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The uncertainty associated with paradigmatic families has been shown to correlate with

their phonetic characteristics in speech, suggesting that representations of complex

sublexical relations between words are part of speaker knowledge. To better understand

this, recent studies have used two-layer neural network models to examine the way

paradigmatic uncertainty emerges in learning. However, to date this work has largely

ignored the way choices about the representation of inflectional and grammatical

functions (IFS) in models strongly influence what they subsequently learn. To explore

the consequences of this, we investigate how representations of IFS in the input-output

structures of learning models affect the capacity of uncertainty estimates derived from

them to account for phonetic variability in speech. Specifically, we examine whether

IFS are best represented as outputs to neural networks (as in previous studies) or

as inputs by building models that embody both choices and examining their capacity

to account for uncertainty effects in the formant trajectories of word final [5], which

in German discriminates around sixty different IFS. Overall, we find that formants are

enhanced as the uncertainty associated with IFS decreases. This result dovetails with

a growing number of studies of morphological and inflectional families that have shown

that enhancement is associated with lower uncertainty in context. Importantly, we also

find that in models where IFS serve as inputs—as our theoretical analysis suggests they

ought to—its uncertainty measures provide better fits to the empirical variance observed

in [5] formants than models where IFS serve as outputs. This supports our suggestion

that IFS serve as cognitive cues during speech production, and should be treated as

such in modeling. It is also consistent with the idea that when IFS serve as inputs to

a learning network. This maintains the distinction between those parts of the network

that represent message and those that represent signal. We conclude by describing

how maintaining a “signal-message-uncertainty distinction” can allow us to reconcile a

range of apparently contradictory findings about the relationship between articulation and

uncertainty in context.

Keywords: linguistic knowledge, discriminative learning, cue-to-outcome structure, morphological structure,

phonetic characteristics, reduction, enhancement, context
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1. INTRODUCTION

The phonetic characteristics of speech signals are highly variable.
Separating the variability that is simply noise from that which
is informative is central to our understanding of speech. Some
parts of this problem have been solved. It is known that variability
occurs in relation to coarticulation (e.g., Öhman, 1966; Zsiga,
1992; Magen, 1997), speaking rate (e.g., Lindblom, 1963; Gay,
1978), syllable position (Pouplier and Hoole, 2016), prosody
(Mooshammer and Fuchs, 2002; Mücke et al., 2009) and even the
idiosyncrasies of speakers (e.g., Tomaschek and Leeman, 2018;
Gittelson et al., 2021). By contrast, there is still much debate
about the way that representations of linguistic knowledge—
and the differing levels of uncertainty associated with this
knowledge—serve to co-determine articulation, and in turn the
phonetic characteristics of speech. This is especially the case
when it comes to the representation of words within inflectional
paradigms and the way that the uncertainty associated with
different word-forms correlates with fine phonetic detail in
the speech signal. Some studies report effects of reduction
associated with lower paradigmatic uncertainty—mirroring
findings within the information theoretic and the Smooth Signal
Redundancy Hypothesis framework. By contrast, work within the
Paradigmatic Signal Enhancement Hypothesis framework reports
the enhancement of phonetic characteristics (these findings are
discussed in detail below).

In what follows, we investigate these effects by addressing
the relationship between the uncertainty associated with the
inflectional functions of German word-final [5], as in the word
Lehrer [’le:.K5] “teacher”, and the phonetic characteristics of [5].
This phone discriminates roughly sixty different grammatical
and inflectional functions in German, in morphologically simple
and complex words, making it an ideal test bed for this research.

One potential confound in the earliest studies investigating
the effects of sublexical relationships on articulation lies in their
operationalizations of paradigmatic relations, which were based
on theoretically motivated definitions of word-internal structure.
To avoid having to make these kinds of assumptions, we follow
the approach of Tucker et al. (2019) and Tomaschek et al.
(2019) who investigated these phenomena from a discriminative
learning perspective. In this approach, which employs a simple
neural network trained with an error-driven learning algorithm
(widely known as the delta-rule), paradigmatic uncertainty is
an emergent property within lexical systems, which develops
as the individual items it comprises are learned. In doing this,
we shall also address some often neglected questions that this
approach raises. Psycholinguistic studies using neural networks
have typically ignored the way that implementational choices
concerning the relationships between inputs and outputs in
a network can shape its performance. However, as Bröker
and Ramscar (2020) demonstrate, decisions about the input-
output structure of computational learning models serve to co-
determine what these models actually learn. This in turn affects
researchers’ interpretations of the performance of models in
relation to their theoretical contribution. Accordingly—and in
line with the topic of this special issue—a further aim of this work
will be the investigation of the kind of input-output structure that

is most appropriate for the representation of morphological and
inflectional paradigms. Specifically, we shall examine whether
inflectional functions of [5] are best characterized as serving as
inputs to neural networks or as their outputs, as implemented in
Tucker et al. (2019) and Tomaschek et al. (2019).

To analyze the performance of our network models (which
we also describe in detail below), we use simulated activations
as a measure of the uncertainty associated with each inflectional
function. These are regressed against the phonetic characteristics
of [5] in order to assess their capacity to predict the phonetic
characteristics of the speech signal. We show an enhancement of
[5]’s phonetic characteristics associated with lower paradigmatic
uncertainty. Critically, we find that when inflectional functions of
[5] serve as inputs to the learning network, uncertainty associated
with these functions obtained from the network is a better
statistical predictor for [5]’s phonetic characteristics than when
inflectional functions serve as outputs. Accordingly, the present
study contributes to a line of research that investigates how
uncertainty affects speech production through a combination of
computational modeling of learning and an examination of the
predictions of these models for the phonetic characteristics of
actual speech (for example Baayen et al., 2019; Tomaschek et al.,
2019; Tucker et al., 2019; Stein and Plag, 2021; Schmitz et al.,
2021b in the present special issue).

We begin by discussing the empirical and theoretical
background of this study, as well as previous work by Tucker
et al. (2019) and Tomaschek et al. (2019) that we seek to further
examine. We then describe our simulations and analyses before
discussing the theoretical and computational implications of
our results.

2. BACKGROUND

2.1. Phonetic Characteristics and
Paradigmatic Probability
It is well-established that phonetic reductions occur in contexts
where syntagmatic uncertainty is low. Lower uncertainty has
been shown to be associated with shorter words, syllables and
segments (Aylett and Turk, 2004; Cohen Priva, 2015) and
more centralized vowels (Wright, 2004; Aylett and Turk, 2006;
Munson, 2007; Malisz et al., 2018; Brandt et al., 2019). This has
been demonstrated by studies that operationalized uncertainty by
means of word frequency (Wright, 1979, 2004; Fosler-Lussier and
Morgan, 1999; Bybee, 2002), conditional probability (Jurafsky
et al., 2001a,b; Aylett and Turk, 2004; Bell et al., 2009), or
informativity (Cohen Priva, 2015; Schulz et al., 2016; Malisz et al.,
2018; Brandt et al., 2019, 2021). Aylett and Turk (2004, 2006)’s
Smooth Signal Redundancy Hypothesis explains these reduction
phenomena from an information theoretic perspective (Shannon,
1948), arguing that the amount of information in the speech
signal is balanced against the amount of information conveyed
at the syntagmatic level. These systematic findings sparked a
line of research that investigated whether equivalent changes
in phonetic characteristics can be found when uncertainty is
operationalized within other contexts, such as morphological and
paradigmatic families.
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However, while there is an abundance of evidence showing
a systematic relation between uncertainty within these contexts
and the phonetic characteristics of speech, when it comes
to uncertainty within morphological families, the effects of
this relationship seems to run in the opposite direction to
those reported at the syntagmatic level. Numerous studies
have shown lower uncertainty within morphological families
to be associated with enhancement. This is reflected in longer
word durations (Lõo et al., 2018) and consonant durations at
compound boundaries (Bell et al., 2019), in longer interfixes
in Dutch compounds (Kuperman et al., 2007), in more
enhanced articulatory positions in stem vowels of English verbs
(Tomaschek et al., 2021), in lower deletion probabilities of
the word final [t] in Dutch words (Schuppler et al., 2012)
and in Dutch regular past-participles (Hanique and Ernestus,
2011), and in less centralized vowel articulations in Russian
verbal suffixes (Cohen, 2015). Kuperman et al. (2007) have
proposed the Paradigmatic Signal Enhancement Hypothesis to
provide a theoretical formalization of these patterns of findings,
arguing that phonetic enhancements are a consequence of the
greater levels of paradigmatic support that these voicings receive.
However, while it might may seem that the findings just discussed
appear to contradict one another, it is not entirely clear whether
they actually do.

This is because although the studies just described do appear
to support the Paradigmatic Signal Enhancement Hypothesis,
other studies have found an opposite effect, demonstrating
an association between lower uncertainty in morphological
and paradigmatic families and reduction. This is reflected, for
example, in higher deletion probability of [t] in derived adverbs
(e.g., swiftly) (Hay, 2004) and in Dutch irregular past-participles
(Hanique and Ernestus, 2011), in shorter [@] durations in Dutch
prefixes (Hanique and Ernestus, 2011), in shorter duration of
English prefixes and their consonants (Ben Hedia and Plag, 2017;
Plag and Ben Hedia, 2017), and finally, in more centralized [-i]
and [-o] when they serve as suffixes in Russian (Cohen, 2015).
The different effects associated with paradigmatic uncertainty—
enhancement or reduction—emerge independently of the kind
of probabilistic measure used to operationalize uncertainty in
the domain of morphological and paradigmatic families. That is,
regardless of whether paradigmatic uncertainty is operationalized
as family size, as word frequency divided by the summed
frequency of all the words in a paradigm, or as the frequency of a
morphologically complex word divided by its base frequency.

Thus far in this discussion, we have treated the idea of
uncertainty in linguistic knowledge as if it is an objective
matter of fact. There are, however, good reasons to believe
this is not the case. First, because all of the measures used to
operationalize the uncertainty associated with different kinds
of knowledge are based on theoretical assumptions. Second,
because these theoretical assumptions typically disregard the fact
that all morphological knowledge is learned. Since languages are
learned, it necessarily follows that the word-internal structures
and distinctions posited by any given theory are unlikely to
correspond exactly to the structures and distinctions that have
actually been learned by a given speaker at any given point
in time.

Tucker et al. (2019) and Tomaschek et al. (2019)’s solution
to this problem was to model learning by means of a two-layer
neural network that was trained with an error-driven learning
rule (the delta rule Rescorla and Wagner (1972), Rumelhart and
McCelland (1987), provided by the Naive Discriminative Learner
package in R, Arppe et al., 2018). If trained in a naive way,
the neural network does not explicitly embody the structures
of linguistic knowledge that are typically assumed in psycho-
linguistic theories. Rather, the model’s representation of these
structures emerges in bottom-up fashion, as a result of training
the network. As a consequence, knowledge in the model is
represented by the distribution of its connection weights such
that “morphological structure” emerges gradually, in gradient
fashion, as the model is trained1.

Tucker et al. (2019) and Tomaschek et al. (2019) used network
measures to operationalize uncertainty within a morphological
paradigm. The results of these studies showed lower uncertainty
to be associated with longer stem vowel duration in regular
and irregular English verbs and longer duration of word final
[s] that encodes multiple inflectional functions (plural noun,
genitive, second person singular verbs, etc.). Accordingly, these
results provided evidence to corroborate the claim that phonetic
enhancement is associated with lower paradigmatic uncertainty.

Because the present study builds on the work by Tucker et al.
(2019) and Tomaschek et al. (2019), we shall need to discuss
their models and input-output structures in detail. However,
before we can do so, it is first important that we flesh out the
theoretical background to this work. This is because, as we noted
above, we do not only aim to examine the relation between
paradigmatic uncertainty and articulation here. Our goal is also
to provide a theoretical examination of the way that the various
factors that contribute and provide evidence for these effects are
best represented in neural network models (see also Bröker and
Ramscar, 2020; Ramscar, 2021a).

Accordingly, we shall begin by discussing how previous
computational models of speech production have addressed these
issues, and how they were used to make predictions about the
phonetic characteristics of speech. Then, since both Tucker et al.
(2019) and Tomaschek et al. (2019) are rooted in the theory of
discriminative learning, a cognitive theory of how language (and
actually any kind of behavior) is learned (Ramscar and Yarlett,
2007; Ramscar et al., 2010, 2013b; Ramscar, 2019, 2021b), we shall
examine the constraints that this theory imposes on the way the
input-output structure of models is configured.

2.2. Computational Models of Speech
Production
Researchers in the twentieth century collected a great deal
of information in the form of speech errors and data from
controlled psycho-linguistic experiments. This information then
informed theoretical speculations about the nature of the speech
production process (e.g., Fromkin, 1971; Levelt et al., 1999).
While these psycho-linguistic theories are useful at a general

1The way that knowledge about input-output structures is represented in a
network trained by the error-driven learning rule is neatly demonstrated by Hoppe
et al. (2022).

Frontiers in Psychology | www.frontiersin.org 3 April 2022 | Volume 13 | Article 754395

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Tomaschek and Ramscar Representation and Phonetic Characteristics

level, they are subject to the standard limitations of all verbal
theories. One of the limitations is that they are open to
interpretation and that they are often vague when it comes
to the specific details of processing. Computational models,
such as those presented by Dell (1986) and Roelofs (1997)
ameliorate these problems of vagueness. These models force
language researchers to make definitive commitments regarding
the detailed structure of processes, regarding the kinds of
algorithms involved and, of importance to the present study,
regarding the structure of the representations that are required
to model speech production. In return for these commitments,
researchers are not only able to eliminate some of the vaguenesses
in theory, they are also able to obtain quantitatively testable
predictions. While most research on computational models of
speech production has focused on the structure of models at an
algorithmic level, the structure of the input and output to/from
these models has been largely taken for granted. However, the
performance of computational models does not only depend on
their individual architectures and algorithms. The representation
of knowledge in the model can also have a critical bearing
on its behavior. That is, the structure of its inputs (on which
its predictions are based) and its outputs (what it predicts)
can systematically change how a model performs. Indeed, as
Bröker and Ramscar (2020) recently demonstrated, depending
on the representational assumptions made, different models
of the same empirical result can provide support for psycho-
linguistic theories that make opposing claims about the nature
of learning and processing.

The relation between input-output structures and the
subsequent interpretation of performance become further
apparent when we consider computational models such as
WEAVER++ (e.g., Roelofs, 1997) or the Spreading-Activation
Theory of Retrieval (Dell, 1986; Dell et al., 2007, and follow-up
models). These models use a network framework that reflects
a common conceptualization of speech production in psycho-
linguistics, assuming it to be a sequential, transformational
process. At the highest level, the production of spoken words
is initiated by information that represents the semantics of the
words to be uttered. These in turn activate discrete information
at lower levels of processing such as morphemes, syllables, and
finally phonemes2. In terms of the representation of linguistic
knowledge, this means that the complexity of information within
these models fans out into more and more fine grained units.
This situation is illustrated in Figure 1B where “label” can
be taken as a placeholder for any kind of higher level units
of information—e.g., inflectional functions or morphological
contrast—and “feature 1”, “feature 2”, etc. can be regarded as
a placeholder for lower level units—e.g., phones. This raises
a question: How reasonable is this flow of information from
the perspective of learning theory? We address this in the
next section.

2Both models stop at the phonological representation and outsource the problem
of articulatory movements to theories of articulation and their computational
implementations such as Articulatory Phonology/Task Dynamic framework
(Browman and Goldstein, 1986; Saltzman and Kelso, 1987) or DIVA (Guenther,
2016).

2.3. Linear Order and Discriminative
Learning
It seems clear that where systematic patterns of variance in
production have been seen to relate to morphological and
paradigmatic structure, these effects must be a product of
what speakers have learned. The mechanisms that support
this learning thus offer an obvious source of explanation for
the patterns of behavior observed. While different kinds of
mechanisms have been proposed for language learning (see e.g.,
Ellis, 2006), research has revealed that the majority of human
(and animal) learning mechanisms are based on prediction and
prediction-error, i.e., error-driven learning (O’Doherty et al.,
2003; Schultz, 2006).

Rescorla and Wagner (1972)’s implementation of the delta
rule defines a simple error-driven learning algorithm that is
often used in psychological research, and was used by Tucker
et al. (2019) and Tomaschek et al. (2019) to train their two-layer
networks (a detailed description is provided in their Appendix)3.
Its algorithm implements a systematic learning process that
aims to produce a set of mappings that best discriminate the
informative, predictive relationships between a set of inputs and a
set of outputs given a training schedule. Because of this, Ramscar
et al. (2010) suggest that from a computational perspective
the algorithm is best understood as describing a discriminative
learning mechanism4.

Because prediction is a time-sensitive process, the order in
which experiences occur is a strong determinant of the kind
information that can be learned about cue-outcome relationships
through error-driven learning (Ramscar et al., 2010; Arnon and
Ramscar, 2012; Hoppe et al., 2020; Vujovic et al., 2021). Speech
comprises an ordered series of gestures. These yield an ordered
series of phonetic contrasts (Nixon and Tomaschek, 2020) that
represent an ordered series of linguistic events (Dell et al.,
1997; Grodner and Gibson, 2005). Given that it seems clear
that language is learned through an error-driven mechanisms it
follows that speech production is likely to be particularly sensitive
to these sequential/time-sensitive effects.

However, although speech is clearly ordered, in its use in
communication it supports “displaced reference” (Hockett and
Hockett, 1960). That is, it allows for reference to things that are
not present in the here and now. One consequence of this is that
the constraints that are imposed by predictive relationships in
language use are not always obvious. This is especially the case
when it comes to the relations between form and meaning in
linguistic morphology (Ramscar et al., 2010; Ramscar, 2013; see
also Ramscar, 2021a for a general review of this issue in relation
to morphology).

To explain these constraints, it is first important to note that
because prediction and prediction error modulate the values of

3The algorithm Rescorla and Wagner (1972)’s implementation of the delta rule is
simply the linear form of an earlier rule proposed by Widrow and Hoff (1960),
Rumelhart and McCelland (1987), and this in turn is formally equivalent to the
delta-rule used in connectionist networks (Sutton and Barto, 1981).
4This point also applies to the error-driven learning algorithms found at the heart
of most connectionist/neural network model (Jordan et al., 2002), and Bayesian
models of learning (e.g., Daw et al., 2008).
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FIGURE 1 | The possible predictive relationships labels (in morphological terms, series of words and affixes) can enter into with the other features of the world (or

other elements of a code). A feature-to-label relationship (A) will facilitate cue competition between features, and the abstraction of the informative dimensions that

predict morphological contrasts (e.g., nouns and plural affixes) in learning. By contrast, a label-to-feature relationship (B) will be constrained to simply learning the

probability of each feature given the label.

cue-outcome relationships, these values are not determined by
simple co-occurrence. Rather, when multiple cues to an outcome
are present, a given cue’s value will depend on a competitive
process that weighs the informativity of each cue in relation to
the current uncertainty of a learner. This situation is illustrated
in Figure 1A, where multiple present features compete for the
prediction of an outcome or a label. Informativity thus takes
into account both co-occurrences between a cue and an outcome
and the non-occurrence of the outcome given the cue. Because
uncertainty is finite, more informative cues gain value at the
expense of less informative cues. In other words, cues compete for
predictive value, a process that leads to the discovery of reliable
cues through the discriminatory weakening and elimination of
other cues (Ramscar et al., 2010; Nixon, 2020).

While this mechanism is simple in principle, in practice it is
an extremely efficientmethod for extracting predictive structures.
For example, in Englishmorphology, plurality is typicallymarked
on nouns by a final sibilant /s/ (whose voicing depends on
phonetic context).

The existence of this predictable regularity has implications
for the informativity of cues about inflectional structures.
Someone learning to predict the form of English nouns will
be presented with a large number of cues to the wide range
of articulatory events that English nouns comprise. Most of
the plural nouns that children encounter will tend to provide
evidence for the highly informative cue-outcome relationship
between plurality and the presence of a final sibilant at the end
of the noun’s form. Because of this, it follows that once children

have begun to learn the cues to nouns, the relationship between
plurality and a final sibilant at the end of nouns can be expected
to be reliably learned. However, because this relationship is not
informative about the subset of irregular plurals, children will
have to learn to ignore this cue in irregular contexts, and learn
the more specific cues to these nouns instead. It follows from this
that until children have learned to ignore the more general cue
to regular plurals, the intermediate representation they acquired
may cause them to over-regularize irregulars (Ramscar and
Yarlett, 2007; Ramscar and Dye, 2009; Ramscar et al., 2013b). In
the same way that children learn to ignore the erroneous cues
to irregulars, they will also learn that the other, less informative
cues associated with regular plurals should also either be ignored,
or associated with other parts of the signal (Ramscar et al., 2010,
2013a). Accordingly, as speech unfolds in time, similar forms of
this process will allow for the many abstract features associated
with verbs and their suffixes (e.g., tense, aspect etc.) to be learned
and extracted in much the same way.

In addition, because learning happens in time, and because the
events signaled in speech occur serially, it follows that linguistic
regularities (or “units”) can serve as both cues and outcomes in
learning. For example, in the sentence ‘The girl plays football’,
“girl” predicts “plays” which in turn predicts “football”. It thus
follows that, when all of these considerations are taken together,
determining exactly what counts as a cue and what counts
as an outcome in speech production is not always obvious.
Moreover, when it comes to modeling, these matters will often
be determined by the specific goals of the model.
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2.4. Cue-to-Outcome Structure in Speech
Production and Implications for
Input-Output Structures
With cue competition, prediction and prediction error in mind,
we can conceptualize speech production and articulation
from the perspective of discriminative learning. As we
discussed earlier, in existing psycho-linguistic theories of
speech production, semantics, inflectional and morpho-syntactic
information should serve as cues for articulation. In addition to
these high level sources of information, there is evidence that
articulation is also driven by articulatory, sensory and acoustic
targets (“articulatory target cues”, cf. Hickok, 2014; Guenther,
2016). From a discriminative perspective, all these cues will
compete simultaneously for informativity about the executed
articulatory gestures during learning. As a consequence, it
follows that during production, these cues will serve to activate
the execution of articulatory gestures. Note that we do not make
any statements about the size of gestural chunks. Following
Guenther (2016), we assume that their size can range between
a single phone, and sequences of multiple phones. Moreover,
even the size of the “same chunk” might vary, depending, for
example, on the amount of practice a particular speaker has
with them (see Tomaschek et al., 2018a,c, 2020; Saito et al.,
2020a,b, for electromagnetic articulography and ultrasound
studies on practice).

It thus follows from the above that when it comes to the
computational modeling of speech, it is these semantic, morpho-
syntactic, inflectional and articulatory target cues that should
serve as the inputs to neural network learningmodels. In the same
vein, the articulatory gestures that will be activated by these cues
should serve as the outputs of these models.

However, Tucker et al. (2019) and Tomaschek et al. (2019)
did not employ this input-output structure to train the networks
described earlier. Rather, following the approach taken by Baayen
et al. (e.g., 2011, 2016b), in the model of Tucker et al. (2019) the
target gestures served as the only inputs—reflected by diphones
of words in the Buckeye Corpus (Pitt et al., 2007). The outputs
of the model then consisted of the tense of the verbs under
investigation, in addition to inflected word forms. This meant
that, from the perspective of our analysis above, the outputs of
this models contained information that actually serves as inputs
when speakers learn to articulate inflections.

Tomaschek et al. (2019) followed Tucker et al. (2019)’s
example regarding the input-output structure, but extended the
input to a five-word window around the targeted word in the
Buckeye corpus. From this five-word window, two kinds of
inputs for the network were extracted. First, diphones from all
words that served as an approximation of acoustic and sensory
targets that serve to initiate articulation in models of speech
production (Hickok, 2014; Guenther, 2016). Second, the word
forms preceding and following the target word. These word
form inputs were assumed to capture the target word’s semantic
embedding—in the same way that studies of distributional
semantics counted the number of co-occurrences between words
within a specific context (Lund and Burgess, 1996; Landauer
et al., 1997; Shaoul and Westbury, 2010; Mikolov et al., 2013),

and in the same way that studies within the framework of “naive
discriminative learning” used word forms to discriminate word
meanings (Baayen et al., 2016a,b). As outcomes, the inflectional
functions encoded by word final [-s] in English were used. In
summary, this meant that the input-output structure provided
to the neural networks in both of these studies did not reflect
the cue-to-outcome structure that actually seems appropriate
to speech production. Instead, some of the information that
was represented as outputs in these models actually appears to
serve as inputs when production is analyzed from a learning
perspective. With this theoretical and empirical background in
mind, we turn to the specific aims of the present study.

2.5. The Present Study
The general aims of the present study are: (a) to train
a two-layer neural network with an input-output structure
that contains the inflectional information relevant to German
word final [5]; (b) to use the resulting network measures to
predict the phonetic characteristics of [5]. Since findings are
contradictory regarding the relationship between uncertainty
within themorphological and paradigmatic context and phonetic
characteristics, it followed that at the outset, the expected
direction of this relationship was unclear.

The network measures might be associated with
enhancement, as predicted by the Paradigmatic Signal
Enhancement Hypothesis (Kuperman et al., 2007) and
demonstrated by previous studies using two-layer network
models (Tomaschek et al., 2019; Tucker et al., 2019); or
they might be associated with reduction, as predicted by the
Smooth Signal Redundancy Hypothesis (Aylett and Turk, 2004;
Cohen Priva, 2015). Accordingly, another aim of this study
was to empirically determine which of these hypotheses is
supported by a model that accurately captures the dynamics of
morphological learning.

Accordingly, the study also aimed to compare the
performance of a two-layer learning network employing
the input-output structure used by Tucker et al. (2019) and
Tomaschek et al. (2019)—where inflectional functions served
as outputs—to one in which these functions were represented
appropriately: as inputs to the output gestures that represent
their realization in speech. We will refer to these learning
networks as the functional output network and functional input
network, respectively. We expected that measures extracted
from the functional input network would be a better predictor of
phonetic characteristics than measures computed on the basis of
the functional output network.

3. METHODS

3.1. Material
The materials for the present study were extracted from the Karl-
Eberhards-Corpus of spontaneously spoken southern German
(KEC, Arnold and Tomaschek, 2016). The KEC contains
recordings of two acquainted speakers having a spontaneous
conversation for 1 h about a topic of their own choosing. Speakers
were seated in two separate recording booths and their audio
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signal was recorded on individual channels so that the audio
of each speaker can be analyzed without the interference from
the other. The KEC contains manually corrected word boundary
annotations and forced-aligned segment annotations obtained
using the Rapp forced aligner (version 2015, Rapp, 1995).

The corpus contains a total of roughly 23,100 word tokens
(1,360 types) that contain a word-final [5]. To make sure the
segment annotations are correct, we manually corrected all
[5] instances in the corpus for which the aligner provided an
annotation. We excluded all instances for which the aligner failed
to perform the annotation. This was the case when there was too
big a mismatch between the expected and actual duration of the
word. In these cases, it was also very hard to annotate the [5]
as it was unclear, due to the strong reduction of the [5]-bearing
word, where to place segment boundaries. We also excluded the
article der from the analysis since its annotation is complicated:
its pronunciation ranges between [de:5], [dE:5], [d5], etc. and it
is at times unclear at what point the boundary between the two
vowels, if present, should be made.

The final data set for the analysis in the present study
contained 10,320 word tokens (870 types). It contained 4,944
content words (e.g., nouns, adjectives), 4,463 morphologically
simple function words (e.g., adverbs) and 913 morphologically
complex function words (e.g., demonstrative pronouns).

The inflectional functions encoded by [5] in these words
was manually classified. In total, 60 inflectional functions were
obtained, based on combinations of grammatical functions
(nouns, articles, pronouns, etc.), numerus (singular, plural),
gender (feminine, masculine, neuter) and case (nominative,
genitive, dative, accusative). A list of all functions can be found
in the Supplementary Material (https://osf.io/8jf5s/).

As a measure of spectral characteristics, we investigated the
time courses of the first and second formant (F1, F2).We used the
LPC algorithm provided by Praat (Boersma and Weenink, 2015,
standard settings) to compute the time courses of F1 and F2 in
each vowel. For analysis, we excluded vowels shorter than 0.018 s
(log = −4) due to sparse data. In addition, we excluded formant
measurements for which F1 was outside a range between 250 and
1,000 Hz, and F2 was outside a range between 1,000 and 2,000
Hz. As a result of this exclusion, additional 112 word tokens were
excluded, yielding a data set of 11,018 word tokens (871 types)
with word final [5] for the analysis. Words with word final [5]
will be called [5]-word from now on. In order for higher tongue
positions to be associated with higher F1 values, thus making F1
frequencies straightforwardly interpretable, F1 frequencies were
inverted by being multiplied by −1. Prior to analysis, formant
frequencies were centered and normalized by speaker.

3.2. Assessing Uncertainty
In this section, we discuss the details of the input-output
structures discussed in the introduction and how we
implemented them in the functional output network and
the functional input network. We used the entire KEC to
construct the learning events on the basis of which we trained
the two network models. Learning was simulated using the
Rescorla and Wagner (1972)’s delta-rule [as implemented in the
Naive Discriminative Learner package 2, Shaoul et al. (2014)]. An

explanation of the delta-rule can be found in the Appendix of
Tomaschek et al. (2019). As noted above, apart from information
about inflectional function, several other sources of information
serve as cues to speech production. To operationalize these
other cues, we followed Tomaschek et al. (2019)’s approach.
Accordingly, both models described below used cues derived
from a five-word sliding window that iterated across all learning
events. Keeping the rest of the cue structure consistent across the
models (and studies) ensured comparability between both the
two models implemented here and the previous studies.

3.2.1. Knowledge Representation in the Functional

Output Network
The input-output structure used to train the functional output
network was essentially the same as that employed by Tomaschek
et al. (2019). Inputs consisted of the word forms preceding
and following the target word in the five-word sliding window.
The target word itself never served as an input to avoid direct
mappings between inputs and outputs. In addition, inputs
contained the diphones of all words in the sliding window
including the target word. Diphones were based on the phonetic
transcription provided by the Rapp forced aligner used to
annotate the corpus (Rapp, 1995).

As in the Tucker et al. and Tomaschek et al. studies,
the outcomes in the functional output network were the
morphological and inflectional functions of the [5]-words. Recall
that the network iterated across all word events in the KEC
corpus. This means that it also encountered numerous words
that did not have word-final [5], and accordingly no inflectional
function of interest. In this case, a simple place holder was used
to ensure cue competition. To summarize, the functional output
network was trained to predict inflectional functions of [5]-word
on the basis of word and diphone cues.

To obtain a predictor of phonetic characteristics of [5], we
computed functional output activation on the basis of the trained
network. The measure can be regarded as a measure of the
uncertainty about the inflectional functions that emerges within
the five-word sliding window. Functional output activation was
computed by summing the weights between all word and
diphone inputs in the five-word window around the [5]-word
and the inflectional functions of the target word.

3.2.2. Knowledge Representation in the Functional

Input Network
The input-output structure in the functional input network
followed the logic of our analysis in the introduction, where
we argued that inflectional functions are learned to serve as
cues in speech production and hence should actually serve
as inputs to the learning process simulated in the network
(Ramscar et al., 2013b; Ramscar, 2021a, see also). Also consistent
with this analysis, the outcome of the articulation process, [5],
functioned as the output of the network. Accordingly, in addition
to diphones and words within the five-word window (the same
as in the previous structure), we used the inflectional functions of
the words with final [5] as inputs. The output of the network was
[5], whenever it was in word-final position of [5]-bearing words.
In line with the interpretation by Tomaschek et al. (2019), we
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regard the outcome [5] to function as an abstract placeholder for
potential articulatory gestures representing the articulation of [5]
in context. In other words, this network was trained to predict the
occurrence of [5] on the basis of word forms, diphones and the
inflectional functions. To ensure cue competition, we also used
the word forms of the target words in the center of the sliding
window as outputs. As a predictor of phonetic characteristics, we
computed functional input activation by summing the weights
between all word, diphone and inflectional function inputs in
the five-word window and the [5] output. An introduction to
training such a two-layer network and coding the calculation of
activations can be found in Tomaschek (2020).

3.2.3. Example
To explain the way training proceeded in the two models,
consider the following sentence: Das ist dieser groβe Mann
“This is the big man”. In the functional output network, the
word inputs in the five-word sliding window centered on
dieser “this” were DAS IST DIESER GROβE MANN (we ignored
major case). The acoustic diphone inputs in this windows
are #d da as sI Is st td di iz z5 5g gr ro
os s@ @m ma an n#, with # representing boundary cues.
The outputs would be the combination of grammatical and
inflectional functions of dieser: DEMONSTRATIVPRONOMEN

MASKULIN NOMINATIV “demonstrative pronoun masculine
nominative”. Note that grammatical and inflectional functions
were used as separate entries and hence, each of them served
as an individual output in a learning event (called multiple-hot
encoding in the machine learning community). In the functional
input network, the inputs in the five-word sliding window
centered on dieser “this” are the words DAS IST GROβE MANN,
the acoustic diphones #d da as sI Is st td di iz
z5 5g gr ro os s@ @m ma an n#, and the inflection
functions DEMONSTRATIVPRONOMEN MASKULIN NOMINATIV

(multiple-hot encoding). The articulated forms such as dieser ER,
including a “gestural placeholder” representing the [5]-gesture,
served as outputs.

4. ANALYSIS AND RESULTS

4.1. Statistical Analysis of Formant
Trajectories
4.1.1. Creating a Baseline Statistical Model
In this section, we describe our statistical approach to analyzing
the time course of F1 and F2. We employed generalized additive
mixed models (GAMM in the mgcv package, Hastie and
Tibshirani, 1990; Wood, 2006, 2011) to investigate how the time
course of F1 and F2 in [5] was co-determined by uncertainty in
the two models. GAMM uses spline-based smoothing functions
to model non-linear functional relations between a response
and one or more covariates, modeling wiggly curves using
spline smooths as well as wiggly (hyper)surfaces using tensor
product smooths (see Wieling et al., 2016; Baayen and Linke,
2020, for an introduction to spline smooths and their use). All
model comparisons (and visualization) reported in the following
paragraphs were performed with the help of functions provided

by the itsadug package (van Rij et al., 2015). All analyses can be
found in the Supplementary Material.

We constructed a model that contained a smooth “s()” for
time to model the time course of F1 and F2. Time contained the
time points at which formant frequencies were measured. Since
vowels vary in duration, time points were normalized to a [0,
1] interval, with 0 linked to vowel onset and 1 to vowel offset.
We fitted F1 and F2 simultaneously in one model. Accordingly,
we needed a predictor to differentiate between the shapes of F1
and F2 trajectories using a factorial predictor dimension with the
levels F1 and F2. This predictor interacted with the smooth for
time. To control for speaker dependent formant trajectories, we
fitted by-speaker random factor smooths for time, i.e., the non-
linear equivalent of a combination between random intercepts
and random slopes from standard mixed-effects regression.

The inclusion of words as random effects caused high
concurvity in our models5. Accordingly, following the suggestion
presented in Baayen and Linke (2020), we did not include
words as an random effect. Instead, we controlled for effects of
coarticulation with the context by fitting by-place-of-articulation
random factor smooths for time for the preceding and for
the following segment. To allow random factor smooths to
vary depending on dimension, all by-factor smooths included
an interaction with dimension (F1/F2). We controlled for
autocorrelation among residuals using the rho parameter
(ρ = 0.8).

In a bottom-up fitting procedure, we tested whether the
inclusion of additional predictors improved the model fit.
The first additional predictor we tested was vowel duration,
log-transformed to obtain normally distributed values. Vowel
duration served as a control variable as it accounted for
undershoot and overshoot associated with temporal variation
(Gay, 1978). The inclusion of vowel duration as a main effect
interacting with dimension significantly improved model fit (1
ML=−1106, 1 edf=+4, p < 0.0001). Allowing vowel duration
to interact with time and dimension (by means of a tensor
product smooth “te()”) further improved model fit (1 ML =

−845, 1 edf = +6, p < 0.0001). The tensor thus accounts for
systematic changes in the shape of the trajectory as a function of
vowel duration.

German word-final [5] discriminates inflectional and
grammatical function in content words (e.g., nouns, adjectives),
morphologically complex function words (e.g., demonstrative
pronouns) and morphologically simple function words (e.g.,
adverbs). Numerous studies have reported that higher level
information such as inflectional function (Plag et al., 2017;
Seyfarth et al., 2018; Schmitz et al., 2021a) or pragmatic
function (Drager, 2011; Podlubny et al., 2015) correlate with
phonetic characteristics. Similar effects have been demonstrated
for word class (e.g., Johnson, 2004; Bell et al., 2009; Fuchs,
2016; Lohmann, 2018; Linke and Ramscar, 2020), for which
also processing differences during perception (Neville et al.,
1992; Pulvermüller, 1999; Brusini et al., 2017) and production

5Concurvity is the non-linear equivalent of collinearity that, when high, can render
model terms uninterpretable. See the Appendix of Tomaschek et al. (2018b) and
Baayen and Linke (2020) for more information on concurvity).
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(Fox et al., 2009; Juste et al., 2012) have been demonstrated.
Given these systematic differences in perception and production
due to higher level information, especially those for word class,
we also expect [5] to vary with word class.

This prediction was tested with the predictor word class,
allowing for potential differences in formant trajectories
depending on content words, morphologically complex function
words and morphologically simple function words. In order
to allow formant trajectories to vary independently in the two
dimensions F1 and F2 as well as word class, we constructed the
factorial predictor “dimension-by-class” (dbc) with six levels:
one level for each of the six combinations of dimension by word
class. The inclusion of dbc as a main effect significantly improved
model fit (1 ML = −405, 1 edf = +4, p < 0.0001), as was
the case when it was allowed to interact with the time by vowel
duration tensor (1 ML = −736, 1 edf = +20, p < 0.0001). We
also tested whether the three levels in word class were indeed
necessary. We accomplished this by collapsing two levels and
refitting the model (e.g., morphologically simple and complex
function words were collapsed into one level, and so forth).
Collapsing two levels never yielded a better model fit than using
word class with the three levels. Accordingly, it appears that
[5] does indeed vary systematically depending on word class.
This conclusion is supported by the visualization of the formant
trajectories, which are further discussed below. We shall consider
this our baseline model, whose formula is illustrated below (with
POA= place of articulation):

m0 = formant frequency ∼ dbc
+ te(time, vowel duration by = dbc)
+ s(time, speaker, bs =“fs”, m = 1, by =

dimension)
+ s(time, preceding POA, bs =“fs”, m = 1,
by = dimension)
+ s(time, following POA, bs =“fs”, m = 1,
by = dimension)

(The random effects structure, indicated by bs=“fs” , was the
same in all models which is why we will not display it anymore in
the following formulas).

4.1.2. Testing Activations
In the next analytic stage, we tested the degree to which the
inclusion of functional output activation and functional input
activation improved the model fit. The following formula
illustrates the model (where activation represents both kinds
of activation):

m1 = formant frequency ∼ dbc
+ te(time, vowel duration by = dbc)
+ s(activation, by = dimension)

The question thus arises of whether there are also systematic
differences of activation depending on word class. The following
model tested this interaction between activation and dbc.

FIGURE 2 | ML-score difference between model m0 and models m1 to m4.

The larger the difference, the better the model’s goodness of fit.

m2 = formant frequency ∼ dbc
+ te(time, vowel duration by = dbc)
+ s(activation, by = dbc)

We also tested whether the shape of the trajectory was modulated
by activation. This was accomplished by fitting an interaction
between time and activation and dimension using a partial tensor
product smooth “ti()”6:

m3 = formant frequency ∼ dbc
+ te(time, vowel duration, by = dbc)
+ s(activation, by = dbc)
+ ti(time, network measure, by =

dimension)

The final model tested to what degree both the intercept and the
shape of the formant trajectories varied in relation to activation
and dbc:

m4 = formant frequency ∼ dbc
+ te(time, vowel duration, by = dbc)
+ s(activation, by = dbc)
+ ti(time, network measure, by = dbc)

Figure 2 illustrates the difference in ML-scores between our
baseline model m0 and models m1 to m4. The inclusion of
both types of activation improved model fit, as can be seen
by means of the large negative ML-score difference for model
m1. Nevertheless, there was no large difference between the
gam model containing functional output activation (triangles)
and the one containing functional input activation (circles)

6Since main effects are already fitted by means of s(), partial tensor product
smooths are used to fit the interaction between two predictors but not the
main effects.
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(indeed the difference in ML-score between models with the
two types was only 1.5). The goodness of fit depending on the
two types of activation changed in more complicated models.
In models m2 to m4, functional input activation provided
systematically better model fits, as indicated by larger difference
in ML-score to m0. In other words, a network that was
trained to predict the articulatory gesture of [5] on the basis
of semantic, phonological and inflectional functions provided
better predictions about [5]’s phonetic characteristics than a
network trained to predict the inflectional function itself. We
also tested to what degree the inflectional function in the input
structure is necessary. We found that activations computed on
the basis of network trained without inflectional functions as
inputs provided a significantly worse model fit than functional
input activation (on average, they had anML-score lower by 200).
Accordingly, we regard inflectional functions to be necessary in
the input structure (model comparisons can be found in the
Supplementary Materials).

An inspection of concurvity indicated that the smooths
and tensor product smooths for both types of activation for
morphologically simple function words suffered from high
concurvity. Further inspection indicated that this problem was
alleviated when individual models were fitted for each level
of word class. Since the significant interaction with word class
(by means of dbc) indicated that formant trajectories differ
systematically between word classes, fitting individual models
for each word class was fully supported. Accordingly, below we
report the results for models in which formant trajectories were
fitted for each of the three levels of word class individually. Once
models were obtained, data points with residuals larger than
2.5 standard deviations away from the mean were excluded and
models were refitted. The following formula illustrates the final
model structure:

m.final = formant frequency ∼ dimension
+ te(time, vowel duration, by = dimension)
+ s(activation, by = dimension)
+ ti(time, activation, by = dimension)

4.2. Modulation of Formant Trajectories
4.2.1. Summaries
Even though functional output activation performed worse
than functional input activation, we will report the estimated
trajectories for both of them to allow for a direct comparison.
Summaries of all the statistical models indicated that all the
tensor product smooths for the time by vowel duration in both
dimensions (F1, F2) were significant (p < 0.001) in all statistical
models for all activation types. The same result was found
for random factor smooths for participants and for place of
articulation of the preceding and following vowel. Since these
effects are not of primary interest for the present study, and the
summaries use up a lot of space, we provide their summaries only
in the Supplementary Material. Here, we report the summaries
for the effect of interest, functional input activation and functional
output activation. Table 1 illustrates that all but one smooth

and tensor terms for functional input activation are significant.
Only the partial tensor in the F1 dimension in the model fitting
morphologically simple function words failed to be significant.
Accordingly, the amplitude of the F1 time course was not
significantly modulated. A similar result can be see for functional
output activation. Here, only the partial tensor product smooth
for F1 in morphologically complex function words failed to
be significant.

4.2.2. Modulation of Formant Trajectory
Figure 3 provides a visualization of the summed effects of the
models presented in Table 1 by means of estimated trajectories.
The x-axes represent inverted z-scaled F2 frequencies such that
the left edge points toward the front of the vowel space and
the right edge points toward the back of the vowel space. Y-
axes represent inverted z-scaled F1 frequencies such that the
top points to the top of the vowels space and the bottom
points toward the bottom of the vowel space. The onset of
the trajectories is indicated with a filled star, its center with a
circle. Columns represent different word classes (from left to
right: content words, morphologically simple function words
and morphologically complex function words). Rows represent
different numeric predictors.

The onset of the formant trajectories in all three word classes
is located at a high fronted position, followed by a fall. Roughly
at the mid point of the vowel trajectory (indicated by the black
circle), the trajectory makes a turn that results in raised positions.
Focusing on the differences between word classes reveals that
formant trajectories in morphologically complex function words
(left column) are produced at the most fronted position;
those in content words are relatively centered (mid column);
the trajectories in morphologically simple function words are
produced at the most retracted position (right column).

Formant trajectories further differ in their shapes. [5] vowels
in morphologically complex word forms have, on average, a
relatively wide u-shaped trajectory, while morphologically simple
function words have a very narrow trajectory. Moreover, it seems
that the differences in shape between word classes is mirrored
by the relative horizontal position in the vowel space (ignoring
the effect of vowel duration): more fronted trajectories have wide
trajectories than more retracted trajectories. In conclusion, we
observe systematically different formant trajectories in relation to
word class. These shapes are further modulated by vowel duration
and activation.

Before we discuss the effects of the vowel duration and
activation predictors, it will be first necessary to discuss how
reduction and enhancement can be expected to be reflected in
[5]. Typically, reduction of vowels is reflected bymore centralized
formant trajectories. However, since [5] is already located in the
center of the vowel space in a very dense vocalic environment
surrounded by [@] and [a] in the vertical dimension and by [I],
[Y] and [O] in the horizontal dimension, the specific direction
enhancement will take is unclear. Enhancing [5] in any direction
and dimension may result in potential competition with its
neighboring vowels.
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TABLE 1 | Summary of the statistical models using functional input activation and functional output activation as a predictor of formant trajectories.

edf Ref.df F-value p-value

FUNCTIONAL INPUT ACTIVATION

Complex function words

s(functional input activation):dimension = F1 3.7482 3.9577 39.0716 < 0.0001

s(functional input activation):dimension = F2 3.2589 3.7180 44.7998 < 0.0001

ti(time,functional input activation):dimension = F1 7.6804 9.7289 2.3730 0.0079

ti(time,functional input activation):dimension = F2 4.6737 5.8764 4.3388 0.0002

Content words

s(functional input activation):dimension = F1 3.3729 3.7829 10.0274 < 0.0001

s(functional input activation):dimension = F2 3.8460 3.9845 94.0980 < 0.0001

ti(time,functional input activation):dimension = F1 10.4838 12.7473 5.2548 < 0.0001

ti(time,functional input activation):dimension = F2 7.7378 9.4625 14.1532 < 0.0001

Simple function words

s(functional input activation):dimension = F1 3.8933 3.9921 20.9012 < 0.0001

s(functional input activation):dimension = F2 3.7390 3.9562 27.3247 < 0.0001

ti(time,functional input activation):dimension = F1 7.3833 9.7127 1.4650 0.1497

ti(time,functional input activation):dimension = F2 10.8514 12.8554 4.6229 < 0.0001

FUNCTIONAL OUTPUT ACTIVATION

Complex function words

s(functional output activation):dimension = F1 1.0020 1.0038 115.2282 < 0.0001

s(functional output activation):dimension = F2 3.8720 3.9862 12.4216 < 0.0001

ti(time,functional output activation):dimension = F1 4.6471 6.5973 0.5412 0.7934

ti(time,functional output activation):dimension = F2 3.6281 4.2364 6.7708 < 0.0001

Content words

s(functional output activation):dimension = F1 3.7248 3.9528 5.1275 0.0011

s(functional output activation):dimension = F2 3.9479 3.9976 106.9967 < 0.0001

ti(time,functional output activation):dimension = F1 9.6920 12.3538 3.8719 < 0.0001

ti(time,functional output activation):dimension = F2 9.9943 12.3734 8.4570 < 0.0001

Simple function words

s(functional output activation):dimension = F1 3.2277 3.6812 21.2965 < 0.0001

s(functional output activation):dimension = F2 3.9082 3.9942 39.8523 < 0.0001

ti(time,functional output activation):dimension = F1 8.0654 9.6352 8.6645 < 0.0001

ti(time,functional output activation):dimension = F2 4.9361 6.8905 3.0888 0.0027

Summaries of control variables and random effect structure can be found in the Supplementary Material.

To establish how enhancement and reduction are manifested
in [5], we shall first inspect how they are manifested in relation to
hyperarticulation and hypoarticulation in long and short vowels.
The top row of Figure 3 illustrates the effect of vowel duration
(from the functional input activation models). Shades of red
represent the 10th, 30th, 50th, 70th, and 90th percentile of vowel
duration with darker shades of red representing longer vowels.
Longer vowels are associated with longer formant trajectories,
and lower and more retracted vocalic centers in all three word
classes. This is a typical effect on the continuum between
hypoarticulation and hyperarticulation associated with phonetic
duration (Gay, 1978; Lindblom, 1990). Additionally these results
show that longer vowels have stronger fronted offsets than
shorter vowels. As a result, trajectories for longer vowels are
“crossed”. How might one account for this effect? First, the offset
of the trajectory tends to be located roughly in the center of the
vowel space. Second, [5] should not be retracted too far to the
back as it may enter into a vowel space where it would compete

with the mid low vowel [O]. In order to apply both constraints,
long [5] result in narrower trajectories, even though when they
are hyper articulated.

4.2.3. Effects of Functional Output Activation
The effect of functional output activation is illustrated in
the mid row of Figure 3. Higher percentiles of functional
output activation are represented by means of darker shades
of red. In morphologically complex function words, higher
functional output activation is associated with lower, slightly
more fronted positions. Comparing the effect to that of vowel
duration, the lowering could be regarded as an enhancement
effect. In content words, there is no observable effect apart
from very high percentiles that are associated with more
retracted positions. Finally, even though the main effect for
functional output activation is significant in both dimensions
in morphologically simple words, there are comparatively little
changes across the activation continuum. In other words,
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FIGURE 3 | Estimated trajectories for different word classes (columns) in relation to vowel duration (top), functional output activation obtained from a network with

inflectional functions of [5] in the output (middle) and functional input activation obtained from a network with inflectional functions of [5] in the input (bottom). The

x-axes represent inverted z-scaled F2 frequencies such that the left edge points toward the front of the vowel space and the right edge points toward the back of the

vowel space. Y-axes represent inverted z-scaled F1 frequencies such that the top points to the top of the vowels space and the bottom points toward the bottom of

the vowel space. Shades of red represent percentiles for different predictors (optimized for color blindness). Onset of the time course is located at the filled star, the

circle in the trajectory represents the center of the vowel.

functional output activation co-determines the [5] trajectory only
in morphologically complex function words.

4.2.4. Effects of Functional Input Activation
Next, we turn our attention to how functional input activation
modulates the [5] trajectory. In both morphologically complex

function words and content words, higher functional input
activation is associated with stronger retracted formant
trajectories. Using the effect of vowel duration as a baseline,
we thus observe more enhancement under lower uncertainty,
and reduction under higher uncertainty about [5]. The way
functional input activation co-determines formant trajectories
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points in the same way as the effect of vowel duration. The effect
of functional input activation for content and morphologically
complex function words is thus consistent in both the temporal
and spectral domains.

However, in morphologically simple function words the
effect seems to be reversed. Higher functional input activation
produces slightly more fronted trajectories7. Since this effect
is only minimal, we refrain from interpreting it to indicate
reduction under lower uncertainty. Rather, we conclude that,
perhaps unsurprisingly, functional input activation has no effect
for morphologically simple words.

4.3. Vowel Duration
Even though we controlled for vowel duration during our
investigation of formant trajectories, it is still possible that it is
also correlated with functional output activation and functional
input activation. Recall that Tucker et al. (2019) and Tomaschek
et al. (2019) reported that lower uncertainty about inflectional
functions was associated with longer phonetic duration. A
Spearman’s rank correlation indicated that vowel duration has a
correlation of ρ = −0.01 (Pearson’s r = −0.03) with functional
output activation and ρ = 0.06 (Pearson’s r = 0.07) with
functional input activation. Thus, the correlation between our
activationmeasures and [5] duration is very small. To statistically
evaluate these effects, we fitted log-transformed [5] duration
as a function of functional output activation and functional
input activation. We performed a linear mixed-effect regression,
controlling for local speaking rate and the number of segments in
the word, including random intercepts for speakers and words.
The model further indicated that functional output activation did
not significantly correlate with vowel duration (β =−0.018, se=
0.04, t = −0.434), while with functional input activation did (β
= 0.36, se = 0.16, t = 2.81). Visual inspection indicated that the
difference between low and high functional input activation was
roughly an increase of 10 ms in vowel duration. We also tested
word class as a predictor but found no significant effect.

Thus, in the functional output network we did not observe a
correlation between vowel duration and activation. By contrast,
the functional input network did yield a small, but significant
effect of enhancement.

5. DISCUSSION

This study sought to investigate how the uncertainty associated
with inflectional functions influences the phonetic characteristics
of speech. It was motivated by the contradictory findings
that have been reported regarding the effects of uncertainty
on production in relation to paradigmatic and morphological
families, where some studies found lower uncertainty to be
associated with reduction (e.g., Hay, 2004; Hanique and Ernestus,

7When all word classes were fitted in one joint model, i.e., m4, this effect was
strongly amplified such that the difference between low and high functional

input activation was in the range of that for content and morphologically
complex function words. However, comparing individual models with the joint
model indicated that this amplification was most likely due to concurvity in the
joint model.

2011; Plag and Ben Hedia, 2017), whereas others reported
enhancement (e.g., Kuperman et al., 2007; Schuppler et al., 2012;
Cohen, 2015; Tomaschek et al., 2021). To assess the degree to
which these findings reflected differing assumptions regarding
word-internal structures, we followed Tucker et al. (2019) and
Tomaschek et al. (2019)’s approach and sought to allow these
structures to emerge naturally, in learning. We trained two two-
layer networks employing two different representations of the
predictive relations relevant to learning in speech production.
From these we extracted network measures that we used to
gauge the uncertainty associated with the inflectional functions
of German word final aschwa [5] (which discriminates around
sixty different inflectional functions). We used these models to
investigate how the inputs and outputs presented to learning
networks should be implemented so as to most appropriately
represent the structure of linguistic knowledge. To this end,
we tested how accurately the measures of uncertainty derived
from different implementations served to predict the phonetic
characteristics of [5] in the speech signal.

We observed that formant trajectories of [5] were enhanced
in relation to decreased uncertainty in those word classes that
were morphologically complex. Below we discuss this finding
in more detail in relation to the two questions that guided our
study: (1) What is the relation between uncertainty within the
context of morphological families and phonetic characteristics
and how can it be explained? (2) What kind of input-output
structure most appropriately represents linguistic knowledge in
speech production models?

5.1. Effects of Word Class
Our analyses revealed that the formant trajectories
of [5] systematically differed between the three word
classes investigated. These systematic differences emerged
independently of the uncertainty measures obtained from
the learning networks. Accordingly, this finding supports the
assumption that fine phonetic detail is co-determined by lexical
information. In phonological theories, definitions of phones and
phonemes are typically based on a mixture of impressionistic
judgments and theoretical considerations. These definitions thus
not only ignore differences in fine phonetic detail, they also
ignore potential differences that can arise from the influence
of other levels of linguistic description, such as morphology or
word class. By contrast, in keeping with other studies showing
that the phonetic characteristics of supposedly homophonous
“phones” vary systematically according to their morphological
or grammatical status (e.g., Drager, 2011; Plag et al., 2017, and
references in the introduction), these results raise questions
about the adequacy of the “sound units” phonological theories
suppose. In particular, it appears that the phonetic detail of
speech signals contains fine grained difference that are far more
systematic than traditional theories have tended to assume.
Moreover, it appears that these differences may actually be
informative about word class in communication. Studies have
demonstrated that listeners are sensitive to changes at this
level of phonetic detail, and that they use them not only to
discriminate phonetic (e.g., Whalen, 1983; Beddor et al., 2013)
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but also morphological contrasts (Kemps et al., 2005; Tomaschek
and Tucker, 2021). This suggests that the whole idea that speech
signals comprise phonological realizations of words that are
somehow analogous to orthography may be fundamentally
misguided (Port and Leary, 2005; Ramscar and Port, 2016).

5.2. What Kind of Input-Output Structure
Should Speech Production Models
Employ?
Theoretically, the network simulations reported in our study
were rooted in discriminative learning (Ramscar and Yarlett,
2007; Ramscar et al., 2011, 2013a,b; Ramscar, 2019, 2021b).
This framework conceptualizes learning—during perception and
production—as a process that serves to discriminate informative
relationships between a set of cues and a set of outcomes
in a cognitive system. When it comes to modeling, this in
turn raises the question of how inputs (representing cognitive
cues) and outputs (representing behavioral outcomes) should be
implemented so as to most appropriately capture the cognitive
process in question: in this case, speech production?

This question is further complicated by the fact that
computational modeling inevitably constrains the way that
relevant information is represented in a simple set of inputs and
outputs (Bröker and Ramscar, 2020). This problem of abstraction
is particularly apparent in simple two-layer networks of the
kind employed here. This is because these models do not have
the hidden layers that can enable multi-layer networks to learn
abstractions from data. This is both a strength and a weakness.
On one hand, it limits the ability of these models to discover
abstract structures—such as inflectional functions—that may be
present in a set of training data. On the other hand, simply
because of their simplicity, they constrain modelers to utilizing
input and output structures that explicitly code for the cues and
outcomes that they believe to be important to the process being
modeled (see Ramscar, 2021b, for a more detailed discussion of
this point).

A similar point applies to most early computational models
of speech production, such as Weaver++ (e.g., Roelofs, 1997)
or the Spreading-Activation Theory of Retrieval (Dell, 1986;
Dell et al., 2007, and follow-up models). While they did
not explicitly address learning, these models were based on
traditional linguistic and psycho-linguistic theories (e.g., by
Fromkin, 1971, 1973; Levelt et al., 1999) that assumed an
idealize speech process in which any abstractions posited by the
theory had already been learned (and hence existed as discrete
elements). Accordingly, in these models the ‘lexical semantics’ of
a word served as an input for lemma selection, which in turn
served as an input for the selection of discrete morphological
structures. These then activated the abstract phoneme sequences
that explicitly represented the words to be pronounced. These
abstract phoneme sequences, once syllabified, could then be
used to compute the execution of articulatory gestures in a
high dimensional acoustic-spatio-temporal space (Browman and
Goldstein, 1986; Guenther, 2016; Turk and Shattuck-Hufnagel,
2020).

The functional input network presented in this study shares
the same general conceptualization of the role semantics as
traditional models. It assumes that intended meanings serve as
the (main) cues to the initiation of articulations. It thus also
shares with these older models the representation of articulation
as the outcome of a process that is initiated semantically. Since
our model is grounded in learning—which is always subject to
experience—the input structure assumed in our model is less
discrete. Rather than assuming that morphological functions
and lexical meanings are somehow separate dimensions of
experience, we assume that learning is required to separate
them. That is, we assume that discriminating lexical from
morphological features is a function of exposure and learning.
Further, given the skewed distribution of linguistic forms,
it follows that the degree to which these dimensions are
discriminated in a given item or context will vary across the
lexicon (Ramscar et al., 2013b).

Accordingly, many of the simplifying assumptions embodied
in these earlier models make little sense in a learning
model. For example, Levelt et al. (1999)’s theory assumes that
“higher level” information is forgotten once it is transformed
into a representation at a “lower level”. However, this is
clearly inconsistent with learning, and the idea of abstraction
being a product of the learning process. Rather, from a
learning perspective, it is competition between cues representing
information at lower levels that enables abstractions at higher
levels to form. Finally, if the simplifying assumptions made
in earlier models were true, there ought to be no correlation
between semantic and morphological information and the
phonetic characteristics. Yet, again consistent with the idea
of all of this information being discriminated/shaped in
learning, the present results, along with many of the other
studies we have reviewed, contradict this assumption. Semantic
and morphological information clearly does correlate with
acoustic characteristics.

It further follows that if the cues to semantic and
morphological information must be discriminated and
abstracted in order to learn speech, they must play a similar
role in speech production. That is, the semantic information
that was discriminated into different levels of abstraction—
lexical, morphological, inflectional—in learning will then serve
as the cues to executed articulatory outcomes. Once again,
which cues are informative about which articulations will
depend on learning; and learning will be shaped by individual
experience, the distributional structure of the language and
context. In an actual speaker, this learning will be continuous
both in time and across the lifespan (see e.g., Ramscar et al.,
2014), and will be then processed by the multiple learning
mechanisms contained within the complex architecture of the
human brain.

By contrast—and critically—when it comes to modeling these
learning processes, a great deal of this abstract information must
be simplified and discretized in order to make the learning
process tractable. Moreover, depending upon the goal of the
modeling exercise, the goal of making the outcomes of the
learning process interpretable raises further considerations. If
our goal had been to emulate human performance as accurately
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as possible, there exists a range of more powerful models—
multi-layered, deep learning networks (Graves, 2012; LeCun
et al., 2015) that are far more capable of learning to capture the
many complex factors that seems to drive speech and language
(Hannun et al., 2014; Jozefowicz et al., 2016). However, this same
complexity inevitably leads to Bonini’s paradox (Bonini, 1963), in
that understanding exactly how they actually learn their functions
can be as challenging as understanding children’s learning itself8.

It is in this regard, as we noted above, that the apparent
shortcoming of two-layer networks can actually be an advantage.
Because these simple networks lack the hidden layers that
would typically be responsible for learning complex abstractions,
they require that any implementation be simplified so as to
include only the information thought necessary to learning. It
furthermore requires that abstractions that are assumed to be
necessary to this process be made explicit, and represented in the
input-output structure.

Accordingly, by employing simple two-layer network
models, we were able to explicitly examine the way that
abstract information such as inflectional functions ought
to be represented in models of articulatory learning. This was
accomplished by configuring two networks with the two different
input-output structures, and then testing which of them was
the better predictor of phonetic characteristics. Our results
showed that the activations from the network trained with
inputs that included inflectional functions served to predict the
phonetic characteristics of [5] better than activations from the
network trained on an input structure in which these functions
were outputs.

One question about these models that remains to be answered
is why the functional output model that successfully predicted
phonetic characteristics in Tucker et al. (2019) and Tomaschek
et al. (2019) almost failed to do so in the present study,
while the functional input model succeeded. The data and
analyses at hand only allow for speculations. One possible
answer lies in the difference between the types of acoustic
signals investigated in the previous studies and in the present
study. Like the majority of studies investigating effects of
uncertainty associated with paradigmatic families, Tucker et al.
and Tomaschek et al. focused on durations. By contrast, the
present study investigated a higher dimensional spectral signal.
Another possible explanation may be the amount of inflectional
functions under investigation. Tucker et al. focused on two
inflectional functions; Tomaschek et al. investigated nine. By
contrast, here, we investigated 60 different inflectional functions.
It is of course impossible to draw firm conclusions from these
considerations, however it seems likely that the results of these
previous studies may have been particularly dependent on the
specifics of their approach. It thus follows that any conclusions
one might draw from this previous work will be more limited

8At present it is unclear how the complexities of learning at multiple levels of
abstraction that underlie the performance of these models is to be translated
into theoretical insight. This is highlighted by recent attempts to understand the
performance of multiplayer networks in language processing tasks by treating
them as experimental subjects (McCloskey, 1991; Linzen et al., 2016; Wilcox et al.,
2018; Futrell et al., 2019).

in its generalizability than those one might draw from the
current study.

5.3. Enhancement vs. Reduction
As we noted at the outset, the results of studies of the association
between the statistical characteristics of word forms within
morphological and inflectional paradigms and their phonetic
characteristics in speech show an inconsistent pattern. Some
studies demonstrate that higher probability of words and
segments is associated with phonetic enhancement (Kuperman
et al., 2007; Hanique and Ernestus, 2011; Schuppler et al., 2012;
Cohen, 2015; Lõo et al., 2018; Bell et al., 2019; Tomaschek
et al., 2021), others find that it is associated with phonetic
reduction (Hay, 2004; Hanique and Ernestus, 2011; Cohen, 2015;
Ben Hedia and Plag, 2017; Plag and Ben Hedia, 2017). As
we have argued, one reason why these contradictory patterns
may have emerged is because these studies often disregarded
how words and their paradigms are learned. Moreover, even
where learning has been taken into account, they have often
disregarded the assumptions one makes about the representation
of linguistic knowledge and how it can influence learning (Bröker
and Ramscar, 2020).

Addressing this last problem enabled us to provide a
better account of our data. By taking into account how
the distributional characteristics in language are learned, we
were able to show that the phonetic characteristics of [5]
appear to be enhanced in relation to lower uncertainty
associated with inflectional functions. These results support
the findings within the framework of the Paradigmatic Signal

Enhancement Hypothesis (Kuperman et al., 2007; Hanique
and Ernestus, 2011; Schuppler et al., 2012; Cohen, 2015;
Lõo et al., 2018; Bell et al., 2019; Tomaschek et al., 2021).
Since these findings contradict the consistent effects of
reduction in syntagmatic context demonstrated in the framework
of the Smooth Signal Redundancy Hypothesis (Aylett and
Turk, 2004), the question arises how the different effects in
context of syntagmatic and morphological information are to
be explained.

Kuperman et al. (2007) argue that enhancement in the
paradigmatic context ought to be expected, because it reflects
speaker confidence about the selection of a specific word
form. The more confident speakers are (i.e., their speech
production systems are) about a selection, the more time
they can take to actually produce it. By contrast, Cohen
(2015) argued that this effect should be expected for very
different reasons. Arguing from within the framework of
Exemplar theory, she suggests an alternative explanation: the
phonetic characteristics of less frequent word forms will be
shifted toward the characteristics of a competitor in the
inflectional paradigm. This has the effect of reducing these less
probable forms and making more probable form seem to be
more enhanced.

While both explanations have their merits, it nevertheless
remains the case that they are unable to fully explain all
of the effects of enhancement and reduction in relation
to uncertainty that have been observed. With regards to
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the confidence account, it is unclear why the effects of
increased confidence are not observed within syntagmatic
contexts (as pointed out by Cohen, 2015). With regards to the
Exemplar theory account, exactly how it accounts for other
word forms in the paradigm and how they contribute to
systematic changes of phonetic characteristics (as demonstrated
by e.g., Kuperman et al., 2007; Tomaschek et al., 2021)
remains unclear.

5.4. The Signal-Message-Uncertainty
Distinction
So how are the different influences of uncertainty on
articulation in context—syntagmatic and paradigmatic—
to be reconciled? It seems clear that in some sense
both the Smooth Signal Redundancy Hypothesis and the
Paradigmatic Signal Enhancement Hypothesis are true,
at least in context. What is needed is an explanation
of what this context is and how it applies. We suggest
that the answer lies in the contribution of two very
different aspects of speech production: The signal and
the message, and the very different way that these interact
with context.

Accordingly, it is important that we be clear about what it
is that we mean when we talk about the “signal”. Every type
of human communication is rooted in kinematic behavior. In
acoustic communication, this behavior involves the movement of
the articulators, the vocal cords and all other organs necessary to
produce the acoustic speech signal (see Tucker and Tomaschek,
forthcoming, for an overview). In another modality, say the
visual modality in sign languages or gestures, it involves the
movement of the body and the limbs. By “signal”, we therefore
mean both the execution of kinematic behavior to create the
acoustic or visual signals and the contrasts embodied in the
different signals themselves, whose properties will of course vary
in context.

It is important to stress that our conceptualization of
speech production contrasts with the traditional, linguistic
conceptualization of communication. This means that we
do not assume that speaker messages convey or contain
meanings. Rather, speakers produce a signal that listeners
use to discriminate the meaning intended by the speakers.
The discrimination process is based on a code that has
been learned in much the same way as the discriminative
models described above. It follows that this code serves to
condition meanings onto signals: Language users learn the
relationships between the world and the speech contrasts that
encode their language’s representation of various states of affairs
in that world. To do this, they must learn to discriminate
the semantic (in its broadest sense) cues to phonetic and
articulatory contrasts in context. This in turn allows speakers
to use these articulatory/phonetic contrasts in context to
construct messages that serve to discriminate the meanings
that they have learned to condition onto the same contrasts in
similar contexts.

That is, in order for two speakers to have a conversation,
they must share the same “source code” (Ramscar, 2019, 2021b)

that underlies the language they are using. A listener uses what
they have learned about the shared code to predict the messages
intended by speakers. These messages will be produced by a
speaker who has learned the same—or at least sufficiently the
same—shared code. From this it also follows that speakers can
use this code to predict when listeners have been provided
sufficient cues to discriminate the intended message. In this
sense, the relationship between the signal and the message
is a function of the speaker’s predictions about the meaning
that a listener can be expected to be able to discriminate
using the signal produced by the speaker in context. With
this characterization of the communication process that speech
serves to underpin in mind, we now turn our attention to
the way these factors influence enhancement and reduction in
speech production.

We propose that the different levels of uncertainty that
are associated with the signal and the message are critical
to explaining why the different kinds of uncertainty that
occur in different contexts have such a very different effect
on articulation. Moreover, we suggest that the signal-message-
uncertainty distinction not only explains why these two
different sources of uncertainty in speech lead to these
apparently contradictory effects, we further suggest that once
this distinction is recognized, these effects do not appear to
be contradictory at all. Rather, these two different sources of
uncertainty simultaneously exert a consistent, if contrastive,
influence on articulation:

(1) Lower uncertainty about the message discriminated by the
signal leads to reduction.

(2) Lower uncertainty about the signal leads to enhancement.

What is more, once the importance of the signal-
message-uncertainty distinction is recognized, it becomes
clear why two seemingly sensible accounts of effects
of uncertainty could nevertheless appear to contradict
one another.

This is because from the perspective of this distinction,
(1) can be seen as a reformulation of the many insights
that led to the hypotheses put forward in the information
theoretic framework by Aylett and Turk (2004), Jaeger (2010),
and Cohen Priva (2015). Speakers reduce, or even delete
word forms or segments when they predict that listeners
can discriminate an intended message in context from the
signal. This means that under the wrong assumptions about
uncertainty about the message, speakers might actually reduce
articulations even though the correct strategy would be to
enhance them. By contrast, we suggest that when speakers
expect that the message will not be fully discriminated, they
enhance the signal. This may occur because of the context,
because they get appropriate feedback from the listener, or
because they find themselves in a noisy environment, (Lindblom,
1990; Junqua, 1993; Buschmeier and Kopp, 2012; Hay et al.,
2017).

At the same time, not only is (2) consistent with the present
findings, it also captures the theoretical insights captured in
the Paradigmatic Signal Enhancement Hypothesis. Moreover, in
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contrast to the Paradigmatic Signal Enhancement Hypothesis, the
scope of our hypothesis is not constrained to morphological
paradigms. Rather, its scope expands to predict potential
enhancement effects in all instances in which a signal has to be
produced in contexts where its form will be uncertain (see also
Linke and Ramscar, 2020; Tomaschek et al., 2020, for enhanced
variability associated with uncertainty).

Most importantly, whether a measure—be it activations
based on an artificial neural network or probabilistic measures
based on information theoretic considerations—operationalizes
uncertainty about the signal or the message will ultimately
depend on the input-output structure provided to a model—
and critically, whether that structure maintains the important
distinction between signals and messages. Only when the input-
output structure appropriately reflects the relevant cue-outcome
relations in a given process can we draw the correct conclusions
from the statistical analyses involving these measures. As we have
sought to show here, establishing what the appropriate input-
output structure to any given process requires detailed analysis
and empirical testing. Accordingly, we suggest that questions
concerning the way that uncertainty about the message and
uncertainty about the signal are to be modeled across the full
range of contexts in which speech is produced can only be
answered by detailed future research.

6. CONCLUSIONS

We have investigated how uncertainty in the context of
inflectional paradigms is associated to phonetic enhancement
and reduction of signals discriminating the corresponding
inflectional functions. To do so, we trained two learning networks
and extracted measures of uncertainty from them. We found
that lower uncertainty is associated to phonetic enhancement—
supporting work performed within the Paradigmatic Signal
Enhancement Hypothesis framework. This is only the case when
the network was trained on the cognitively appropriate input-
output structure, where inputs represent the cognitive cues
discriminating articulatory gestures and outputs represent the
articulatory gesture at hand. We propose a distinction based on
differences in signal-vs.-message-uncertainty to account for an
apparent contradiction in previous research looking at the effects
of uncertainty on the phonetic characteristics of speech.
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