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Purpose: Vascular remodeling is a significant pathological feature of various pulmonary diseases,
which may be assessed by quantitative computed tomography (CT) imaging. The purpose of this
study was therefore to develop and validate an automatic method for quantifying pulmonary vascular
morphology in CT images.
Methods: The proposed method consists of pulmonary vessel extraction and quantification. For
extracting pulmonary vessels, a graph-cuts-based method is proposed which considers appearance
(CT intensity) and shape (vesselness from a Hessian-based filter) features, and incorporates distance
to the airways into the cost function to prevent false detection of airway walls. For quantifying the
extracted pulmonary vessels, a radius histogram is generated by counting the occurrence of vessel
radii, calculated from a distance transform-based method. Subsequently, two biomarkers, slope a and
intercept b, are calculated by linear regression on the radius histogram. A public data set from the
VESSEL12 challenge was used to independently evaluate the vessel extraction. The quantitative anal-
ysis method was validated using images of a three-dimensional (3D) printed vessel phantom, scanned
by a clinical CT scanner and a micro-CT scanner (to obtain a gold standard). To confirm the associa-
tion between imaging biomarkers and pulmonary function, 77 scleroderma patients were investigated
with the proposed method.
Results: In the independent evaluation with the public data set, our vessel segmentation method
obtained an area under the receiver operating characteristic (ROC) curve of 0.976. The median radius
difference between clinical and micro-CT scans of a 3D printed vessel phantom was
0.062 � 0.020 mm, with interquartile range of 0.199 � 0.050 mm. In the studied patient group, a
significant correlation between diffusion capacity for carbon monoxide and the biomarkers, a
(R = �0.27, P = 0.018) and b (R = 0.321, P = 0.004), was obtained.
Conclusion: In conclusion, the proposed method was validated independently using a public data
set resulting in an area under the ROC curve of 0.976 and using a 3D printed vessel phantom data
set, showing a vessel sizing error of 0.062 mm (0.16 in-plane pixel units). The correlation between
imaging biomarkers and diffusion capacity in a clinical data set confirmed an association between
lung structure and function. This quantification of pulmonary vascular morphology may be helpful
in understanding the pathophysiology of pulmonary vascular diseases. © 2019 The Authors. Medical
Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Med-
icine. [https://doi.org/10.1002/mp.13659]
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1. INTRODUCTION

Pulmonary vascular remodeling is a significant characteristic
of pulmonary diseases, such as chronic obstructive

pulmonary disease, interstitial lung disease (ILD), and pul-
monary hypertension (PH).1–8 Systemic sclerosis (SSc, also
called scleroderma) is an autoimmune connective tissue dis-
ease affecting several organs, and its pulmonary involvement
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can cause ILD or PH, which may involve pulmonary vascular
alterations.9,10 Pulmonary vascular alterations have been
described as narrowing and pruning of distal vessels, which
increases vascular resistance and cause hypertension.11–13

The dilation of proximal vessels is also an essential morpho-
logical feature, as increasing pulmonary vascular resistance
affects proximal vessels.14 Investigation of changes in pul-
monary vascular morphology, such as pruning of small ves-
sels or dilation of large vessels, may provide assessments of
pulmonary vascular remodeling.

Some studies based on the analysis of computed tomogra-
phy (CT) images have shown promising results for quantify-
ing pulmonary vascular remodeling in pulmonary diseases,
using different approaches. Matsuoka et al.6,11 introduced a
CT measurement by quantifying the two-dimensional (2D)
cross-sectional area of small pulmonary vessels for assessing
vessel pruning of COPD. Estepar et al.13,15 extended the
pruning measurement into three-dimensional (3D) by quanti-
fying the ratio between the volume of small vessels and all
the vessels, and applied these measurements within each
lobe. Rahaghi et al.14,16 introduced the concepts of imaging
biomarkers, the ratio of small vessel volume to total vessel
volume and ratio of proximal vessels to all vessels, for quanti-
fying pruning of distal vessels and dilation of proximal ves-
sels, respectively. Rather than assessing vascular morphology
based on vessel size, Helmberger et al.17 calculated tortuosity
as well as the 3D fractal dimension of segmented pulmonary
vessels for characterizing vascular remodeling of patients
with pulmonary hypertension.

In the pulmonary vessel quantification methods mentioned
above, accurate pulmonary vessel segmentation is an impor-
tant step. A few approaches have been proposed for extracting
pulmonary vessels, and a challenge called VESSEL12 with a
public data set and independent evaluation has been orga-
nized for comparing vessels extraction methods, among
which Hessian-based methods have shown a good perfor-
mance.18–20 Tube-like structures can be enhanced by Hessian-
based methods, such as the Frangi filter21 and the Sato fil-
ter,22 where the eigenvalues of the Hessian matrix describe
cylindrical properties. However, the response of Hessian-
based filters is low at vessels’ edges and bifurcations.23 The
“strain energy" filter19 can partly overcome this problem of
low responses at vessels’ bifurcations by analyzing the shape-
tuned strain energy density, where the Hessian matrix was
considered as a stress tensor, and three tensor invariants from
orthogonal tensor decomposition were used to formulate dis-
tinctive functions for shape discrimination, brightness con-
trast, and strength. Finally, the multiscale scheme was
adopted to optimally enhance vessels with different size.
According to the VESSEL12 challenge,20 simply using a
threshold or local thresholds24 on the vesselness map (which
is the vessel likelihood map enhanced with Hessian-based
methods) cannot extract binary vessels accurately. In our pre-
vious work,25 a graph-cuts-based method was proposed for
extracting lung vessels by combining the appearance (CT
intensity) and shape (vesselness) features into a single cost
function, and achieved a competitive performance, which was

the best result among the submitted methods of VESSEL12
that produce binary vessels. Nevertheless, the separation
between airway wall and vessels was still inaccurate, which
could also affect the quantification of pulmonary vascular
morphology, due to the similar CT intensities of airway walls
and vessels.

Validating pulmonary vessel quantification methods is a
challenging task, as manually annotating the ground truth in
patient images is extremely time consuming and it is hard to
determine the quality and robustness of the annotated data
quantitatively. As a possible alternative to validate the quan-
tification methods, anthropomorphic phantoms containing
known distributions of vessels can be considered. These
phantoms can be created using 3D printing, a technique with
applications in different imaging modalities, including CT,
for imaging and dosimetry purposes.26–31 In this work, a 3D
printed phantom with vessel-like structures designed in a
similar way to the lung was used to validate the proposed
method for quantifying vessel morphology. A sufficiently
high-resolution micro-CT scan of the lung phantom was
acquired and used as the ground truth for the vessel distribu-
tion.

In this study, we present an automatic and quantitative
approach to assess pulmonary vascular morphology alterna-
tions, based on an adjusted graph-cuts vessel segmentation
and a novel histogram-based quantitative analysis. The auto-
matic method consists of two steps: pulmonary vessel extrac-
tion and pulmonary vessel quantification. For pulmonary
vessel extraction, we extended our previous graph-cuts-based
method25 by incorporating the distance map to airways into
the cost function, for separating airway walls from vessels.
For pulmonary vessel quantification, a method is proposed
by quantifying the radius histogram of pulmonary vessels,
where all pulmonary vessels are included in the analysis,
instead of only a specific part. The accuracy and robustness
of the automatic method were validated with three data sets:
(a) a public data set of the VESSEL12 challenge to test the
accuracy of the vessel segmentation, (b) a data set of a 3D
printed vessel phantom to evaluate the accuracy of vessel siz-
ing and robustness to protocol settings of the CT scanner, and
(c) finally, a data set of SSc patients to confirm the correla-
tion between pulmonary vessel morphology and pulmonary
function.

2. MATERIALS AND METHODS

2.A. Pulmonary vessel extraction

The segmentation task can be treated as a labeling prob-
lem L ¼ fLpjp 2 P; Lp 2 f0; 1gg, where P is the set of vox-
els from an image and p 2 P.32 A voxel is labeled as object
or background according to its own properties and the con-
nections with its neighbors. In the labeling problem of graph-
cuts, the general energy function formulates the connection
weights of voxel nodes, object (source) node and background
(sink) node, as described in Eq. 1. The energy function can
be optimized by finding the max-flow/min-cut.33,34 To
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extract pulmonary vessels, we developed a graph-cuts-based
method by combining appearance features, shape features,
and the distance map to airway [as shown in Fig. 1(a)]. The
energy function of the proposed method is specified by for-
mulating the data term DpðLpÞ and neighbor term
Vp;qðLp; LqÞ, with a weight c:

EðLÞ ¼
X
p2P

DpðLpÞ þ c
X

ðp;qÞ2N
Vp;qðLp; LqÞ: (1)

where ðp; qÞ 2 N means that q is a neighbor voxel of p. The
data term DpðLpÞ consists of three parts:

DpðLpÞ ¼ wDCT
p ðLpÞ þ ð1� wÞDVSL

p ðLpÞ þ waD
DTA
p ðLpÞ:

(2)

The appearance term DCT
p ðLpÞ is calculated based on the

CT intensity; the shape term DVSL
p ðLpÞ is calculated based on

the vesselness of the strain energy filter;19 and the distance-
to-airway (DTA) term DDTA

p ðLpÞ is determined by the dis-
tance map to the airways. These three terms are then balanced
with weights w and wa, where w is a global balance between
appearance and shape terms, and wa is the weight for airway
wall elimination.

Since voxels with a high CT intensity or vesselness obtain
a high vessel likelihood, sigmoid functions are employed for
both the appearance term and the shape term. The appearance
term DCT

p ðLpÞ and the shape term DVSL
p ðLpÞ are formulated as

follows:

DCT
p ðICTp jLp ¼ lÞ ¼ 1

1þ e�aCTl ðICTp � bCTl Þ
;

DVSL
p ðIVSLp jLp ¼ lÞ ¼ 1

1þ e�aVSLl ðIVSLp � bVSLl Þ
;

(3)

where ICTp and IVSLp represent the CT intensity and vesselness
of voxel p, respectively; aCTl , bCTl , aVSLl and bVSLl are the
parameters of the corresponding sigmoid function. The

determination of the parameters in these sigmoid functions is
described in Section 2.D.1.

The DTA map is employed in order to eliminate false
detection of airway walls. Therefore, the lumen of the airway
of each chest CT scan is detected by a region-growing method
where a seed point was searched in the trachea and an opti-
mal threshold was selected by iteratively growing before the
leakage of airway volume.35 Then, a Euclidean distance
transform is applied for generating the distance map. The
thickness of airway walls is approximately 2 mm,24,36 thus,
the response range of the DTA term was set to [0, 3] mm. For
determining the response to airway walls, a Gaussian func-
tion is adopted as the kernel that centers on l and scales with
r, as follows:

DDTA
p ðdpjLp ¼ lÞ ¼ ð�1Þl � e�

ðdp�lÞ2
2r2 ; if 0\dp\3 mm

0; otherwise:

(

(4)

The neighbor term Vp;qðLp; LqÞ from Eq. 1 is the cost for cut-
ting a neighborhood edge (p,q) on the basis of their similarity
and c is a positive coefficient for controlling the smoothness
of detected objects. It is calculated based on the similarity in
CT intensity of two neighborhood voxels ðp; q 2 NÞ, and
corrected by the spatial distance between them:

Vp;qðLp; LqÞ ¼ e�dp;q�jICTp �ICTq j; if Lp 6¼ Lq
0; otherwise;

�
(5)

where dp;q represents the spatial distance between voxels p
and q. In other words, if two neighboring voxels (p,q) have
similar CT intensities and are within a short distance but are
labeled differently, the cost of the n-edge (p,q) will be high.

2.B. Pulmonary vessel quantification

Based on the segmented pulmonary vessels, the centerli-
nes of vessel trees are extracted using a skeletonization

FIG. 1. An overview of our proposed method which contains two main steps: pulmonary vessel extraction and pulmonary vessel quantification. To extract pul-
monary vessels, the vesselness, computed tomography (CT) intensity, and distance map to airways were incorporated into the graph-cuts cost function, as shown
in (a). The vessel skeletons and radii are calculated based on the segmented vessels, and the radius histogram is counted and quantified with the proposed
method, as illustrated in (b). [Color figure can be viewed at wileyonlinelibrary.com]
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method.37 This method successively erodes the border voxels
for locating the vessel centerline where a refinement step
was adapted for eliminating the side branches; the distance
between boundary voxels and central voxel are calculated
and the minimum distance is used to estimate the corre-
sponding radius. This estimated radius is subsequently
assigned to that central voxel, producing a 3D skeleton map
with radius value embedded in the centerline voxels, as illus-
trated in Fig. 1(b).

The number of voxels in the vessel skeleton with a specific
radius on the vessel skeleton are counted as Nr. The vessel
radius frequency is normalized for voxel size (Vl) to make
the histogram comparable across CT scans, that is, instead of
simply using the counted number, the accumulated length
was estimated with the number of voxels and their size. In
order to obtain a linear relation between frequency and
radius, a logarithmic transformation is applied to the normal-
ized frequency in the histogram. Afterward, a “radius his-
togram" is generated for pulmonary vessels of each CT scan,
in which the ith bin’s index represents the vessel radius, ri,
and its height characterizes the logarithm of the normalized
frequency of occurrence, logðNri � VlÞ.

y ¼ a � xþ b

where y ¼ logðNr � VlÞ and x ¼ r:
(6)

For quantifying the pulmonary vessel morphology, the
“robustfit" method (in MATLAB R2016a Mathworks, Natick,
MA38) was applied to solve the linear regression in Eq. 6. For
each patient, two biomarkers, a and b, are calculated, which
correspond to the slope and intercept of the linear regression,
respectively [Fig. 1(b)]. The slope parameter a quantifies the
occurrence of vessels with small radius relative to those with
large radius, which may indicate pruning of small vessels
and/or dilation of larger vessels. The intercept parameter b is
an extrapolation of the radius histogram to radius 0, which
may relate to the pulmonary vascular tree’s capacity. As cap-
illary vessels have a radius around 5 lm, that is, 0.005 mm,
an extrapolation to radius 0.005 mm may estimate the total
number of pulmonary capillaries, therefore, the intercept to
radius 0 mm is closely related to the pulmonary vascular
capacity.

2.C. Implementation and parameter settings

The graph-cuts based vessel segmentation method was
implemented in Matlab and its cost function was optimized
with a mixed C++ code.39 This proposed vessel segmentation
method was made publicly available by the authors.40 The
strain energy filter for vessel enhancement is also open
source and can be found via ITKTools.41 The quantitative
method for analyzing the pulmonary vascular morphology
benefited from the DtfSkeletonization module of MeVisLab
and the robust linear regression method in MATLAB. The
entire processing pipeline was completed in MeVisLab 2.7.1
(VC12-64), on a personal computer configured with 24 GB
of memory, a 2.67 GHz CPU (Intel Xeon W3520) and a 64-
bit Windows 7 operating system.

The parameters used in the segmentation method were
optimized on the VESSEL12 training set. The appearance
and shape features were normalized to ranges of [0, 1], before
incorporation in the cost function. The strain energy filter’s
parameters were set according to the literature.19,25 Before
construction of the graph, a very low threshold of 0.0009 was
used on the vesselness map to exclude voxels that almost cer-
tainly belong to the background. This resulted in a relatively
small sparse graph structure, which was constructed with the
remaining voxel nodes, object and background nodes, and
allowed processing of high-resolution CT scans.

The balance parameter w between appearance and shape
terms was set to 0.6,25 and the parameter wa of the distance
to airway term was set to 0.4, optimized with a grid search
approach on the training data set. Because the response
region of the distance to airway term was limited to a local
region around the airways, the parameter wa was not set as a
global balance, in comparison to the global balance parame-
ter w. The parameters of the sigmoid function in the appear-
ance term DCT

p ðLpÞ and shape term DVSL
p ðLpÞ were

automatically estimated with the following algorithm. The
mean value of the appearance feature was picked as the initial
threshold to initially separate the background and object. The
appearance feature inside the object region was fitted with a
Gaussian distribution, by calculating the mean l and standard
deviation std. Then, the parameters of the sigmoid function
were estimated by fitting a Gaussian distribution, such that
Sigmoid(b) = Gaussian(b) = 0.5 and Sigmoid(l) = 0.95.
The parameters used in the cost function for the shape term
were calculated in a similar way.

A distance transform-based method (“DtfSkeletonization”
method of MeVislab) was used to performed the skeletoniza-
tion on the binary vessels extracted by the graph-cuts-based
method.37 The binary segmentation was successively eroded
while preserving the topology of the original structure. The
vessel centerlines were localized and the radius was recorded
at the corresponding voxels on the skeleton. A vessel radius
can obtain a value from only a limited number of possible
distances, due to the limited and constant voxel size. To cap-
ture all these unique radii in the histogram, the bin size was
set to as small as 0.001. To calculate the imaging biomarkers
a and b, a linear regression was applied to the radius his-
togram. In the regression analysis, the first non-empty bin
was excluded as this might be influenced by the noise of
small branches in vessel skeleton extraction or affected by the
voxel size in estimating the size of small vessels.

2.D. Data sets used for validation

2.D.1. Data set of VESSEL12

The proposed pulmonary vessel segmentation method was
validated on the VESSEL12 challenge data set,20 which con-
tains three CT scans in a training set and 20 CT scans in a
testing set. These anonymous scans were collected from three
hospitals: the University Medical Center Utrecht (Utrecht,
The Netherlands), the University Clinic of Navarra
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(Pamplona, Spain), and the Radboud University Nijmegen
Medical Centre (Nijmegen, The Netherlands). In the 20 test-
ing CT scans, points of interest were annotated individually
by three trained medical students with four possible labels:
vessel, lung parenchyma, airway wall, or lesion.20 Only the
points on which all three annotators agreed were included in
the ground truth. In the three training CT scans, the annota-
tions were labeled in a similar way, however, there were only
two label categories (vessel and non-vessel). Furthermore,
the lung masks for each of these scans were provided by the
VESSEL12 challenge organizers.

For the three CT training scans, we performed lung vessel
segmentation and the corresponding evaluation results can be
found in the Appendix. For the 20 CT scans in the testing
data set, the binary pulmonary vessels, which were extracted
using the graph-cuts-based method, were uploaded to the
VESSEL12 challenge website and independent evaluation
results were calculated by the organizers. The probabilistic
submissions were scaled to probabilistic maps with a range
of [0, 255], then multilevel thresholds were used to generate a
receiver operating characteristic (ROC) curve, details of
which are presented in the online supplementary. For binary
submissions, “probabilistic maps" were generated by apply-
ing a distance transform and scaling the results to [0,255],
subsequently, the ROC curve was calculated based on the
probabilistic maps. The area under the ROC curve (Az) was
used as the main score for validation.

2.D.2. Data set of vessel phantom

To validate the proposed method for quantifying vessel
morphology, a 3D printed phantom, representing vessel-like
structures with similar sizes as in the lung was used. This
phantom was designed based on the work by Weibel et al.
who performed a microscopic study of lungs from human
cadavers.42,43 An algorithm was developed in MATLAB
(Mathworks, Natick, MA) to generate a model of a vessel tree
structure, with decreasing length and diameter for the vessels,
modeled as cylinders, in each vessel generation iteration.44,45

The model was constrained to an elliptically shaped frame
(150 9 103 9 26 mm), as it was intended for manufacturing
a small phantom for image quality in CT.44,45 The vessel tree

started growing at the center of one of the sides of the ellipse
[Fig. 2(a)]. At each vessel segment ending, there could be a
bifurcation or an elongation. The bifurcation chance
increased after each elongation step. The direction of the two
generated branches after a bifurcation was randomly taken
but limited within 45�, with regard to the parent vessel direc-
tion. The lung model was printed using a ProJet HD 3000 3D
printer with multi jet modeling (MJM) technique in ultrahigh
definition mode, selecting Visijet EX200 as material. This
mode enables to print very thin layers (32 lm) of material.
The total number of generated vessel segments was in the
order of 20000 being the biggest 10 mm diameter and the
smallest in the order of 0.2 mm.45 To estimate the accuracy
of the 3D printing process, three of the biggest vessels in the
phantom (by design, 4.25, 3.35, and 2.65 mm radius) were
measured with a Vernier caliper (0.05 mm accuracy) in three
different positions along each vessel, and the locations of
these selected vessels are demonstrated in the Fig. A3 of the
online supplementary.

The 3D printed vessel phantom was imaged with a clinical
CT scanner (Aquilion ONE, Toshiba Medical Systems, Ota-
wara, Japan) with the following acquisition parameters:
0.5 9 64 mm collimation, 120 kV, pitch 0.828, 0.5 s rota-
tion time, FOV of 195.1 mm, and various tube currents (10,
20, 50, 100 mA). Images were reconstructed with 0.5 mm
slice thickness and interval, selecting FC30 as convolution
kernel with two reconstruction methods, filtered back projec-
tion (FBP) and AIDR3D standard. The voxel dimensions
were 0.38 9 0.38 9 0.5 mm. In total, eight CT scans were
available to be analyzed (4 dose levels, 2 reconstruction
methods). The CT scans of the 3D printed phantom can be
accessed by contacting the corresponding author of the origi-
nal paper.52 To obtain the ground truth of the 3D printed ves-
sel phantom, the phantom was scanned with a Zeiss Xradia
520 Versa micro-CT scanner, selecting 80 kV, 7 W, and a 0.4
X objective and no additional filtration. The total scanning
time was 36 h and vertical stitching was applied to obtain the
image volumes (1894 9 1903 px by 2922 images). The voxel
size was 52 9 52 9 52 lm and the micro-CT images, in
TIFF format, were 8-bits depth. The images were reformatted
and rotated in MeVisLab, in order to obtain the same cross-
sections as in the CT scans.

FIG. 2. Three-dimensional (3D) printed vessel phantom (a), together with one slice of the micro-computed tomography (CT) scans (b) and one slice of a clinical
CT scan (c). [Color figure can be viewed at wileyonlinelibrary.com]
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2.D.3. Data set of SSc patients

Patients with SSc were selected from the biobank of the
Leiden Combined Care in SSc (77 patients; 67 women and
10 men; mean age � STD, 49.9 � 14.2 yr). The images
were obtained with a thorax protocol and the patients took
pulmonary function tests (PFT).46 All patients were scanned
with the same CT scanner (Aquilion 64, Toshiba Medical
Systems, Otawara, Japan), during full inspiration and without
contrast medium. The CT protocol settings were: tube current
140 mA without modulation; tube voltage 120 kV; rotation
time = 0.4 s; collimation = 640.5 mm; images were recon-
structed with 0.5 mm slices.9 There were 512 9 512 pixels
in each slice of CT images and the in-plane pixel dimension
was 0.64 9 0.64 mm on average. The local Medical Ethical
Committee approved the protocol. A written informed con-
sent was obtained from each patient prior to enrollment. The
fibrosis scorings of these patients were established by two
experts (a radiologist, L.K. and a rheumatologist, A.S.) on
the basis of CT scans and blinded to the clinical informa-
tion.47 PFTs were tested including total lung capacity (TLC),
forced vital capacity (FVC), forced expiratory volume in 1 s
ðFEV1Þ, and single-breath diffusion capacity for carbon
monoxide corrected for hemoglobin concentration (DLCOc),
and the PFT results were expressed as a percentage of the pre-
dicted (%predicted) value.48,49 No fibrosis were observed in
the CT scans of the selected patients, however their gas trans-
fer (DLCOc %predicted) was impaired. Thus, we hypothe-
sized that pulmonary vascular changes could partly explain
the impaired gas transfer.

3. RESULTS

The proposed graph-cuts-based method obtained an Az of
0.976, which is a competitive performance among 31 submit-
ted methods and the best result among binary submissions of
VESSEL12, where the average (range) in Az of all and binary
submissions were 0.888 (0.561, 0.986) and 0.83 (0.671,
0.976), respectively. The evaluation results of the best proba-
bilistic submission and three binary submissions with top
ranking performance are shown in Table I: the best proba-
bilistic method was a logistic regression classifier that
enhances lung vessels, based on a stacked multiscale strategy
learned features (FL); the binary submissions (LT) of van
Dongen et al.24 who extracted vessels with local thresholds

on Frangi filter’s vesselness and excluded airway walls by
dilating the airway segmentation; the binary submissions
(AS) of our previous method which segmented vessels with a
graph-cuts-based method by combining only appearance and
shape features into the cost function; the binary submissions
(ASD) of the newly proposed method which detected vessels
with a graph-cuts based techniques by incorporating appear-
ance and shape features and distance to airway. The evalua-
tion results of all submissions are also available online on the
VESSEL12 website.51

The vessels in the eight CT scans of the phantom were
segmented with the proposed graph-cuts-based method. The
supporting oval frame surrounding the 3D printed vessels in
the phantom was removed using a cylinder mask. As there
were no airways designed in this phantom, the distance map
to the airway was set to zero. The vessels in the micro-CT
scan were extracted using a threshold, which was determined
by density histogram analysis [Fig. 3(a)]. The distribution of
the voxel density in the micro-CT scan had two peaks, the
peak with lower density value corresponds to the background
(air) and the peak with higher density value corresponds to
the vessels. Thus, the density value with minimum frequency
between these two peaks was selected as threshold to extract
vessels from the micro-CT scan. The threshold T = 156 was
used to segment vessels in this study. The 3D and 2D view of
the extracted vessels are illustrated in Figs. 3(b) and 3(c). For
testing the robustness of this ground truth vessel extraction,
we selected a range of thresholds (156 � 4) to extract vessels
(see Appendix).

Based on the extracted vessels in the micro-CT scan and
the eight CT scans, the corresponding vessel size was calcu-
lated with the DtfSkeletonization module of MeVisLab,
where the estimated radius was recorded at the vessel center-
lines. The micro-CT scan was registered to the eight CT scans
of the phantom using Elastix registration,53 separately, of
which the rigid registration (Euler transform) with B-spline
interpolation was used for mapping the micro-CT scan and
CT scans, and the parameters were optimized with an adap-
tive stochastic optimizer. The skeletons in the micro-CT scan
were extended into a “radius tube" by assigning the voxels on
each cross section with the radius that was recorded on its
centerline, in order to overcome the mismatching between
skeletons of micro-CT scan and clinical CT scans. With the
transformation parameters, the radius tube obtained in micro-
CT scan was transferred to each CT scan. For each CT scan,

TABLE I. Area under the receiver operating characteristic (ROC) curve (Az) score of three binary submissions to the VESSEL12 challenge across all categories
(categories 1: principal, 2: small vessels, 3: medium vessels, 4: large vessels, 5: vessel/airway wall, 6: vessel/dense lesion, 7: vessel/mucus-filled bronchi, 8: ves-
sel-in-lesion/lesion, 9: vessel/nodules). The probabilistic submission using stacked multiscale feature learning (FL50), the binary submission using local threshold
on Frangi’s vesselness (LT24), the graph-cuts-based method combining the appearance and shape feature (AS25), and the method proposed in this work incorpo-
rating appearance, shape and distance to airway (ASD).

Categories 1 2 3 4 5 6 7 8 9

FL 0.986 0.977 0.986 0.994 0.944 0.667 0.595 0.654 0.439

LT 0.932 0.885 0.954 0.955 0.912 0.688 0.404 0.649 0.517

AS 0.973 0.952 0.973 0.992 0.861 0.485 0.297 0.658 0.255

ASD 0.976 0.958 0.977 0.993 0.930 0.484 0.305 0.661 0.254
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we obtained a mapping vector with two columns: one con-
tained the radius value of vessels in the clinical CT scan and
the other contained the radius value of the corresponding ves-
sels in the micro-CT scan, where all vessels (radius range
from 0.1 to 5 mm) were analyzed. The median (M) and
interquartile range (IQR) of radius differences (radius of CT -
radius of micro-CT) were on average of 0.062 mm (0.16 in-
plane pixel units) and 0.199 mm (0.52 in-plane pixel units),
with an STD of 0.02 mm and 0.05 mm, respectively, which
shows high robustness. The mean and STD of errors in per-
centage [%] (100 9(radius of CT � radius of micro-CT)/(ra-
dius of micro-CT)) were calculated for vessels with a radius
larger than 0.5 mm and 1 mm, respectively. The mean �
STD of errors in percentage for vessels with a radius
> 0.5 mm was on average 3.2 � 26.7%, and for vessels with
a radius > 1 mm was on average �7.4 � 20.4%. Details of
% error are included in Table AII of the online supplemen-
tary, for comparing different CT scans with the micro-CT
scan. The correlations (R) between radius in CT and micro-
CT scans were calculated with Pearson’s correlation. The cor-
relations are presented in Table II. The correlations were all
statistically significant and the average correlation was 0.909
(P < 0.001). Furthermore, linear regression was applied to
the radii from the clinical CT scans and those from the micro-
CT scan. All regression analysis results are shown in Table II,
with an average slope and intercept of 1.018 and �0.058,
respectively. The 2D histograms and linear regressions
between radius of CT scans and micro-CT scan are shown in
Fig. 4. With regard to the 3D printing accuracy, the caliper
measurements for the radii of the biggest vessels in the phan-
tom, were 4.26, 3.36, and 2.66 mm, respectively, which are
compatible with the expected values from the design file.
Estimated by micro-CT, the radii of the biggest vessels were
4.07, 3.23, and 2.56 mm, respectively, which demonstrated
on average an underestimation of 0.13 mm and a relative
error of 3%. In CT scans, the radii of these vessels are 4.07,
3.24, and 2.58 mm, respectively, which is presented on aver-
age an underestimation of 0.12 mm and a relative error of
3%, and details of vessel sizing in each CT scan are presented
in Table AIII of the online supplementary.

The vascular morphology in the clinical CT scans of the
phantom was studied with the proposed radius histogram

analysis method, based on the extracted vessels. For each CT
scan, two imaging biomarkers (a and b) were obtained for
quantifying the vascular morphology of the phantom, where
the intercept b estimates the number of small vessels and the
slope a quantifies the relative contribution between small and
large vessels. The results of the biomarkers are presented in
Table II. The STD (average) of biomarker a is 0.034
(�1.785), and the STD (average) of biomarker b is 0.049
(7.03) which implies that the proposed method is robust
against CT scanner settings, in particular variation in dose
(mAs) and for two reconstruction methods (FBP and AIDR
3D). The vascular morphology was investigated in the micro-
CT scan with the proposed method, based on the vessels
extracted with a threshold of 156. The imaging biomarkers a
and b were �1.803 and 7.265, respectively. The average of
difference in a and b between micro-CT scan and clinical CT
scans was �0.019 and 0.235, respectively.

With regard to the patient images from the Leiden Combined
Care biobank, the lung masks were detected with a multi-atlas
segmentation method and pulmonary vascular morphology was
investigated with the proposed method. The imaging biomarkers
(a, b) were collected for all these patients. The average � STD
of a and b are (�1.49 � 0.2) and (9.58 � 0.61), respectively.
The correlations between imaging biomarkers and DLCOc %
predicted were studied with Spearman’s rho correlation. In the
studied patient group, the imaging biomarkers, a (R = �0.27,
P = 0.018) and b (R = 0.321, P = 0.004), were significantly
correlated with DLCOc %predicted (with average � STD,
70.4 � 16.7). The scatter plots of DLCOc %predicted vs a, b,
and the ROC curve of b (AUC = 0.651, P = 0.034) and a
(AUC = 0.614, P = 0.112) are shown in Fig. A4 of the online
supplementary, where patients were grouped into normal or
abnormal gas transfer, based on the DLCOc %predicted value.61

The processing results of two patients in this SSc patient group,
who were quantified with the proposed method, are illustrated
in Fig. 5.

4. DISCUSSION

In this work, we proposed an automatic method which
consisted of two processing steps: a graph-cuts based pul-
monary vessel extraction and a radius histogram-based

FIG. 3. Histogram and extracted vessels of the vessel phantom in the micro-computed tomography (CT) scan, (a) the histogram of the micro-CT scan of three-di-
mensional (3D) printed vessel phantom, (b) 3D view of the extracted vessels in the micro-CT scan, (c) two-dimensional (2D) view of the extracted vessels. [Color
figure can be viewed at wileyonlinelibrary.com]
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pulmonary vessel quantification, for investigating pul-
monary vascular morphology in CT images. The accuracy
of the graph-cuts based vessel segmentation method was
validated with a public data set, and a competitive result
was obtained among other submissions. The robustness
of the pulmonary vessel quantification method was vali-
dated with a 3D printed vessel phantom data set, demon-
strating a robust measurement by comparing CT and

micro-CT scans. The pulmonary vascular morphology in
each CT scan was quantified into two biomarkers, a and
b. The association between pulmonary vascular morphol-
ogy and gas transfer was investigated with a data set of
77 patients with SSc. The biomarkers, a and b, were sig-
nificantly correlated with DLCOc % predicted, suggesting
that the impaired gas transfer is associated with the
remodeling of pulmonary vascular morphology.

FIG. 4. Comparison between the vessel radius estimated from the micro-computed tomography (CT) scan and those from the clinical CT scans, for a range of
dose levels and two reconstruction algorithms (FBP and AIDR3D). In each sub-figure, the x-axis contains the radii from the clinical CT and y-axis contains the
radii from the micro-CT scan; the color scale implies the logarithm transformed frequency of the joint histogram; the white line is the identity line and the red line
is the line of linear regression. [Color figure can be viewed at wileyonlinelibrary.com]
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Extracting pulmonary vessels accurately is an essential
processing step for quantifying pulmonary vascular morphol-
ogy. In this work, a graph-cuts-based method was used for
vessel segmentation, by including voxel’s appearance, shape
features and distance to airways into a cost function. For a fair
comparison with other binary methods for extracting pul-
monary vessels, the public data set of VESSEL12 was used
to validate the accuracy of the graph-cuts-based method. In
comparison with methods using simply threshold or local-
threshold on vesselness, the proposed vessel segmentation
method performed well according to the independent valida-
tion of VESSEL12. This might be due to the fact that the
graph-cuts-based method considers multiple features for each
voxel and assigns voxel’s label incorporating its neighboring
information. The Hessian-based filter may involve

uncertainties in enhancing vessels, as computing the second
derivative of voxel intensity of the Gaussian-filtered image is
based on the assumption that the pixel intensity across a ves-
sel could be represented well by a Gaussian distribution,
while this is not entirely true as mentioned by O’Dell et al.28

For separating the airway walls and vessels, the distance map
was integrated into the graph-cuts cost function. In the
method proposed by van Dongen et al.,24 the airway walls
were excluded by dilating the airway with a spherical element
with a specific size, which might remove partially vessels
touching airway walls. Our method obtained slightly better
performance in separating the airway walls, as illustrated in
Table I, category 5. Our method performed worse, in contrast,
in distinguishing vessels from dense lesions or nodules, cate-
gories 6 and 9, which may be due to the fact that intensity of

TABLE II. Results of comparing radius analysis between computed tomography (CT) scans and micro-CT scan, and results of quantifying vessel morphology of
vessel phantom. The median (M), interquartile range (IQR) of the difference in radius, the correlation (R) between the two radius measurements, with the slope
and intercept of the regression line are presented.

CT setting

Comparison with micro-CT scan Biomarkers

M (IQR) (mm) R (P-value) Slope Intercept a b

10 mA, FBP 0.028 (0.281) 0.869 (< 0.001) 0.980 0.040 �1.780 7.035

20 mA, FBP 0.031 (0.275) 0.874 (< 0.001) 0.986 0.031 �1.780 7.034

50 mA, FBP 0.073 (0.172) 0.922 (< 0.001) 1.029 �0.088 �1.817 7.062

100 mA, FBP 0.072 (0.179) 0.921 (< 0.001) 1.031 �0.091 �1.795 7.058

10 mA, AIDR3D 0.074 (0.168) 0.921 (< 0.001) 1.030 �0.090 �1.709 6.918

20 mA, AIDR3D 0.073 (0.169) 0.920 (< 0.001) 1.027 �0.087 �1.783 7.011

50 mA, AIDR3D 0.073 (0.170) 0.921 (< 0.001) 1.029 �0.088 �1.817 7.062

100 mA, AIDR3D 0.072 (0.179) 0.920 (< 0.001) 1.032 �0.092 �1.795 7.058

Average 0.062 (0.199) 0.909 1.018 �0.058 �1.785 7.030

STD 0.020 (0.050) N.A. 0.022 0.058 0.034 0.049

FIG. 5. The pulmonary vascular morphology of two patients in systemic sclerosis (SSc) were quantified with the proposed method, and the DLCOc %predicted
of patient I and II were 101.5% and 44.6%, respectively. (a, e) the detected lung mask; (b, f) the extracted pulmonary vessels; (c, g) the pulmonary vessel skele-
ton; (d, h) the radius histogram. [Color figure can be viewed at wileyonlinelibrary.com]
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lesions and nodules are similar to vessels. These are however
not expected in patients with SSc. The probabilistic submis-
sion of FL50 achieved the best results among all submitted
methods. As shown in VESSEL12,20 the probabilistic sub-
missions performed slightly better. However, a fair compar-
ison between binary and probabilistic method is difficult to
make, because the binary methods are first converted to dis-
tance maps and used as a surrogate for “probabilistic maps"
for ROC calculations. Therefore, the area under ROC curve
of the probabilistic methods would be smaller if these maps
were treated in the same way as binary method, that is, if the
maps were first thresholded and distance transformed.

The quantitative analysis of the extracted pulmonary ves-
sels was performed on the radius histogram, where the vessel
radii were calculated by a distance transform-based method.
The accuracy of vessels sizing and the robustness of vessel
morphology quantification were validated using a data set of
a 3D printed vessel phantom, which was scanned with a
micro-CT scanner and a clinical CT scanner. The geometry
model of the phantom was not used as a gold standard or
ground truth for comparison, because the accuracy of the 3D
printing process (which depends on the printer, technique,
and selected material) can introduce differences between the
model and the actual final printed object. Establishing robust
methods to determine the accuracy and reproducibility of 3D
printing, in particular for phantoms is still under investiga-
tion.45 The characteristics and limitations of the material used
in the lung phantom compared to human vessels were dis-
cussed elsewhere.45 The use of 3D printing has grown in the
past years in different areas in medicine, such as biocompati-
ble prosthesis development, surgery planification with mod-
els based on patient images and educational purposes.54 One
of its applications is the development of affordable cus-
tomized test objects or phantoms that can be used in image
quality assessment in different medical imaging modali-
ties.27,55 O’Dell et al. validated the accuracy of sizing vessels
using a 3D printed vascular phantom made of acrylonitrile
butadiene styrene plastic. The vessel sizes (with diameters
ranging from 1.2 to 7 mm) were evaluated by manual mea-
surements at 64 branches.28 Between manually measured and
estimated radii, the linear regression analysis gave a slope of
1.056, and the difference was 0.074 mm (0.087 in-plane pixel
units).28 Due to the complexity of our 3D printed vessel
phantom, however, the vessel sizes were hardly manually
measurable, except for the biggest vessel branches.

For our study, a micro-CT scan with sufficiently high reso-
lution was used for calculating the ground truth of vessel
sizes. Thus, we validated the accuracy of sizing vessels by
comparing clinical CT scans with micro-CT scan, and evalu-
ated the vessel size in all vessel trees by matching the clinical
and micro-CT scans. The differences of vessel radii calcu-
lated from clinical CT scans and micro-CT scan were very
small (median of radius difference is on average of
0.062 mm, that is, 0.16 in-plane pixel units); therefore, these
radii were highly correlated; and the regression analysis
between radius from clinical CT scans and micro-CT scan
obtained average slope approximated to 1 (1.018) and average

intercept approximated to 0 (�0.058), implying that the radii
detected in CT scans and in micro-CT scan are almost equal.
Compared to the vessel sizing study,28 which showed a slope
of 1.056 in linear regression analysis and STD in difference
of 0.074 mm (0.087 in-plane pixel units), the proposed
method obtained a slightly worse result in difference analysis
of vessel radius but a comparable result in regression analy-
sis. As shown in Fig. 4, there are a few outliers which are esti-
mated in CT as 0.3 mm but micro-CT as 3 mm. This might
be due to the fact that side branches with a small radius, gen-
erated by skeletonization method in CT, were mapped to
main branches with large radii in micro-CT. The percentage
rate of outliers (with radius in micro-CT lager 0.5 mm than
that in CT) is approximately 2.8%. The histogram plots of
Fig. 4 are based on a voxel-based assessment rather than a
branch-based assessment, a large (long) vessel, which may
have many centerline voxels, will have more weight than
small vessels with less centerline voxels. The number of
branches is increasing exponentially with a decreasing
radius.60 If a histogram plot is on a branch-based assessment,
the vessels with small radius will have more weight in statis-
tics comparing to vessels with large radius. A voxel-based
strategy may partly balance the influence of large and small
vessels. As presented in Table II, the IQR of radius differ-
ences is smaller by increasing the dose (mA) for reconstruc-
tion kernel FBP, while it is much more stable for the kernel
AIDR3D, which implies the kernel AIDR3D performed well
for reconstructing images, with low mA settings.

Aspects of the vascular morphology of the extracted ves-
sels was characterized by two biomarkers, a and b. The bio-
marker a, which is the slope of the radius histogram, reflects
the related contributions between small vessels and large ves-
sels, quantifying small vessels pruning and large vessel dila-
tion. The intercept b, which was calculated by extrapolation
to radius 0, estimates the vascular tree capacity, without actu-
ally detecting pulmonary capillaries. The pruning of small
vessels will increase the resistance of blood flow in pul-
monary vessels, the dilation of large vessels will happen after
then. In some diseases, like pulmonary hypertension, the
radius of very large vessels will also increase. The combina-
tion of these two effects would create a S-shaped or flattened
curve, these would influence the power for representing these
effects of a and b. The robustness of the automatic quantifi-
cation method was validated with CT scans acquired with
various settings, while the variation in biomarkers was quite
small. The average difference in a between micro-CT scan
and clinical CT scans is 0.025 by jamicro�CT � aCT j and 1.4%
by jðamicro�CT � aCTÞ=amicro�CT j � 100, while that in b is
0.235 and 3.2%, respectively, that is, comparing clinical CT
scans to micro-CT scan, the biomarker about relative contri-
bution between small vessels and large vessels were similar,
in comparison with the biomarker of vessel tree capacity,
which might be due to the fact that the micro-CT performed
better in detecting small vessels. The relation between gas
transfer and biomarkers was validated with a data set of 77
SSc patients. The a and b showed significant correlations
with DLCOc % predicted, which implied that the vascular
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remodeling (pruning/dilation and vascular tree capacity) is
associated with impaired gas transfer. The AUC of b was sig-
nificantly larger than 0.5 but not large, which implied that the
pulmonary vascular morphology is associated with gas trans-
fer but could not determine it, as there are many other factors
that could influence gas transfer, such as cardiac function,
thoracic stiffness, pulmonary airways, etc. Vascular remodel-
ing as assessed in HRCT may precede changes in gas transfer
and may therefore be important in the clinical evaluation and
treatment decisions of SSc patients. Although the correlations
between imaging biomarkers and gas transfer were moderate,
these were comparable results in the relevant study that inves-
tigates the relation between pulmonary function and vascular
morphology.13

There are some limitations in this work. The vessel extrac-
tion method was validated with the public data set of VES-
SEL12, of which the annotation were labeled by three
observers, which might obtain errors in human interpretation.
The lung vessel segmentation method did not work well for
separating vessels and lung nodules, as the latter are mostly
attached to vessel trees and have a high intensity, eliminating
the response of nodules by considering the shape properties
may be helpful for separating vessels and nodules, however,
detecting/extracting lung nodules is not the goal of this study.
The distance transform-based method for sizing vessel radius
may result in uncertainties or underestimations, a refinement
operation for optimizing the centerline and radius would
improve the radius estimation. The 3D printed vessel phantom
used in this study contained a wide range of vessel radii and
lengths. A future development in using this type of phantoms
to test algorithms could be to control the number of vessels
that are generated per diameter or length, during the design
process. In this way, a robust ground truth based on the model
could be compared. One of the limitations for the phantom is
that the attenuation of the material used to print the vessels is
slightly higher compared to human vessels.44,45 Nonetheless,
when comparing the relative contrast between the lung phan-
tom vessels and the background (air) with values measured in
vessels and parenchyma in patients, the difference is relatively
small (around 10%). This limitation could be overcome in the
future if other materials become available that could be printed
with the required resolution and a lower attenuation. Nonethe-
less, these differences in attenuation do not influence the
results in the present study, as the imaging biomarkers a and b
are similar between micro-CT scan and clinical CT scans
acquired in different attenuation with average difference rate in
1.4% and 3.2%, respectively. The CT scans of both phantom
and patients have a slice thickness of 0.5 mm; therefore, inves-
tigating the effect of various slice thicknesses to the proposed
method will help extend its applications to other lung diseases
and acquisition protocols. The performance of eliminating the
airway walls was only validated with the VESSEL12 data,
however, this data set was not mainly designed for this type of
validation. Manually annotating a data set of airway walls and
making it publicly available will be helpful for validating this
type of techniques. In this work, the automatic quantification
method was applied on both lungs together. Applying the

quantification method on separate lungs or lung lobes may
allow more localized assessments of vascular remodeling. In
the future, we will investigate deep-learning techniques in pul-
monary analysis, as these techniques generally perform well in
medical images analysis. We did not separate the arteries and
veins for specific analysis. Developing a deep-learning-based
method for separating arteries and veins is also a challenging
but interesting topic for our future work,56–58 as pulmonary
vascular diseases may affect arteries and veins differently. The
airway wall thickness was assumed to be 2 mm in this study,
while adjusting the thickness assumption with the airway size
accordingly may improve the elimination of airway walls.
Deep learning-based methods performed well in measuring air-
way lumen and walls.59 Excluding airway walls from vessel
extractions may benefit from this type of techniques. For vali-
dating the association between biomarkers and gas transfer,
only the SSc patient group was involved without a control
group. Quantifying the vascular morphology of healthy people
may improve the detection of lung vasculopathy in SSc
patients. However, even without these specific analyses or a
control group, we already found a significant association
between vascular morphology and gas transfer.

5. CONCLUSIONS

In conclusion, an automatic method has been proposed for
quantifying pulmonary vascular morphology in CT images.
The accuracy of vessel segmentation has been evaluated inde-
pendently with the public data set of VESSEL12, and the
robustness of the quantification method has been validated
with the image data set of a 3D printed vessel phantom. The
imaging biomarkers for quantifying pulmonary vessel mor-
phology in CT images are correlated with gas transfer in the
studied SSc patients.
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