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Hypertension affects approximately 1 billion individuals worldwide. Pharmacological therapy has not been perfected and often
is associated with adverse side effects. Acupuncture is used as an adjunctive treatment for a number of cardiovascular diseases
like hypertension. It has long been established that the two major contributors to systemic hypertension are the intrarenal renin-
angiotensin system and chronic activation of the sympathetic nervous system. Recent evidence indicates that in some models of
cardiovascular disease, blockade of AT1 receptors in the rostral ventrolateral medulla (rVLM) reduces sympathetic nerve activity
and blood pressure, suggesting that overactivity of the angiotensin system in this nucleus may play a role in the maintenance
of hypertension. Our experimental studies have shown that electroacupuncture stimulation activates neurons in the arcuate
nucleus, ventrolateral gray, and nucleus raphe to inhibit the neural activity in the rVLM in a model of visceral reflex stimulation-
induced hypertension. This paper will discuss current knowledge of the effects of acupuncture on central nervous system and
how they contribute to regulation of acupuncture on the endocrine system to provide a perspective on the future of treatment of
hypertension with this ancient technique.

1. Introduction

Hypertension affects approximately 1 billion individuals
worldwide [1]. Hypertension is the most common chronic
disorder in the United States, affecting 29% of the adult
population [1]. The prevalence of this disorder increases
with age; for normotensive middle-aged adults in the US,
the lifetime risk of developing hypertension approaches 90%
[2]. Although a number of treatment strategies have been
developed for this disease, treatment has not been perfected
and often is associated with adverse side effects.

Hypertension is the final outcome of a complex inter-
action between genetic and environment factors that act on
physiological systems involved in blood pressure (BP) regu-
lation (i.e., those that influence intravascular fluid volume,
myocardial contractility and vascular tone) [3]. Evidence
suggests that increased sympathetic neural activity plays a
role in causing hypertension in some subjects who have a
genetic tendency toward increased sympathetic activity as

a result of repetitive psychogenic stress, obesity, or high sodi-
um intake [3]. An important hypothesis in the pathogenesis
of essential hypertension involves an interaction between
high dietary sodium intake and defects in renal sodium
excretion, which can be influenced by sympathetic neu-
ral activity and the renin-angiotensin-aldosterone system
[3]. Enhanced sympathetic activity increases the secretion
of renin and angiotensin. Angiotensin II enhances renal
tubular sodium reabsorption directly and indirectly through
increased release of aldosterone.

Acupuncture increasingly is being accepted as an alterna-
tive medical therapy in the United States. Manual acupunc-
ture and its potent alternative, electroacupuncture (EA),
have been used in Asia to treat a number of cardiovascular
diseases including hypertension. Many Western physicians,
however, are reluctant to recommend acupuncture, because
its action in the treatment of hypertension remains contro-
versial and because the physiological mechanisms determin-
ing its actions are largely unknown. This paper will discuss
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current knowledge of the effects of acupuncture on central
nervous system and how they contribute to regulation by
acupuncture of the endocrine system to provide a perspective
on the future of treatment of hypertension with this ancient
technique.

2. Clinical Study of Acupuncture in
Treatment of Hypertension

In the past three decades, there have been a number of
clinical studies focused on the effectiveness of acupuncture
at specific acupoints to reduce BP in essential hypertension.
As early as the 1950s, publications in China reported that
acupuncture effectively reduced BP in hypertensive patients
[4, 5]. In 1975, Tam found that acupuncture produced a
significant reduction in systolic and diastolic BP in 24 out
of 28 patients with essential hypertension [6]. Figure 1 shows
a number of acupoints found to be effective in reducing BP,
including pericardium 5, 6 (P 5, 6), stomach 36 (ST 36), large
intestine 4, 11 (LI 4, 11), bladder 18, 20 (BL 18, 20), and
gallbladder 34 (GB 34) [7, 8].

3. Acupoints Selection

We have evaluated the point specificity in EA treatment
of reflex-induced hypertension caused by the gallbladder
or splanchnic nerve (SN) stimulation in cats. This visceral
reflex leads to stimulation of the sympathetic nervous
system through the activation of cardiovascular premotor
sympathetic neurons in the rostral ventrolateral medulla
(rVLM). We observed that EA at P 5-6 (pericardial meridian,
overlying the median nerve) and LI 10-11 (large intestine
meridian, overlying the deep radial nerve) are most effective
in reducing reflex-induced hypertension. EA at LI 4–L7
(large intestine and lung meridians, overlying branches of
median and the superficial radial nerve) and ST 36-37
(stomach meridian overlying the deep peroneal nerve) are
less effective, while EA at LI 6-7 and K1-B67 does not
influence BP. Furthermore, direct stimulation of the deep or
superficial nerves underneath the acupoints produces similar
results [9, 10]. Similar observations have been made in a rat
model employing gastric distension to elevate BP [11, 12].

4. Stimulation Parameters

EA rather than manual acupuncture has been used in
many studies on cardiovascular related diseases, because
the parameters of EA can be precisely controlled so the
results are reproducible, whereas the outcome from manual
acupuncture is operator dependent and therefore, is not as
reproducible. A low frequency of 2 Hz is used more fre-
quently to treat hypertension, because EA induces frequency-
dependent release of neuropeptides. EA at 2 Hz produces
a significant increase in enkephalin-like immunoreactivity
but not in dynorphin immunoreactivity, whereas 100 Hz
increases dynorphin immunoreactivity but not enkephalin
immunoreactivity [13]. The similar results were confirmed
in humans [14]. In the brain, enkephalins and endorphins

as well as their associated δ- and μ-opioid receptors have
been shown to be more important in modulating the
cardiovascular actions of EA than dynorphin (κ-opioid) [15].

In our rat model of reflex hypertension, sham acupunc-
ture involving needle insertion without manipulation at
P 5-6 or LI 6-7 acupoints did not attenuate the gastric
distention-induced hypertension, thus demonstrating that
this procedure can serve as a control for EA. However,
EA at P 5-6, H 6-7 (overlying the ulnar nerve) or ST 36-
37 with low current (2 mA) and low frequency (2 Hz) for
30 min inhibited the reflex-induced hypertension. Increasing
the stimulation frequency to 40 or 100 Hz did not inhibit
the elevated BP. In this regard, we observed a reciprocal
relationship between the frequency of stimulation and the
afferent response. Thus, it appears that low-frequency, low-
current EA in a point-specific manner optimally influences
reflex-induced hypertension [11, 12].

5. Central Regulation of Blood Pressure

An increasing number of studies have demonstrated a critical
role for the central nervous system in the development
and maintenance of hypertension. In particular, increases
in sympathetic nerve activity and alterations in arterial
baroreflex function appear to contribute to the pathogenesis
of this disease [16]. The development of hypertension in
various animal models of hypertension, such as the spon-
taneously hypertensive rat (SHR), the renin transgenic
(TGR mRen2) rat, the Dahl salt-sensitive rat, and the
deoxycorticosterone acetate- (DOCA-) salt rat, is associated
with increases in sympathetic activity. Increased sympathetic
nerve activity elevates BP through arteriolar constriction and
by increasing the force and rate of contraction of the heart to
increase cardiac output. Renal sympathetic nerve activity also
stimulates renin secretion that activates the systemic renin-
angiotensin system leading to angiotensin (Ang) II-induced
vasoconstriction and sodium retention [17]. Alteration of
arterial baroreflex function has also been implicated in the
development of hypertension [18]. Carotid sinus and aortic
arch baroreceptors respond to changes in BP by modulating
parasympathetic and sympathetic outflow and, hence, heart
rate, cardiac output, and vascular tone. In response to a static
increase in BP, the baroreflex resets towards a higher pressure
[19]. In hypertensive conditions, resetting of the operational
point of the arterial baroreflex, therefore, contributes to
maintaining increased BP rather than opposing it. Similar
to animal models of hypertension, hypertension in human
subjects is associated with increases in sympathetic activity
and blunted arterial baroreflexes [3, 18, 20, 21].

In hypertensive animals, functional changes within the
central nervous system have been detected largely in hypo-
thalamic and medullary areas that modulate sympathetic
outflow [22]. Ang II contributes to cardiovascular regulation
via its action at various hypothalamic and medullary areas
to enhance sympathetic outflow, blunt the sensitivity of the
baroreflex, and stimulate secretion of vasopressin [23, 24].

Over the past decade, we have examined the central
neural regulation of visceral reflex-induced hypertension
by acupuncture in different regions of brain, including the
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Figure 1: Location of acupoints along meridians. Note that although all meridians are bilateral, they are only drawn on one side for
simplicity. Abbreviations of meridians: G: gallbladder; L: lung; LI: large intestine; P: pericardium; ST: stomach; BL: bladder.

rVLM, hypothalamic arcuate nucleus, midbrain ventrolateral
periaqueductal gray (vlPAG) nuclei, medullary nucleus raphé
pallidus (NRP), and dorsal horn and intermediolateral col-
umn of the spinal cord.

6. EA Inhibition of Neural Activity in the rVLM

The rVLM plays a critical role in the regulation of BP [25].
Inhibition of neuronal function in this nucleus results in
large decreases in BP [26]. We have demonstrated previously
that both low-frequency electro- and manual acupuncture
inhibit elevated BP as well as premotor sympathetic neu-
ral firing in the rVLM [12]. Administration of naloxone
(nonspecific opioid receptor antagonist) or gabazine (γ-
aminobutyric acid or GABA type A receptor blocker) in
the rVLM abolishes the EA modulation [27]. The rVLM
is an important brain stem region that processes somatic
inputs during acupuncture stimulation. Electrophysiological
studies of neuronal activity in the rVLM have shown

that as compared to cardiovascular inactive points (LI 6-
7, G 37–39), P 5-6 and certain acupoints along the large
intestine meridian (LI 4–11), located over deep somatic
neural pathways (median and deep radial nerves), provide
more afferent input to cardiovascular premotor sympathetic
neurons in the rVLM [10]. This observation likely explains
why acupuncture over these deep nerves most effectively
lower elevated sympathetic outflow and BP.

7. Neurotransmitters in rVLM, Arcuate,
and vlPAG

Early studies in several models of hypertension suggested
that EA lowers the elevated BP through the release of opioids,
GABA, nociceptin, and serotonin (or 5-hydroxytryptamine,
5-HT) in the rVLM [28–32]. More recently, we have demon-
strated that the EA inhibition of visceral reflex-induced
hypertension in cats is related to the activation of μ- and
δ-, but not κ-opioid receptors in the rVLM, suggesting that
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endorphins, enkephalins, and perhaps endomorphin, but
not dynorphin, are mainly responsible for EA modulation of
cardiovascular responses.

Immunohistochemical staining studies have demon-
strated the presence of enkephalinergic neurons in the rVLM
and endorphinergic neurons in the arcuate nucleus that
project directly to the rVLM and that both neurotransmitter
systems are activated by EA [33]. EA inhibits the reflex
hypertension through opioid-mediated inhibition of gluta-
mate in the rVLM [34]. Electrophysiological studies [24]
have shown that reciprocal excitatory glutamatergic (NMDA
and non-NMDA) projections exist between the arcuate
nucleus and vlPAG that may participate in the EA inhibition
of cardiovascular function. This reciprocal projection may
include a cholinergic component in the arcuate nucleus but
not in the vlPAG [35].

Furthermore, EA, through presynaptic endocannabinoid
CB1 receptor stimulation, reduces the vlPAG release of
GABA but not glutamate during EA [36]. Reduced GABA
disinhibits vlPAG neurons, thus increasing their activity,
which, in turn, through an action in the NRP inhibits
rVLM cardiovascular sympathetic neurons and related sym-
pathoexcitatory reflex responses [37]. It is clear, therefore,
that a variety of neurotransmitter systems underlie the car-
diovascular modulation of EA. This includes both excitatory
and inhibitory neurotransmitters, with their importance
varying between the different nuclei.

8. Long-Loop Pathway for
EA Cardiovascular Modulation

The role of the hypothalamic arcuate nucleus and its inter-
action with the vlPAG and rVLM in the EA-cardiovascular
sympathoexcitatory responses has been extensively studied
[10, 31, 38, 39]. Microinjection of the excitatory amino
acid DLH, into the arcuate nucleus augments the responses
of vlPAG neurons, while microinjection of small volumes
(50 nL) of kainic acid (KA) causes reversible depolarization
blockade that transiently deactivates arcuate neurons and
decreases the vlPAG responses to SN stimulation [31].
Additionally, EA increases SN-evoked discharge of vlPAG
neurons, a response that can be blocked by microinjection
of KA into the arcuate nucleus. Microinjection of DLH into
the arcuate nucleus, like EA, inhibits the reflex increase in
BP induced by application of bradykinin to gallbladder for
approximately 30 min. Finally, microinjection of KA into the
arcuate blocks the inhibitory influence of EA on the reflex
hypertension. As such, these results suggest that excitatory
projections from the arcuate nucleus to the vlPAG appear
to be essential to the inhibitory influence of EA on the
reflex increase in BP induced by SN and gallbladder afferent
stimulation.

9. vlPAG-rVLM Projections

The vlPAG provides inhibitory input to premotor sympa-
thetic neurons in the rVLM to ultimately reduce sympathetic
outflow and reflex elevations in BP [39]. Direct axonal

projections from the vlPAG to the medulla have been
documented in tract tracing studies [40]. However, a vlPAG
projection to the raphé, in particular the nucleus raphé
obscurus (NRO) also exists and has been thought to form an
indirect pathway from the vlPAG to the rVLM that is involved
in the EA-cardiovascular response [41]. Recent studies have
suggested, however, that the NRP, located more ventrally
than the NRO or the nucleus raphé magnus, contains more
cells activated during median nerve stimulation with EA at
the P 5-6 acupoints, as judged by the concentration of c-
Fos labeling [42]. Chemical blockade of the NRP with KA
or kenurenic acid transiently reverses activation of neurons
in the rVLM during stimulation of the vlPAG as well as
EA modulation of visceral excitatory reflexes [43]. Further-
more, the NRP inhibits rVLM activity, including activity
of bulbospinal premotor sympathetic neurons. Serotonin
projections from the raphé acting on 5-HT1A receptors in the
rVLM complete the vlPAG-NRP-rVLM circuit to modulate
cardiovascular activity [43]. Thus, an indirect connection
from the vlPAG to the rVLM involving a serotonergic
connection between the NRP and the rVLM plays an impor-
tant role in the long-loop modulation of cardiovascular
sympathetic outflow during reflex visceral stimulation. These
studies do not eliminate the possibility that direct projections
between the vlPAG and the rVLM also might serve a
functional role in EA-cardiovascular modulation. The direct
or indirect projections from the vlPAG to the rVLM complete
the long-loop pathway and provide an important source for
the inhibitory influence of EA on rVLM premotor neurons
and ultimately sympathoexcitatory cardiovascular responses
[41].

10. Arcuate rVLM Projections

As noted previously, neurons in the vlPAG receive convergent
input from a number of somatic nerves stimulated during EA
as well as from the arcuate nucleus. Bilateral microinjection
of KA into the rostral vlPAG partially reverses rVLM
neuronal responses and cardiovascular inhibition during
DLH stimulation of the arcuate. Conversely, depolarization
blockade of the caudal vlPAG completely reverses arcu-
ate evoked rVLM responses [41]. In parallel studies, we
have observed that arcuate neurons can be antidromically
activated from the rVLM and that arcuate perikarya are
labeled with a retrograde tracer microinjected into the
rVLM [41]. Many neurons from the arcuate that project to
the rVLM are activated by EA stimulation (c-Fos positive)
and they frequently contain opioid peptides, particularly β-
endorphin [44]. As such, the vlPAG, particularly the caudal
vlPAG, appears to be required for inhibition of rVLM
neuronal activation by the ARC and subsequent EA-related
cardiovascular activation. However, direct projections from
the arcuate nucleus to the rVLM, likely serve as an important
source of β-endorphin since this projection contains this
opioid peptide [41]. This latter observation is consistent
with our earlier anatomical study showing that cells in
the rVLM contain enkephalin but not β-endorphin [44].
Hence, EA-cardiovascular responses that result from the
action of β-endorphin on μ-opioid receptors located on
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Figure 2: Neural circuits of acupuncture’s action on cardiovascular sympathoexcitatory visceral reflex elevation of blood pressure.
Abbreviations: ARC: arcuate nucleus; vlPAG: ventrolateral periaqueductal gray; NR: nuclei raphe; rVLM: rostral ventrolateral medulla.
From[38].

rVLM sympathoexcitatory premotor neurons depend on this
hypothalamic-medullary projection [45].

11. Role of Spinal Cord in
Acupuncture-Cardiovascular Response

The spinal cord processes somatic and visceral reflexes as
well as outputs from the central nervous system to effector
organs involved in cardiovascular reflex regulation [46].
Anatomical and physiological studies indicate that the dorsal
horn of the spinal cord serves as a major center for EA-
induced analgesia [47, 48]. Both low- and high-frequency

EA at Zusanli (ST 36) acupoint increase Fos immunoreactive
neurons in the superficial laminae (I and II) in the dorsal
horn of the spinal cord [48]. Since opioid or nociceptin-
like immunoreactivity is present in the spinal sympathetic
nuclei (i.e., intermediolateral column, IML) [49, 50], we
have considered the possibility that EA also influences the
neurotransmission between the brain stem and the IML
[51]. In this regard, our studies have found that both
opioid and nociceptin reduce the response to rVLM-induced
sympathoexcitation, indicating that the two peptides can
regulate sympathetic outflow [52, 53]. In addition, there
has been a suggestion that descending pathways from the
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Figure 3: Neuroendocrine modulation of blood pressure by ac-
upuncture. Abbreviations: GABA, γ-aminobutyric acid; 5HT, 5-
hydroxytryptamine or serotonin; NO: nitric oxide; IML: interme-
diolateral column of the spinal cord.

brain stem (presumably to the dorsal horn of the spinal
cord) may influence the segmental processing of somatic
inputs during EA [54, 55]. Afferent stimulation can modulate
sympathetic activity through the inhibition of excitatory
interneurons [56]. Furthermore, somatic stimulation can
elicit excitatory and inhibitory responses in both IML and
dorsal horn interneurons, depending on the dermatome
stimulated [57]. These interneurons appear to form impor-
tant links in the spinal cord circuitry involved in autonomic
control [58]. Taken together, these results indicate that
opioid and nociceptin play a role in the processing of spinal
cord interneuron activity in the EA response. However,
spinal circuits controlling the cardiovascular visceral reflex
responses during EA require further elucidation.

12. Endocrine and Vascular Actions
of Acupuncture

Acupuncture reduces BP through modulation of the en-
docrine system, including decreases in plasma renin, aldos-
terone, and angiotensin II activity [59–61], and increased
excretion of sodium [62]. Also, plasma norepinephrine,
serotonin, and endorphin levels are reduced by acupuncture,
reflecting its ability to modulate the neurohumoral system
[63]. A laboratory-based study has demonstrated that long-
term treatment with EA delayed hypertension development

and restored nitric oxide in the plasma of SHRs [64].
Endothelial neuronal nitric oxide synthase (NOS) expres-
sion was significantly increased by EA in the mesenteric
artery of SHRs, whereas neuronal (nNOS) expression was
significantly attenuated. Additionally, EA at ST 36 induced
nNOS expression in the gracile nucleus and medial nucleus
tractus solitaries, and increased nNOS in the nuclei may
modify central cardiovascular regulation, which contributes
to hypotensive effects of acupuncture [65].

13. Short-Term and Long-Lasting Effect
of Acupuncture

Williams and colleagues found that EA induced a significant
and immediate poststimulation short-term reduction of
diastolic blood pressure [66]. In 1997, a small study of
50 patients with essential hypertension found that shortly
after 30 minutes of acupuncture both systolic and diastolic
BP were lowered by 10–20 mmHg [61]. These data suggest
that there is an immediate postacupuncture phenomenon.
Our experimental studies in anesthetized animals have
shown that the inhibitory effect of acupuncture on BP
reflex responses occurs after 10–20 min of the start of EA
stimulation and can last for as much as 60–90 min after
termination of EA. In addition, in a preliminary study
utilizing 24 hr ambulatory blood pressure monitoring [67],
we have observed that 8 week of acupuncture lowers BP of
hypertensive patients with mild-to-moderate hypertension
(BP 140–180/90–110 mmHg) by 12–18 mmHg. This effect
lasts for 4 weeks after termination of EA. These data suggest
that EA at select acupoints (P5-P6 and ST 36-ST 37) known
to have strong cardiovascular actions, performed once
weekly for 8 weeks, significantly reduces BP. Importantly, this
beneficial effect appears to persist for a prolonged period of
time.

Several mechanisms might be involved in the long-
lasting inhibitory action of acupuncture in hypertension.
For example, the modulation by EA of rVLM sympathetic
premotor neuronal responses to reflex-induced hypertension
lasts for 30–40 min after the cessation of EA as a result of
opioid and GABA modulation in this medullary region [68].
A recent study from our laboratory shows that reciprocal
excitatory projections between the arcuate nucleus and the
vlPAG may form a reinforcing circuit that can be activated for
prolonged periods by EA, lasting as long as 30–60 min [41].
In addition, preliminary data from our laboratory using real-
time PCR demonstrate that preproenkephalin in the rVLM
is increased after completion of a single 30 min application
of EA P 5-6 acupoints of rats [38]. The possibility that EA
induces the production of opioid mRNA in the brain stem
suggests that over time, EA may exert a long-lasting effect by
stimulating increased production of opioid precursors.

14. Summary

Acupuncture has been shown to decrease BP in hyperten-
sive patients and in animal models of hypertension. The
mechanisms underlying the beneficial effects of acupuncture
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are associated with modulation of sympathetic outflow and
possibly the endocrine system. Experimental studies have
shown that EA inhibits the reflex-induced hypertension by
modulating the activity of cardiovascular presympathetic
neurons in the rVLM. Activation of neurons in the arcuate
nucleus of the hypothalamus, vlPAG in the midbrain, and
NRP in the medulla by EA can inhibit the activity of
premotor sympathetic neurons in the rVLM. Glutamate,
acetylcholine, opioids, GABA, nociceptin, serotonin, NO,
and endocannabinoids in the brain all appear to participate
in the EA antihypertensive response (Figure 2). The central
action of EA may also affect the endocrine system and lead to
a decrease in plasma renin, aldosterone, angiotensin II, nore-
pinephrine, and serotonin. The neuroendocrine mechanisms
of acupuncture in the treatment of hypertension are not yet
fully understood, and thus are worthy of further investigation
(Figure 3).

Abbreviations

EA: Electroacupuncture
BP: Blood pressure
rVLM: Rostral ventrolateral medulla
ARC: Arcuate nucleus
vlPAG: Ventrolateral periaqueductal gray
NRP: Medullary nucleus raphé pallidus
NRO: Nucleus raphé obscurus
IML: Intermediolateral column
GABA: γ-aminobutyric acid
nNOS: Neuronal nitric oxide synthase
KA: Kainic acid.
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