products of Gaussian entries and signal values. In all, the read-out

procedure computes a weighted vector average of the velocities,

given the filter responses and the Gaussian weighting coefficients.

If multiple motions are present in an image patch, this procedure is

iterated so as to continue the selection and Gaussian weighting on

the next peak in the velocity space. In particular, the next step

suppresses all likelihoods that were read out during the previous

iteration step and set them all to zero. Then the iterative method

continues with the first step by anchoring the Gaussian weighting

function at the next peak. Again, the average motion response is

determined by the projection of filter amplitudes of velocity

selectivity to the Gaussian weighting function. This is iterated until

we reach a specified number of motions. Here, we consider two

motions that may exist in an image patch displaying a group of

people. For the read-out procedure we use the encoded velocity

from the last stage in model area MT, namely x
(3)
MT .

The next computational procedure converts the above acquired

vector fields into a response field map which contains ‘no motion’,

‘single motion’, or ‘multiple motions’ entries in the spatial

resolution of model area MT. Regions with no motion are

encoded as black, regions with a single motion are encoded as

gray, and those with multiple motions are encoded as white. These

maps are interpolated to match the spatial resolution of the

original video frames using a nearest neighbor interpolation. This

interpolation maintains the original encoding into ‘no motion’,

‘single motion’, and ‘multiple motions’. We temporally filter these

higher resolution maps that the encoding remains only if it is

constant throughout three successive frames. Otherwise, the

corresponding pixel location is assigned ‘no motion’.

Motion pattern likelihoods from model area MSTd are not read

out. For their display, we simply normalize with respect to their

maximum value within a population to report a normalized

activation signal.

Results

Our model was originally designed to explain animal and

human data to closely model cell responses and behavior when

processing motion transparency [22], [38], [11], [39]. Since the

model successfully explains a wealth of perceptual data, we

decided to apply the framework directly to videos of crowds. It is

expected that the model mimics the response characteristics of a

viewer. In the following subsections, we describe the model’s

simulation results when processing synthetically generated or

recorded videos. We selected data sets to probe the model’s

capability in processing videos that show crowds of moving people

from varying distances. Here, we used simulated crowd data for a

virtual camera setup that models the situation of a realistic camera

setup monitoring spaces where motion crowding might occur.

Therefore, we do not have access to calibration data that defines

the exact viewing geometry in terms of the distance, viewing angle,

and spatial image resolution. We only have a rough estimate of

distance measure from the pixel resolution and an average height

of people in the image. In a first set of videos individuals are a few

pixels high in the image. In another set of videos persons are 80–

40 pixels high. We also used point sets (random dot kinemato-
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grams) that move in space-time viewed from above to study the

clustering and collective movement patterns when crowds are

forced to pass through a narrow passage. These sequences were

generated based on the social force model of crowd dynamics.

3.1 Non-dangerous Crowd Behavior Shows Motion
Transparency

In this scenario, we synthetically generated videos using the

social force model [7], [40] to simulate crowds seen from above. In

a nutshell, this model expresses the interaction between individuals

within a group of pedestrians as well as individual’s interaction

with boundaries, e.g. walls. This interaction employs ‘‘social’’ and

physical forces in a many-particle system. Walls and other

pedestrians act as repellors. Each pedestrian has a goal direction

that defines an attractive force, which it follows with a maximum

walking speed. Taken together, the linear superposition of forces

describes the velocity and position change of each pedestrian in

the model.

In the first setting of Figure 2a and 2b approximately 200

pedestrians are simulated to walk on a sidewalk that is 50 m long

and 10 m wide. We employ a cyclic boundary condition in

horizontal direction. Half of all pedestrians go to the left. The

other half goes to the right. The parameters of the social force

model are the same as suggested by Helbing et al. [7]. Note that

Table 1. Parameter values for initial motion detection and three-stage-processing cascades for signal integration in model areas
V1, MT, and MSTd.

Description Value Eq.

Detection of initial motion

Orientations Nori~8yk~k:p=Nori , k~1:::Nori , 1

Rings of the Gabor bank b~1:5vl~2:p=(g:s1):b{(l{1) , l~1:::Nring , Nring~6, 1

Overlap factors or~1:25oY~1:5 and 1

Radial standard deviation s
y
l ~vl

: sin (p=Nori)
y 1

Tangent standard deviation sr
l ~vl

:(b{1)=(bz1)r 1

Speed to wavelength factor g~2:5 (g§2 due to the sampling theorem) 1

Motion directions Ndir~16qm~m:2:p=Ndir , m~1:::Ndir , 3

Motion speeds sl~s1
:b(l{1) , l~1:::Nring , s1~1:0pixel/frame 3

Three-stage processing cascade of model area V1

Nonlinearity a 2 6a

Ldisp=vel Gaussian filter Motion speed: sspeed~0:2pixel/frame and lspeed~5pixel/frame a Motion direction: sdir~0:75:360=16u and

ldir~5:360=16ua
6a

Boundary conditions Motion speed: Neumann. Motion direction: Circular 6a

cFeedback constant 100 6b

Normalization AV1 0.01 6c

Normalization BV1 100/112 6c

Three-stage processing cascade of model are MT

LspaceGaussian filter sspace~5:0pixels and lspace~21pixelsa 7a

f rate
sampleSampling rate 5 7a

Nonlinearity a 2 7a

Ldisp=vel Gaussian filter Same as in V1 7a

LzGaussian filter Motion speed: Dirac pulse. No kernel is applied. Motion direction: sdir~0:5:360=16u and ldir~3:360=16u a 7c

L{Gaussian filter Motion speed: sspeed~0:5pixels/frame and lspeed~5pixels/frame a Motion direction: sdir~2:360=16u and

ldir~9:360=16u a
7c

Boundary conditions Motion speed: Neumann; Motion direction: Circular 7c

Normalization AMT 0.01 7c

Normalization BMT 10 7c

Three-stage processing cascade of model area MSTd

Positions of pattern (u, v) % {(0%, 0%), (25%, 0%), (50%, 0%), (75%, 0%), (100%, 0%), (0%, 50%), (25%, 50%), (50%, 50%), (75%, 50%),
(100%, 50%), (0%, 100%), (25%, 100%), (50%, 100%), (75%, 100%), (100%,100%)}

9a

Parameter for pattern d % {0u, 45u, 90u, 135u, 180u, 225u, 270u, 315u} 9a

Nonlinearity a 2 9a

Normalization AMST 0.01 9c

Normalization BMST 10 9c

Pattern numbers Nu, Nv Nu = 5, Nv = 3 9c

aThe length specifies the size of the support for the filters.
doi:10.1371/journal.pone.0053456.t001
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the social force model that describes crowd dynamics was

introduced in [40] and, later, was extended in [7] to describe

panic in crowd escapes. Due to its evolved description, we used the

formalism of [7] to generate reference scenarios of crowd

dynamics and to probe our model. The simulation with the social

force model for this first setting shows a loose organization of

pedestrians into eight lanes of alternating motion direction

(Figure 2c). Processing this generated video, our model detects

large regions of motion transparency, encoded in white in

Figure 2e. In an altered setting, we closed the ends of the walkway

by introducing additional walls leaving only one meter wide exits

and entries (Figure 2b) while maintaining the cyclic boundary

condition for these exits and entries. In this setting, pedestrians

clog along the vertical walls, see Figure 2d. Processing the

generated video by the model shows only a few small regions of

motion transparency (Figure 2f). These regions disappear at future

steps as will the regions with a single motion. The two crowds stop

moving coherently. This is already indicated in Figure 2f where

regions close to the vertical borders appear motionless. The

repelling forces between individuals of the crowd increase steadily

and can potentially lead to injuries of individuals. These two

settings exemplify: Non-dangerous crowd dynamics with opposite

motions appears as motion transparency in videos and dangerous

crowd dynamics is depicted in a transition from motion to no

motion or the stop of movement in the event of clogging.

We applied our model to real-life videos showing non-

dangerous crowd behavior to verify the occurrence of motion

transparency. The first video shows pedestrians on a crosswalk

walking along opposite directions while organizing into lanes,

Figure 3a and 3b. This example shows that multiple motions are

present in various regions, in particular in the zoomed-in regions.

This is also visible in the distribution for motion directions pooled

from the zoomed region that is shown in Figure 3c. The second

video shows a cheerleader dance, Figure 3d. The zoom-in region

shows that motion transparency occurs within the region of the

field where the cheerleaders perform, also visible in the

distribution of motion directions in Figure 3f. No motion appears

in the empty region in the lower half of the zoomed-in patch.

Motions are detected in the audience because they do not appear

purely stationary, instead they move, wave, and cheer. The third

video shows a busy sidewalk in London, Figure 3g. Only a few

pedestrians walk toward the camera. These appear mainly to the

right-hand side of the sidewalk from the camera’s perspective.

Because of the main upward-stream of motion only a marginal

area within the zoom-in region appears as motion transparency,

Figure 3i. The distribution for motion directions is unimodal. The

first two examples of the crosswalk and cheerleader dance illustrate

that motion transparency appears in real settings and can be

reliably detected by our model. The example of the London

sidewalk shows that non-dangerous crowd behavior does not

always produce motion transparency. This observation indicates

that the feature of motion transparency alone is not a stable

indicator for danger in crowd behavior. In the next examples we

will study the motion generated at crosswalks with a different

density of people.

For the simulation of different people densities at a crosswalk,

we use rendered videos from Narain et al. [41]. These videos show

a simulation of crowd behavior as a whole modeled by

‘‘unilaterally incompressible’’ fluid flow evaluated on a grid. It

should be noted that various physics-based models of fluid

dynamics or particle systems have been deployed to model crowd

dynamics. In our model simulations we use video material that was

generated with the social force model or fluid-dynamic model, see

Narain et al. [41]. Although these two models vary in detail, they

both simulate mass behavior which we use to detect critical visual

features. Simulated individuals in this scenario have a height of

80–40 pixels for image frame resolutions of 6406480 pixels. The

first scenario in Figure 4a shows two pairwise intersecting people

streams for low densities as indicated by the arrows. Figure 4b

shows an image frame of the processed video. For this low density

people can cross as indicated in Figure 4a which leads to motion

transparency encoded as white regions in Figure 4c. This is also

indicated by the simultaneously detected CON (contraction) and

EXP (expansion) motion patterns in Figure 4d. A sink and source

point are detected with the sink point being stronger which

suggests an accumulation of people in the center. The simulta-

neous presence of these two motion patterns suggests that the two

people streams are indeed intersecting as schematically drawn in

Figure 4a. Increasing the density of people leads to a clogging at

the intersection of the people streams that come from four

different directions, see Figure 4e (compare with the discussions in

[2], [6]). In the depiction of the scenario all arrows point inward.

Motion transparency remains to exist close to the center patch (see

the white encoded areas in Figure 4g). However, the people in the

center, although clogged, still keep moving. This corresponds to

the observed turbulences in the flow pattern [2]. In this case the

model MSTd detects a strong CON motion pattern, see Figure 4h.

This means a sink point in the people flow is detected and people

accumulate in the center. For an even higher density the clogging

intensifies and the motion speed in the image plane is reduced.

Figure 4i shows the scenario where the center part of the crowd

exhibits a rotation and people from all four directions join this

center part. The corresponding detected motion categorization is

shown in Figure 4k. Only at the border where people transition

from a radially inward motion into a circular motion, motion

transparency is detected. Not only the CON motion pattern is

detected but also the combination of a CON & CW (clockwise

rotation) motion pattern responds stronger than in the medium

density scenario, compare Figure 4h (medium density) with

Figure 4l (high density). This seems counterintuitive compared

to the counterclockwise rotation present in the video and indicated

in Figure 4i. But due to the perspective view during the image

acquisition the image region that contains the rotation pattern

appears as an elliptic pattern. In addition, the center of rotation is

shifted upward to the top edge of the screen. Figure 4i is only a

depiction and does not reflect these details. However, the cell

responses are reported with respect to the center in the image

plane. Thus, a small response for clockwise rotation originates

from the people stream coming from the lower, left image corner

that is combined with the people stream from lower part of the

rotatory, which moves to the right. These two motions are

compatible with segments of a CW motion pattern roughly aligned

with the center of the image plane and, thus, in the model the

CON & CW motion pattern responds slightly stronger compared

to the CON & CCW (counterclockwise rotation) motion pattern.

To sum up, we investigated different appearances of spatio-

temporal crowd configurations and the motion features that

characterize them. We particularly investigated the role of motion

transparency as characteristic feature of crowd behavior in videos.

Motion transparency occurs for a low density moving crowd that is

crossing. This is identified by the appearance of multiple motions

in a small region of image space that is covered by the size of

spatial motion filters in the model. We emphasize that the

detection of multiple motions necessitates a model mechanism that

allows for a simultaneous representation of several motion

directions and/or speeds at a single location. This is not achieved

by classes of motion models in which a unique interpretation of

local measures is enforced so that the mechanism has to ’decide’
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for the most dominant velocity that might be a mixture of several

underlying motions. The appearance of motion transparency

continuously decreased with an increased density of people in

which the appearance of dominant motion components in a spatial

neighborhood cannot be detected robustly. The spatial organiza-

tion of these flow patterns gives rise to particular motion patterns,

such as CON and CW or CCW motion patterns and their

superposition. The contraction of the spatio-temporal patterns is

indicative of an increase in crowd density which is accompanied by

swirling or rotation motions in either direction. These observations

support our claim that patterns of motion appearance manifest in

motion transparency and in particular in the combined presence

of spatio-temporal motion patterns. The analysis of such features

allows for an identification of crowded motion where multiple

speeds or directions occur, which eventually leads to critical

situations in the overall behavior of the motion crowd.

3.2 Motion Transparency Occurs at Junctions in Hallways
with Moving People

Another critical scenario appears in hallways during an

evacuation [2]. For the model analysis we again use rendered

videos from Narain et al. [41] that show the evacuation of a

building, especially the people flow at a junction in the hallway

(compare also with the simplified scenario in [7]). Figure 5a shows

the scenario for a low density of people and Figure 5b a single

frame of the video. Due to the merging people stream and the

turns, there is a slow-down before the narrow passage that leads to

the exit. This slow-down is characterized by a negative speed

gradient. We recently proposed a model for the detection of

velocity gradients which includes speed gradients [42]. This model

uses the MT motion representation to compute directed, spatial

velocity derivatives that are registered within a local gauge

coordinate system, which in turn is oriented along the local flow

direction (for tangential flow derivatives) or perpendicular to it (for

the flow derivatives in normal direction). The computation of

velocity gradients is based on spatial derivatives of the vector flow

field. These derivatives are computed based on the representation

of flow vectors by likelihood values in the velocity space. The

derivative tangent to the local flow direction is computed by taking

the differences of activities encoded in velocity spaces at spatially

offset positions along the axis orthogonal to the direction of the

encoded velocity. The derivatives along the normal direction are

computed analogously. For instance, the expansion flow that is

generated when walking toward a fronto-parallel plane has a

positive speed gradient along the local flow direction. We compute

the flow derivatives for the detected motion and show them in

Figure 5c. Their direction is encoded in colors ranging from red

(EXP), to violet (CCW), to light blue (CON), to yellow (CW), and

again to red. We associate these locally detected velocity gradients

with global pattern motions because these global motion patterns

locally show these gradients. To help the reader, we labeled

regions of velocity gradients according to their color in Figure 5c.

The upper hallway has a constant slow-down in motion which is

indicated by CON. This CON is in part due to the camera’s

perspective. Another region of slow-down or CON exists before

the turn. Other velocity gradients (CW and CCW) mark

boundaries between regions that contain motion or not. Not only

is CON detected locally by a decrease in motion speed, but it is

also detected over a large region of the field of view. Figure 4d

shows an CON motion pattern centered in the image. Thus, CON

is detected both locally and globally. Velocity gradients in prior

scenarios have a similar characteristic in the 1st scenario, or are

absent in the 2nd scenario, see Figure S1, or are difficult to

interpret in the 3rd scenario, see Figure S2. Additional information

is provided in the supplement Text S1.

Figure 2. Shows motion transparency for the scenario of flowing a) and not for the scenario of congested crowd motion b). These
two scenarios were simulated using the social force model [7] where pedestrians are modeled as dots and viewed from above (birds-eye view). Panels
c) and d) show image frames of the generated videos for a flowing and congested crowd, respectively. The detected motion for these frames is
shown in e) and f). A legend at the bottom of the figure denotes the gray-value encoding of motion.
doi:10.1371/journal.pone.0053456.g002
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We further evaluated features of motion transparency and

image speed. In this evacuation scenario the people stream makes

several abrupt turns of 90u in order to leave the space. Our model

detects motion transparency at three locations in the image, see

Figure 5e. Two of these three locations correspond to the entry

and exit point of the narrow passage from the room into the

hallway. These are the locations where the stream of people makes

the previously described 90u turns and, thus, need to slow down,

get slightly compressed, and finally joins a second stream of

people. Due to the spatial integration mechanisms the model

represents the turning and merging streams as regions that contain

motion transparency. Motion transparency is also detected at the

location of the shadows on the ground. Arm movements appear

during half of the walking cycle to move backward while the main

body trunk is moving forward. In the other half of the cycle arms

go forward but faster than the body trunk. A 180u directional

difference in motion appears in combination with a motion speed

difference. Our model integrates these motions and represents

them at one spatial location as motion transparency due to their

proximity in the stimulus (lower right part in Figure 5e). Figure 5f

shows the motion speeds encoded in colors from yellow to red to

encode fast and slow speeds, respectively. We chose the red color

to encode slow speed to indicate danger. Dark red regions appear

at the narrow passage. Motions on the right image border are

artifacts due to assuming circular boundary conditions for the

detection of initial motion signals.

Regions in crowds which may give rise to potential hazards are

indicated by the combination of features. If slowing-down motion

speeds occur in combination with motion transparency, this

indicates a decreased throughput and, thus, increased pressure. A

‘‘danger zone’’ is detected. We employ a simple decision-rule for

the detection of such ‘‘danger’’ zones combining transparency with

slow speeds as is shown in Figure 5g.

The scenario for a high density of people shows Figure 5h and

5i. For a high density the empty space in the lower-left room is

completely filled with people. Detected velocity gradients indicate

a large region of CON, essentially in the entire space of the lower-

left room, see Figure 5j. Due to the larger area of CON compared

to Figure 5c, the activation of the CON pattern in the center of the

image which Figure 5k shows is stronger than that in Figure 5d.

This indicates a slow-down of the people stream in front of the

narrow passage. Detected CON occurs in the spatial neighbor-

hood of regions in the image plane that contain danger for the

crowd, here, the narrow passage. Main regions of motion

transparency occur at the different entry and exit points of

hallways according to Figure 5l. In addition regions of motion

transparency appear in the upper hallway on the left end. This is

due to the arm movements that have been described previously.

Figure 5m shows the detected motion speeds. Again speeds appear

slowest next to the narrow passages and within these passages. The

combined occurrence of slow motion speed and motion transpar-

Figure 3. Provides examples of motion transparency detected in image regions of videos showing a crossing (1st row), cheerleader
dance (2nd row), or sidewalk in London (3rd row). The first two examples a) and d) have a bimodal distribution of motion directions which
indicates motion transparency for the zoomed-in areas in image frames of b) and e). Panels c) and f) show a pixel-wise labeling of ‘no-motion’, ‘single-
motion’, and ‘multiple-motions’ for these two examples. The third example, the sidewalk in London, shows a single motion indicated by the unimodal
distribution of motion directions in g) pooling over the zoom-in region of the image shown in h). The pixel-wise assignment gives i).
doi:10.1371/journal.pone.0053456.g003
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ency is labeled as ‘‘danger zone’’ in Figure 5n. These zones

correspond to the entry and exit locations of narrow passages.

In sum, motion transparency appears in this scenario at the

opening and exit of narrow passages due to the motion direction

difference of 90u and for the side-view of a small-sized walker due

the motion difference of the persons arm movements compared to

the main body motion. A combination of transparency and motion

speed as separate features largely resolves the ambiguity that the

transparency signal alone has. In the example of a crowd passage

through an exit shown in Figure 5d and 5e as well as 5j and 5k, it

appears that motion transparency is necessary but not sufficient to

indicate a ‘‘danger zone’’. Only if the underlying motion of the

transparent region appears in combination with slow motion

speed, this indicates danger as is shown in Figure 5f and 5l. Locally

and globally detected CON indicates the presence of a ‘‘danger

zone’’. Locally detected CON occurs in the proximity of the

‘‘danger zone’’ and is a precursor for dangerous behavior. Its

interpretation is a slow-down of people flow. Although locally

detected CON occurs in the spatial proximity of a ‘‘danger zone’’,

it is not fully aligned with the position of the ‘‘danger zone’’ in the

image plane. Globally detected CON is not exactly localized due

to the integration over large regions in the image. In our examples

of Figure 5d and 5k the pattern motion of CON was detected for

the center of the image, which roughly aligns with the detected

‘‘danger zones’’, see Figure 5g and 5n. This larger CON motion

pattern represents people’s motion towards a focus point, the focus

of contraction. If only one such focus point is detected (unlike

Figure 4d) people density increases. This increase in density causes

further decrease in speed such that people can exit.

Discussion

Various approaches exist in the literature that study the self-

organization in behavior of people in crowds [1], [43], [44], that

investigate the laws underlying such behavior [7], [45], and that

analyze disastrous situations to extract characteristics and condi-

tions that led to such situations [7], [44]. Besides physics-based

modeling of behavior, several approaches automatically analyze

videos for dangerous mass-behavior in motion crowds. Some of

these approaches assume a resolution large enough for the

detection of individuals, their representation by model shapes,

and tracking over time (e.g., [6], [24]). Other approaches analyze

the movement of pedestrians in videos of substantially lower

spatial resolution [46], [47] or in parts substantially lower

resolution using optic flow [48]. Our model detects and further

processes visual motion as characteristic spatio-temporal ‘‘tex-

tures’’ [25], [26], [27]. This model is inspired by biological

mechanisms of motion processing and is formulated in a cortical

architecture that mimics core principles of an observer that

routinely watches videos of people crowds. We suggest that the

automatic analysis of motion patterns is improved by mechanisms

Figure 4. Shows the detected motion for a crosswalk of varying people density [41]. a) Shows the scenario and motions for a low density.
b) A single image frame from the video. c) The detected motion shows large regions with motion transparency. d) Globally detected motion patterns
indicate a motion pattern of EXP and CON. e) As the density increases people radially stream inward indicated by the arrows. f) An image frame for
increased density. g) The regions that contain transparency are reduced. h) A strong motion pattern of CON is present. i) For a further increase of
density the motion pattern changes: The central part shows a spiral motion, that of joined and exiting motions from four sides – like in a rotary. j) An
image of the video for an even further increase in density. k) Fewer parts exhibit motion transparency. l) Patterns of CON and CON&CW are active.
The latter pattern captures some of the rotational inward, spiral motion in the central part of the image. All motion patterns refer to the center of the
image plane.
doi:10.1371/journal.pone.0053456.g004
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that closely resemble human perceptual performance. Humans,

like other primates, are capable to detect and represent motion

transparency when multiple motions appear at a spatial image

location. This is a property lacking in many computational vision

approaches that detect and integrate motion (e.g., [35], [49], [50],

[51], [52], [53], [54]). In addition, we have stressed that motion

transparency occurs in non-dangerous as well as in dangerous

situations. The distinguishing features were encoded in velocity

gradients as well as in the spatial structure of the motion patterns.

Such detection mechanisms have been specified in the proposed

model and that were motivated by ample experimental evidence

[15], [16], [19], [18], [19], [20]. In sum, we propose that a motion

Figure 5. Shows the analysis of a simulated evacuation scenario. a) For low density two 90u turns in the main motion direction appear. b) An
image frame of the video displaying the evacuation. c) Velocity gradients represent local motion patterns of EXP, CCW, CON, CW, and combinations
thereof. Boundaries between motion and no motion appear mainly as local CCW and CW and CON is detected locally for the people streams which
indicates their slow down or negative speed gradient (deceleration). d) Globally detected motion patterns show a weak activation of the CON pattern
that is centered in the image plane. e) Motion transparency appears at the narrow passages and 90u turns. f) At the same regions the image speed is
slow. g) A combination of transparency and slow speeds shows ‘‘danger zones’’. h) At high density the lower room is completely filled with people. i)
An image frame of the video with higher people density. j) Local motion patterns of CW and CCW appear at boundaries of motions and the pattern
of CON is now spread over the entire area that corresponds to the lower room. k) This increased area that has an CON velocity gradient yields an
increased activation of the global CON motion pattern compared to the activation of the CON pattern for low density in d). l) Again, motion
transparency appears at the narrow passages. m) Motion speeds are slow at the passages. n) ‘‘Danger zones’’ for the high density scenario.
doi:10.1371/journal.pone.0053456.g005
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detector with a performance comparable to that of humans can

routinely inspect videos like several human inspectors who watch

the same videos. Several features and their combination are, in

turn, indicative to mark potentially critical image locations as

regions-of-interest for further more focused inspection by humans.

We emphasize here that we investigate only a subset of all

potentially dangerous behaviors. In particular, we consider people

crowds and focus on situations in which flow is jammed so that

zero motion eventually occurs and that of merging people streams

during an evacuation. In those situations the appearance of motion

leads to transparent motion, a temporal reduction of motion

speed, and characteristic spatial motion patterns. The analysis of

such spatio-temporal configurations and combinations of it can be

utilized to monitor public places, streets, or convention centers,

and to signal the emergence of suspicious or potentially hazardous

situations which could alert human inspectors to take a closer look

at those indicated spots.

Our model has been described in full detail in [22], [42]. It

incorporates different stages of processing related to different cells

in areas closely resembling the functionality of visual cortex in

primates. In a nutshell, the model consists of stages for initial

motion detection and subsequent integration and segregation.

Furthermore, in close relation to intermediate-level cortical

processing large-scale cells, or filters, are employed that integrate

the spatial patterns of input motion in different configurations.

This model is not specifically adapted to a particular spatial

resolution of the input and is, thus, able to process videos of

different resolution including different details of peoples in crowds.

One property different from many other models [30], [36], [49],

[50], [51], [52], [53], [54] is the ability to process opaque motion

and motion transparency which we suggest is important to fully

characterize crowd motion at low spatial resolution. Our model

explains various findings of perceiving motion transparency [22].

Processing of motion transparency is the key function that

motivated us to apply the model framework to videos showing

pedestrians or crowds in public spaces.

We suggest that motion transparency appears in crowd

behavior. Lanes of opposite dot motions underlie a perceptual

transition from segregated opaque motion organized in clearly

distinguishable lanes into transparent layers of oppositely moving

dots. This perceptual transition from opaque to transparent

motion is a function of lane width [11]. Our model successfully

explains the categorical perception of motion transparency

generated by lanes of motion as well as other examples of motion

transparency [22]. Therefore, we suggest that our model is capable

to detect transparent motion for motion crowds in videos as would

be perceived by human observers. To verify this suggestion we

applied our model to scenarios of different crowd behaviors. We

simulate motion crowds using the social force model [7] to acquire

a reference. In addition, processing capabilities of our model for

captured as well as rendered videos are demonstrated with publicly

available videos. Captured video data shows non-dangerous crowd

behavior in which people cross when they target different goal

directions. If crowds move in opposite directions they form lanes of

alternating motion directions of different widths depending on

crowd density and available space. The variation of lane width

leads to a perceptual transition of opaque motion to motion

transparency, which depends on the crowd density and the spatial

resolution of the sensor. Our model successfully handles this

transition so that the motion representation is still capable of

distinguishing non-dangerous from potentially dangerous situa-

tions, or a development thereof. Not all non-dangerous crowd

behavior leads to motion transparency. When people target a

single goal location and come from different directions so that a

limited space has to occupy more and more people, then the

crowd density increases. Depending on whether people can leave

through an open funnel or cannot escape from this location several

movement patterns occur. These patterns were detected by

motion-sensitive cells that are selective to different characteristic

patterns (such as contraction, clockwise or counterclockwise

rotation, etc.) and by mechanisms that measure velocity gradients.

Table 2 gives an overview to summarize motion crowds and their

behavior.

In the following subsections we elaborate on crowded scenes

and their coordinated or uncoordinated motion. We discuss cases

of non-dangerous crowd behavior which exhibit motion transpar-

ency. We explain human perception of motion transparency, a

motivation for our model development. Then, we discuss prior

work in the context of our model and explain why the tracking

approach is contrary to the concept of motion transparency.

Finally, a fully automated model that includes learning and the

integration of contextual cues is outlined.

4.1 Motion Transparency Occurs for Non-dangerous
Crowd Behavior

Motion transparency appears for non-dangerous or common

crowd behavior but not always. Several sequences of non-

dangerous crowd behavior do not show motion transparency but

coherent motion, e.g. when people exit in one direction. Here, we

characterized a subset of crowd behavior that is described as

incoherent due to the lack of an overall superimposed organization

onto motions [24]. Examples of incoherent crowded scenes are the

pedestrian motion at crosswalks, movements in a waiting/

exhibition hall, or in general motion in an open area where

individuals pursue approach of goals in different directions. In

contrast, crowded scenes that appear coherent are moving cars on

a highway, pilgrims at Mecca, runners in a marathon, or the

cheerleaders following the choreography of a dance. All these

examples share guidance or restriction of behavior in terms of a

common objective or physical boundaries for the motion. For

instance, individuals with a common objective could have the

same driving, walking, or running direction that is constrained by

external bounds, e.g. the highway, building, or runway.

4.2 Dangerous Crowd Behavior
In various contexts of crowded motion, non-dangerous versus

dangerous behavior correlates with coherent versus incoherent

motion, see also Table 2. Videos that are categorized to contain

signs of dangerous behavior [55] show fights of peoples, or

demonstrations that degenerate. In choreographed examples

[56] dangerous behavior is characterized by faster uncoordinat-

ed and incoherent motion rather than zero motion. As pointed

out above, in our analysis we describe a subset of all possible

dangerous behaviors, that of a jammed flow which corresponds

to zero motion and that of merging people streams during an

evacuation that corresponds to the combined occurrence of

motion transparency and slow motion speed. To monitor public

places like sidewalks, waiting halls, etc. with low resolution this

‘no motion’-scenario of people seems a relevant case that is also

produced by the dynamics of the social force model for

pedestrian behavior [7].

We did not use captured videos of dangerous crowd behavior

because this data is very rare and usually not publicly available

[57]. For that reason we started our investigations by generating

ground truth data under controlled conditions to study the

different appearances of crowd behavior. Using the social force

model [2], [40] we were able to define various spatial

environments with different numbers of people (particles in
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the force nomenclature) as well as their movements. Such a

parametrical study enabled us to generate non-dangerous as

well as dangerous behaviors, such as clogging when a crowd is

forced to leave through narrow passages. The important

observation was that different behavior and transitions between

them lead to appearance patterns in the crowd motion that are

detected by the employed mechanisms in the model architec-

ture, such as the detection of motion transparency, the detection

of negative speed gradients, as well as motion patterns. In the

social force model scenarios a birds-eye view position has been

accomplished with a spatial resolution and distance where

persons have a size of at least 10 pixels. This made the

appearance more realistic than a simple point process for each

particle. This spatial resolution allowed us to directly refer to

the synthetic video data of crowds from [41] and real-life videos

and to process them by using the same parameter setting in the

model architecture.

In general, dangerous behavior depends on context [57], [58].

For instance, a running person in a mall could be a thief whereas

the same person running outside on the sidewalk is more likely to

be a jogger. In an airport it is even more ambiguous: There a

running person can be either heading for the gate or trying to

escape. These examples illustrate that the same behavior of

running in different environments and settings can have different

implications. This context-dependency challenges the design of

automated systems. Certain local patterns of motion receive a

different interpretation depending on the context that is defined by

meta-information about the particular scene or event where the

video is taken or the particular daytime. For this reason, we

focused on the extraction and characterization of motions in

videos and excluded the extraction of context information.

However, our model is capable of including context-driven biases

into the processing of motion. In a nutshell, those filter responses

in the processing cascades that are compatible with a given motion

direction or speed (feature) or which appear at a particular spatial

position can be modulated and, thus, amplified (compare equation

(6b) and the subsequent description). Such a modulation or

attention bias leads to an enhancement of the corresponding filter

activations such as their contrast would have been increased

(compare [22], [59]). In sum, dangerous behavior depends on

context. Our model allows for the integration of biases to model

context information.

4.3 Our Model Relates to Human Perception of Motion
Transparency

Multiple stimulus properties matter for the generation of a

motion transparency percept: First, the relative spacing between

stimulus points moving independently matters, while these points

move back and forth temporally. For a vertical and horizontal

spacing below 0.2u of visual angle, flicker motion is perceived,

whereas dot spacing greater than 0.2u leads to motion transpar-

ency [60]. Second, the organization of stimulus parts at large

matters. If stimulus parts are organized in lanes of alternating left/

right motion direction with a width above 0.05u of visual angle,

‘‘striped motion’’ is perceived (i.e. opaque motion in lanes of

opposite motion directions), if the lane width decreases below this

critical width, motion transparency is perceived [11]. Third, the

distance between motions in polar space matters. Below <20u
angular difference, a single motion is perceived. This single motion

is computed as the mean of the two presented motions. In the

range of <30u to <120u the angular difference between the

motions appears larger than its veridical value. For an angular

difference above <120u their veridical value is perceived [38].

Fourth, the number of motions matters. Without directing

attention to any motion direction, one randomly chosen motion

direction out of three can be detected at a 75% rate. Because the

motion direction is chosen by random, it is assumed that

participants actually perceived all three motion directions.

Directing attention to only one pre-cued motion direction allows

for its correct detection or rejection among four others with a 75%

rate [39]. Our model achieves similar results as humans for the

latter three experiments [22]. In the context of the application to

the processing of crowd behavior, these model computational

results are useful as well. Since the majority of computational

motion approaches cannot properly handle motion transparency,

the disambiguation and separate representation of multiple

motions provides an additional feature. Given the experimental

data, an automatic mechanism could be parameterized so that it

consistently analyzes scenes at a high level of attention priming.

Human observers can keep such a level of focused attention for no

more than 20 minutes. The model performance on the exper-

imental data furthermore allows justifying which types of motion

patterns the model architecture can deal with and thus serve as

ground truth performance evaluation.

4.4 Relation to Prior Work
Our model presents a biologically inspired technique for the

detection of dangerous crowd behavior which is an alternative to

prior work as described in reviews [61], [62]. Abnormal motion

behavior is characterized in [25] by using motion heat maps

derived from regions with non-zero motion energy. These define

regions-of-interest in which motion direction information is

extracted. The classification of crowd motion patterns is based

on the comparison of normalized histograms against reference

distributions. Similarly the algorithm by Cao et al. [26] estimates

optic flow from videos and analyzes the motion directions.

Information theoretic measures for direction histograms in

different image regions over time are used to indicate abnormal-

ities in spatio-temporal patterns. Unlike these approaches, we do

not rely on the distributions of motion information which

accumulate motion estimates from a spatio-temporal region.

Rather, we employ filtering and non-linear normalization

computations in order to extract reliable motion features. We

show the distributions of directional information but for local

patches that appear opaque or transparent. Our normalization

Table 2. shows examples of coordinated and uncoordinated motion for dangerous and non-dangerous crowd behavior.

Non-dangerous Dangerous

Coordinated motion (e.g. highway, political rally,
marathon, hallways, cheerleader dance)

Coherent single motion or coherent multiple
motions (Fig 3d–f and Fig 4)

Incoherent single motion or coherent multiple
motions with slow speed (Fig 5)

Uncoordinated motion (e.g. crosswalks, waiting/
exhibition hall, sidewalk)

Coherent multiple motions (Fig 3a–c, 3g–j,
and Fig 2e)

No motion of people (Fig 2f) or incoherent single
motion

doi:10.1371/journal.pone.0053456.t002
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mechanisms can explain properties that a simple histogram based

approach cannot replicate. Experimental evidence as discussed

above suggests an interaction between motion components when

perceiving motion transparency. Motion components of small

angular difference are attracted and those of medium angular

difference are repulsed. This can be explained by the employed

center-surround interaction incorporated into our normalization

mechanism. In addition, through the embedding of the normal-

ization mechanism into feed forward and feedback signaling, the

signal-to-noise ratio of temporally consistent motion components is

enhanced as it essentially gathers ‘‘evidence’’ for motion compo-

nents over multiple frames. Such interaction across frames is

absent in the histogram based approach.

Yu and coworkers [27] proposed a scheme in which motion

distributions (magnitude, direction) are segmented on the basis of

treating motions as dynamic texture features. For different

direction sets the motion energies are grouped over different

spatial locations to extract dominant directional energy distribu-

tions. Such groupings also occur in our approach as a result of

recurrent processing. Local competitive interaction among veloc-

ities allows for the grouping of noisy but similar motions into a

single motion represented while the co-occurrence of two very

different motions are segregated and represented as two motions.

The motion patterns detected by selective cells in model MSTd

may also be considered as textures of spatio-temporal appearances

of motions in a given image region. These are, however, different

from a static image that considers the local grouping directions as

purely spatial arrangement. We argue that texture (and its spatial

frequency content, or density) alone is insufficient to reliably detect

and analyze crowd behavior since the temporal feature dimension

is no longer available. Temporal changes in texture (or crowd)

density are indicative for a potential development of hazardous

situations (compare [2], [6], [8], [40]). In addition, by taking this

temporal dimension, alias motion, into account allows for an

analysis of the development of pictorial crowd patterns. The

developments of motion contraction of the transition from

transparent motion into an indistinguishable compressive flow

pattern would be invisible in static textures. Other proposals [63]

used a similar approach. This approach is based on the statistics of

the local spatio-temporal motion gradients (mean and standard

deviation) that are used by a Hidden Markov Model (HMM) to

detect irregular motion patterns. Our method is based on the

estimation of optic flow as well; however, we did not apply any

(statistical) learning model atop of the extracted motion represen-

tation. Instead, we evaluated the computed velocity distribution

based on its modality: A flat distribution relates to ‘no motion’, a

unimodal distribution indicates the presence of a ‘single motion’,

and a multimodal distribution corresponds to the simultaneous

occurrence of ‘multiple motions’. The latter has been described as

motion transparency.

Still other methods apply multi-tracking to follow many people

of a crowd [24], [64]. Ali and Shah [64] included into their

tracking algorithm forces defined by three fields. First, the static

floor field has sink points at regions of attraction, e.g. exits.

Second, the dynamic floor field encodes the behavior of all people

within the neighborhood of oneself. Third, the boundary floor

field is repellent at no-go spaces, e.g. walls. These three force fields

are incorporated into a probabilistic framework for tracking. This

approach is based on optic flow detection that does not account for

motion transparency. Instead of tracking individuals in the crowd,

we characterize regions of the image that contain a group of

people with individuals moving in opposite direction as transpar-

ent. Furthermore, tracking of single pedestrians or detection of

their outline requires some minimal size, often not provided in

crowded motion data. For instance, available videos have a

resolution of 4806360 pixels and pedestrians encompass approx-

imately 10610 pixels, but only blurred and combined with

occlusions that lead to accretion and deletion between a pedestrian

in the foreground and those in the background. Thus, a pedestrian

of this size might be only partially visible at each time. Rather than

trying to segment pedestrians and compute their entire shape from

a low-resolution image we suggest that image motion in such

videos is better characterized by motion transparency, where

stimulus parts move independently but are in close spatial

neighborhood. A multimodal distribution is generated when

integrating these multiple coherent motions independently over

a larger area of visual space. This distribution represents multiple

motions and, thus, motion transparency.

Johansson et al. used image processing in combination with the

social force model to automatically analyze video streams [6]. They

assume a spatial resolution large enough to fit circular patterns, the

head of people, to initially detected contrast edges. These circles are

temporally tracked to estimate and represent the motion of people.

This model is used to estimate crowd density, velocity, and flows and

to identify critical indicators for the development of danger in crowd

behavior. Johansson et al. [6] identified crowd pressure as a feature

derived from combining the variance of speeds and density as

signature for hazardous situations. Another sign of dangerous crowd

behavior are stop-and-go-waves that suddenly appear within

laminar motions. The appearance of slow-down is expressed by

decelerations or a negative motion speed gradient in close proximity

to regions of dangerous behavior that we identified by the combined

presence of slow motion speed and motion transparency. Note that

slow-down can also occur due to viewing perspective which has

been suggested to correct for in [27]. In our model we did not aim

for a transformation of the viewing perspective toward a top-down

view assuming the image plane being fronto-parallel to the ground.

Rather, we, suggest that our model provides motion features which

may serve to highlight image regions of dangerous behavior. In a

different context, this could be interpreted as a specialized attention

mechanism that operates over the space and feature domain [65],

[66] and which might provide an assistive tool for highlighting

potentially dangerous crowd behavior to video inspectors.

4.5 Learning to Distinguish Dangerous from Non-
dangerous Crowd Behavior

The motion representation that is extracted by our model

enables learning to discriminate between security relevant and

irrelevant behavior in a crowd of soccer fans. In the work of

Endres et al. [57] the generation and labeling of data was

performed in cooperation with experts. However, most other data

available or produced did not include expert knowledge and the

validity of its labeling is questionable. Lacking proper data we did

not include learning in our modeling effort.

The motion representation extracted by our model can serve as

basic feature for learning. Thereby, the spatial distribution of

detected motions and their coherence among several frames are

expected to be key discriminant features for detectors. However,

such a proposed detector has yet to include context-dependent

knowledge from other sources than visual motion.

Conclusions
We suggested that motion transparency occurs in spatio-

temporal patterns of motion crowds in non-dangerous and

dangerous behavior. When motion transparency and low image

speeds occur together, this indicates potentially dangerous

behavior. We analyzed several videos showing non-dangerous

and dangerous crowd behavior for which our model detected
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regions of motion transparency. The rationale to suggest a transfer

of our biologically inspired model for visual motion processing

came from its capability to explain various phenomena in human

and animal motion perception. Our model is in agreement with

several psychophysical [11], [39], [60] and physiological findings

[67] which studied, for instance, stylized display configurations

similar to lanes of opposite motion directions (compare simulation

results in [22], [23]). Other configurations of motion transparency

appear when random-dot patterns are overlaid moving in

directions different enough to separate them.

In sum, we provide a visual front-end for processing video data as it

relates to human perception of visual motion. We conclude that

motion transparency in combination with low image speeds indicates

dangerous behavior in motion crowds. Other motion features, such as

locally defined speed gradients and globally defined motion patterns

indicate where danger is emerging in motion crowds.

Supporting Information

Figure S1 Shows the simulation of velocity gradients for
the scenarios of an open and partially closed walkway
(a–d) and three real-life videos (e–j). Details are explained in

the supplement Text S1.

(TIF)

Figure S2 Shows the simulated velocity gradients for
the crosswalk of peoples at three levels of density.
Details area explained in the supplement Text S1.

(TIF)

Text S1 Provides a description for the additional
simulations of velocity gradients for the 1st, 2nd and 3rd

scenario. These scenarios are pedestrians walking on an open

and partially closed walkway, real-life videos showing crowded

motion, and people flows for a crosswalk at three levels of density.

(DOC)
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