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Abstract

The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy
soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25
upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/
ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-
chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding
protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein,
putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-
binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and
xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline
quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase b subunit, FOF1 ATP
synthase subunit beta, ATP synthase a subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-
S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation
factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii)
nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes
encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism
proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These
findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the complexity
of PCB catabolism by Anabaena PD-1.
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Introduction

Persistent organic pollutants (POPs), such as polychlorinated

biphenyls (PCBs) and organochlorine pesticides, are ubiquitous

chloroorganic chemicals in the environment. PCBs were first

manufactured in the United States in 1929 [1]. They are a

complex class of hydrophobic, lipophilic chemicals that often

slowly decompose and metabolize in natural systems [2]. Although

PCB production has been banned in 1979, they still pose

environmental and human risks in areas of hotspot contamination

because of their stable physicochemical properties, hydrophobic

properties, and high toxicity [3,4]. Therefore, cleaning residual

PCB-contaminated environments has elicited significant research

attention in the last few decades.

Several physical, chemical, and biological methods are available

for PCB degradation [5]. Biological methods for PCB degradation

have been extensively studied and considered crucial for the

biodegradation of PCBs because of their low environmental

impact and economic advantage compared with physicochemical

methods [6]. PCB degradation is exhibited by several bacteria and

fungi, such as Pseudomonas pseudoalcaligenes KF707 [7], Burkholderia

cepacia LB400 [7], Sinorhizobium meliloti [8], Hydrogenophaga sp. strain

IA3-A [9], Pleurotus ostreatus [10], and Ceriporia sp. ZLY-2010 [11].

Microalgae and cyanobacteria are common species in the

natural environment. They can act as distinctive biological agents

for organic pollutant degradation [12] and can be used to degrade

organic pollutants. The use of microalgae and cyanobacteria has

become a new method for POP degradation in recent years.

Kotzabasis et al. [13,14] have reported that Scenedesmus obliquus can

biodegrade dichlorophenols. Chlorella fusca var. vacuolata can

remove 23% of 2,4-dichlorophenol after 4 d [15]. The microalga

Cyclotella caspia can degrade the aromatic pollutant nonylphenol

[16]. The Anabaena flos-aquae strain 4054 can decompose

endocrine-disrupting pollutants, such as phthalate esters [17].

Anabaena azotica, another common cyanobacterium, can effectively

degrade the organochlorine pesticide c-hexachlorocyclohexane

(lindane) [18]. Therefore, cyanobacterial species with degradation

functions may be a potential choice for PCB degradation.

The survival of wild-type microorganisms with degradation

function may be limited by adverse environmental conditions,
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leading to reduced degradation efficiency [19]. Fortunately,

genetically engineered microbes can enhance degradation effi-

ciency by enhancing the activity of key enzymes via genetic

engineering [20]. The genes and proteins in microbes have

important functions in organic pollutant degradation [21–23]. The

molecular mechanism by which microorganisms degrade PCB has

also been explored by utilizing proteomic technologies, including

2D electrophoresis (2-DE) and matrix-assisted laser desorption/

ionization time-of-flight mass spectrometry (MALDI-TOF MS)

[24]. The enzymes in the PCB degradation pathway include

biphenyl 2,3-dioxygenases, cis-2,3-dihydro-2,3-dihydroxybiphenyl

dehydrogenase, 2,3-dihydroxybiphenyl 1,2-dioxygenases, 2-hy-

droxy-6-phenyl-6-oxohexa-2,4-dienoate hydrolases, 2-hydroxy-

penta-2,4-dienoate hydratase, 4-hydroxy-2-oxovalerate aldolase,

and acetaldehyde dehydrogenase [25]. Exposure to aromatic

compounds stimulates metabolic enzymes and other polypeptides

in microorganisms. Proteins involved in energy metabolism and

substrate transport are upregulated during the degradation of

aromatic pollutants and organochlorine pesticides by various

microorganisms [26–28].

Our previous study produced encouraging results in PCB

biodegradation by cyanobacteria. The cyanobacterium Anabaena

PD-1 was originally isolated from PCB-contaminated paddy soil

and exhibited strong ability to degrade PCB congeners (data not

shown). However, proteomic analyses of cyanobacterial responses

to stressors have mainly focused on salt [29], acid [30], and arsenic

[31]. Limited information is available on the cyanobacterial

catabolism of PCBs and the responses of cyanobacteria to PCBs

[12]. Therefore, the key enzymes involved in PCB degradation

need to be identified and the degradation mechanism should be

explored to gain important information on the construction of

genetically engineered cyanobacteria. Such genetically engineered

cyanobacteria may achieve the same or higher PCB degradation

efficiency compared with laboratory conditions.

In this study, we separated differentially expressed proteins

through 2-DE and identified polypeptides through MALDI-TOF

tandem mass spectrometry (MS/MS). Protein information was

obtained from the NCBInr database through its Mascot search

engine. Real-time PCR was utilized to analyze the genes encoding

for highly expressed key proteins during PCB degradation in

Anabaena PD-1 cells. The present contribution can provide new

insights into the biodegradation of PCBs by Anabaena PD-1 and

into the construction of genetically engineered PCB-degrading

cyanobacterial species.

Materials and Methods

Strain Anabaena PD-1 and culture conditions
Anabaena PD-1, a PCB-tolerant strain, was isolated from PCB-

contaminated paddy soil in Taizhou, Zhejiang, China (No specific

permissions were required for the sampling locations and activities.

The field studies did not involve endangered and protected

species. The sampling site in the study is located at Latitude

28u329N Longitude 121u279E.). Anabaena PD-1 cells were grown at

25uC, 998 lux, in BG-11 medium [32], under discontinuous

illumination (light : dark = 12 h : 12 h). Cyanobacterial cells in

their exponential phase were cultivated with and without Aroclor

1254 (2 mg/L) for 30 d for the PCB-degrading experiment.

Preparation of cellular proteins
The cells were cultured for 30 d and ground to powder with

liquid nitrogen. Subsequently, 10 mL of cooled acetone containing

10% trichloroacetic acid and 0.07% DTT was added to 1 g of

sample powder at 220uC for 1 h. The deposit was collected after

centrifugation at 15000 g for 15 min at 4uC. Cooled acetone

containing 0.07% DTT was then added to the deposit at 220uC
for 1 h. After another centrifugation at 15000 g for 15 min at 4uC,

the deposit was collected and dried with a vacuum freeze dryer.

The powder was dissolved in a lysis solution [9 M urea, 4%

CHAPS, 1% DTT, 1% IPG buffer (GE Healthcare)] at 50 mL:

1 mg, dissolved at 30uC for 1 h, and then centrifuged again at

15000 g for 15 min at room temperature. The concentrations of

the protein extracts were determined with the Bradford method

[33]. The extracts were then stored at 280uC for isoelectric

focusing electrophoresis (I FE).

2-DE
IFE. Samples containing 200 mg of proteins were mixed with

a fresh rehydration buffer [9 M urea, 4% CHAPS, 1% DTT, 1%

IPG buffer (GE Healthcare), trace amount of bromophenol blue]

to form a 450 mL mixture. DryStrip (GE Healthcare, 24 cm, pH 3

to 10, NL) was obtained from a 220uC freezer, placed at room

temperature for 10 min, added to the protein sample in the strip

holder, and then subjected to IEF according to the following

protocol: rehydration at 50 V (12 h), 500 V (1 h), 1000 V (1 h),

10000 V (1 h), and 10000 V (10 h). All steps were controlled at

50 mA/gel at 20uC.

Equilibration and SDS-PAGE
After IEF, the strip removed from the strip holder was

incubated in equilibration buffer 1 [6 M urea, 30% glycerol, 2%

SDS, 50 mM Tris-HCl (pH 8.8), 1% DTT, and trace amount of

bromophenol blue] for 15 min and then in equilibration buffer 2

[6 M urea, 30% glycerol, 2% SDS, 50 mM Tris-HCl (pH 8.8),

2.5% iodoacetamide, and trace amount of bromophenol blue] for

15 min. After the strip was rinsed with SDS-PAGE buffer for 10 s,

a sealing solution was added to the surface of the SDS-PAGE gel.

The gel was then moved to the electrophoresis apparatus for

electrophoresis at the following parameters: 100 V, 15uC, 45 min,

followed by 200 V for 6 h to 8 h (Ettan DALTsix system). The

gels were then stained with silver nitrate according to the method

described by Shevchenk et al. [34].

Gel visualization, scanning, and analysis
The gels were visualized by silver staining for analysis. The

stained gels were scanned by an image scanner (GE Healthcare,

USA) at a resolution of 300 dots per inch. All gel images were

processed by spot detection, volumetric quantification, and

matching with PDQuest 8.0 software. The differences in protein

content between the treatment and control groups were calculated

as fold ratios. A fold change $2.0 or #0.5 was utilized to

differentially select protein spots.

In-gel digestion and MS analysis
The proteins were digested by 50% ceric ammonium nitrate for

5 min, followed by 100% ACN for 5 min, and then rehydrated in

2 mL to 4 mL trypsin (Promega, Madison, USA) solution (20 mg/

mL in 25 mM NH4HCO3) for 30 min. A 20 mL cover solution

(25 mM NH4HCO3) was then added for 16 h of digestion at

37uC. Afterward, the supernatants were transferred into another

tube, and the gels were extracted once with a 50 mL extraction

buffer (67% ACN and 5% TFA). The peptide extracts and

supernatant of the gel spot were combined and completely dried.

The samples were analyzed with an ABI 4800 MALDI-TOF/

TOF Plus mass spectrometer (Applied Biosystems, Foster City,

USA). Data were obtained with a positive MS reflector. CalMix5

standard was utilized to calibrate the instrument (ABI4800
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calibration mixture). MS and MS/MS data were integrated and

processed with GPS Explorer V3.6 (Applied Biosystems, USA)

with default parameters. According to combined MS and MS/MS

spectra, the proteins were successfully identified at 95% or higher

confidence interval of their scores in the MASCOT V2.1 search

engine (Matrix Science, London, UK). The following search

parameters were used: NCBInr database; trypsin as the digestion

enzyme, one missed cleavage site, fixed modifications of

carbamidomethyl (C), partial modifications of acetyl (protein N-

term), and oxidization (M); 200 ppm for precursor ion tolerance

and 0.5 Da for fragment ion tolerance.

RNA preparation and real time-PCR
Total RNA was extracted from 50 mg to 80 mg of cyanobac-

terial cell pellets (OD680 = 0.38) using TRIzol Reagent (Invitrogen,

Carlsbad, CA, USA). RNA was then purified by removal of

genomic DNA contaminants using an RNase-free DNase I kit

(Invitrogen) and verified by determination of 260/280 nm ratios

and 1% agarose–formaldehyde gel electrophoresis with ethidium

bromide staining. Total RNA was subjected to cDNA synthesis

using a NuGEN OvationW Prokaryotic RNA-Seq System

according to the manufacturer’s instructions (Haoji Biotechonlogy

Hangzhou, China). RT-PCR was carried out with a multiplex

real-time PCR detector (BioRad, USA). The reaction mixture

included a Power Master Mix (Invitrogen), 0.5 mM of the primers,

MilliQ water, and 1 mL of cDNA. The thermal cycling program

was as follows: predegeneration at 95uC for 1 min, followed by 40

cycles of denaturation at 95uC for 10 s, and then annealing at

62uC for 25 s. Primer sequences for 3-chlorobenzoate-3,4-

dioxygenase, cytochrome b6f complex Fe-S protein, transporter

proteins, and energetic metabolism proteins are shown in Table 1.

Statistical analysis
The statistical differences of the experimental data were

determined using one-way ANOVA followed by two-sided

Dunnett’s t-test. Statistical tests were conducted using SPSS11.0,

and the statistical significance values were defined as *P,0.05 and

**P,0.01. All data were expressed as mean6standard deviation

(S.D.).

Results

Protein expression patterns of Anabaena PD-1 exposed
to Aroclor 1254

Total proteins extracted from the PCB-treated and reference

cyanobacterial samples were separated through 2-DE. Most

proteins were located between pH 4.0 and 6.8 and then weighed

17 kDa to 96 kDa (Figure 1 and Figure 2). Exposure to Aroclor

1254 diversified the overall protein expression patterns of Anabaena

PD-1. A total of 25 protein spots were up-regulated (multiple

changes were twice greater; Student’s t-test, P,0.05). Twenty-six

differentially expressed proteins were identified through MALDI-

TOF MS/MS. Detailed information on these proteins is

summarized in Table 2. The proteins involved in PCB-degrada-

tion, transport processes, energy metabolism, and electron

transport are shown in Figure 3.

Real time-PCR analysis of upregulated protein-encoding
genes in Anabaena PD-1 cells

The expression levels of eight genes in the PCB-degradation

groups were significantly upregulated compared with those in the

control groups (P,0.01). The results are presented in Figure 4.

Genes encoding for dioxygenase were upregulated by 1.26-fold.

The cytochrome b6f complex Fe-S protein-encoding gene

upregulated by 2.64 fold. The ABC transporter substrate-binding

protein gene expression level in the PCB-treated groups was 9.98-

fold of that in the control groups. Transmembrane protein-

encoding genes (i.e., heterocyst to vegetative cell connection

protein and porin genes) were upregulated by 2.66- and 3.19-fold,

respectively. Enolase gene expression level was upregulated by

2.88-fold compared with the control groups. The upregulation

levels of the malate-CoA ligase subunit beta gene and methanol

dehydrogenase gene were 3.40 and 5.22, respectively.

Discussion

Anabaena PD-1 isolated from PCB-contaminated paddy soil in

South Zhejiang, China, efficiently degrades PCBs. Rodrigues et al.

[36] suggested that Burkholderia xenovorans LB400, one of the most

extensively studied PCB-degrading bacteria, can degrade 57% of

Table 1. Primers used for the quantitative real-time polymerase chain reaction in this study.

Gene name Primer Sequence (59-39) GenBank Accession #a Size (bp)

3-chlorobenzoate-3,4-dioxygenase gene F: GCCCCAAATCAGAAACTACCA
R: CCATCACCGGGAAATAACCAA

- 89

Cytochrome b6f complex Fe-S subunit gene F: TTAAATGCCCTTGCCACGGTTCTC
R: AGCGTGACTCAAAGCCAGAGACTT

NC_007413 89

ABC transporter substrate-binding protein gene F: GCTGCATCGCAACCAATCAAA
R: GGTATATCTGCCAGCCGGAACA

NC_007413 120

Enolase gene F: TTGCCTGTGCCTTTAATGAACGT
R: AAGCCTTTGTCATGCAGCACTTC

- 170

Porin gene F: CCACAACAAAGCTGCAAGGACA
R: TGAACAAGGTATCTCGCCCAGTAAA

NC_007413 159

fraH gene F: ATGTTGATGTTTCCGGCTTTGC
R: GGTCTGAGGCGGTGTCTATTGC

NC_007413 163

methanol dehydrogenase gene F: TTAGCAGAGGTGGCAGAATTACGA
R: CCCGTGGACTGACACCGAGA

NC_007413 133

malate-CoA ligase subunit beta gene F: TTTGCGTAATTGGCATACCAGATAA
R: TGGGGGTTACGGGGTAAGGTATT

NC_007413 175

aPrimers with accession numbers belong to a gene cluster. Primers without accession numbers were designed according to the reference [35].
doi:10.1371/journal.pone.0091162.t001
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Figure 1. 2D gel maps for differentially expressed proteins in Anabaena PD-1 cells in the control group.
doi:10.1371/journal.pone.0091162.g001

Figure 2. 2D gel maps for differentially expressed proteins in Anabaena PD-1 cells in the Aroclor 1254 degradation group. Arrow-
directed spots are upregulated proteins in PCB degradation by Anabaena PD-1. The detailed information of upregulated proteins are listed in Table 2.
doi:10.1371/journal.pone.0091162.g002
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Aroclor 1242 in 30 d. Singer et al. [35] combined Arthrobacter sp.

strain B1B with Ralstonia eutrophua H850 to degrade PCB mixtures

and achieved a maximum degradation rate of 59% in over 18

weeks. These bacterial species are typical PCB degraders.

However, the application of these species to the bioremediation

of PCB-contaminated paddy soils is limited because of their

specific living conditions. By contrast, Anabaena PD-1, an

associated cyanobacterial species in paddy soils, adapts to the

condition in paddy soils very well. This condition is one of the

essential requirements for this functional species to degrade PCBs

in contaminated paddy soils. Thus, Anabaena PD-1 may be an

excellent choice for the remediation of PCB-contaminated paddy

soils.

This study is the first to report on the proteome files for Anabeana

PD-1 in the PCB degradation and control groups and the RT-

PCR gene data of upregulated proteins during PCB degradation.

We synthesized the information from the protein and gene levels

of the PCB-degrading cyanobacterial species Anabaena PD-1 and

proposed a putative scheme to demonstrate the possible biodeg-

radation mechanism of PCBs by Anabaena PD-1 (Figure 5). We

assumed that 3-chlorobenzate-3,4-dioxygenase, transporter pro-

teins, electron transport proteins, transmembrane proteins, and

energetic metabolism proteins and genes encoding for the said

proteins have important functions during PCB dechlorination by

Anabaena PD-1. As a complex bioreaction, PCB degradation is

involved with the transport system, energy system, and photosyn-

thetic system in Anabaena PD-1 cells.

Organic pollutant stressors can generally change the cell

membrane structure and function [36] and exert general stress

on cells. The different (chlorinated) aromatic compounds induced

the overexpression of different proteins (Table 3). Stressors with

chlorinated structures can enhance the expression of stress protein

DnaK, ABC transporter, and enolase, whereas pollutants without

chlorinated structures can increase the expression of branched-

chain amino acid uptake ABC transporter periplasmic solute-

binding proteins and elongation factor G. This difference in

protein expression may be attributed to the various structures of

the organic stressors. The upregulated proteins with different

functions can provide new insights into the adaptation of Anabaena

PD-1 to the presence of PCBs.

In this study, 3-chlorobenzoate-3,4-dioxygenase, a new enzyme

that may be involved in PCB degradation by Anabaena PD-1,

belongs to the family of Rieske protein family (http://pfam.janelia.

org/family/PF00355.). Thus, this dioxygenase is closely related to

cytochrome b6f complex Fe-S protein, another typical Rieske

protein [44]. The gene encoding for 3-chlorobenzoate-3,4-

dioxygenase is named cbaA [45]. This enzyme has an important

function in the degradation of pollutants belonging to the toluene/

biphenyl family [46]. Thus, we believe that 3-chlorobenzoate-3,4-

dioxygenase may be closely related to the direct biodegradation of

Aroclor 1254 by Anabaena PD-1. Nevertheless, the mechanism by

which 3-chlorobenzoate-3,4-dioxygenase participates in PCB

dechlorination in Anabaena PD-1 cells remains intriguing.

The PCB-treated and reference gels indicated that protein spots

(4015, 4310) are significantly upregulated. These spots are petC

gene products or PetC proteins that were first discovered and

isolated by Rieske et al. [47]. Thus, the proteins are also called

Rieske proteins. PetC protein is a subunit of cytochrome bc1 and

cytochrome b6f complexes. Two to four genes of the petC gene

family are found in the cyanobacterial cells of Nostoc sp. PCC 7120

[48]. PetC protein is an essential protein for the functioning of the

cytochrome b6f complex. Cytochrome b6f complex has an

important function in the aerobic photosynthetic electron trans-

port chain reaction center [49]. The reaction center is involved in

energy metabolism and electron transfer. Organic pollutants, such

as PCBs, usually act as electron acceptors. Thus, as a key enzyme-

mediating electron transporter, PetC protein upregulation may

influence the biodegradation of PCBs in cyanobacterial cells. The

changes in the expression levels of cytochrome b6f complex Fe-S

protein confirmed this inference (Figure 4b). Comparing Figure 1

and Figure 2, the expression of proteins 0409, 1212, 1712, 0316,

1213, 1517, 2508, 0322, and 0211 were significantly enhanced.

These proteins belong to the ABC transporter family and are ABC

transporter substrate-binding proteins (0409, 1212, and 1712),

ABC transporter periplasmic putrescine-binding protein (0316),

phosphonate ABC transporter substrate-binding protein (1213,

0322), urea short-chain amide or branched-chain amino acid

uptake periplasmic solute-binding protein (1517), and xylose ABC

transporter substrate-binding protein (0211). The ABC transporter

family comprises proteins that can transport ions, saccharides,

lipids, and heavy metals across membranes [42–43,50]. The

upregulation of these transport proteins indicates that they are

likely to participate in PCB uptake or metabolite efflux. The

upregulation of ABC transport proteins in Pseudomonas putida P8

suggests that the increased transport of amino acids is a cellular

response to external stress [27]. The degradation of PCBs by the

nitrogen-fixing species Anabaena PD-1 consumes energy. Thus,

cyanobacterial cells bind to synthesize large amounts of ATP,

thereby increasing the substrates required for ATP synthesis. The

upregulated expression of transport proteins in algal cells may be

due to the increased need for transporting ATP synthesis

substrates. Several other studies have detected the efflux of

organic solvents induced by transporters in Pseudomonas putida in

response to aromatic and aliphatic solvents and alcohols [51].

The upregulation of enzymes involved in energetic metabo-

lism have also been observed and found to be consistent with the

Figure 3. Upregulated proteins of Anabaena PD-1 exposed to Aroclor 1254 for 30 d. 0409-ABC transporter substrate-binding protein, 1212-
amino acid ABC transporter substrate-binding protein, 2714-methanol/ethanol family PQQ-dependent dehydrogenase, 7610-bifunctional
phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase, 4015-cytochrome b6-f complex iron-sulfur subunit, 4310-Rieske
FeS protein, 2212-ureidoglycolate lyase, 5810-nitrous oxide reductase, and 0604-putative heterocyst to vegetative cell connection protein.
doi:10.1371/journal.pone.0091162.g003
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extra-energetic requirements of cells that trigger several energet-

ically expensive short-term adaptation mechanisms to survive and

adapt to the toxicity of PCBs. Enolase (2508) and ATP synthase b
subunit (8812) are enzymes involved in energy synthesis and

metabolism. ATP synthase b subunit is involved in ATP synthesis

under the conditions of a transmembrane proton gradient. The

upregulation of this enzyme benefits the cells exposed to toxic

organic compounds that can cause membrane lesions [52].

Enolase participates in glycolysis, which converts 2-phosphoglyc-

erate to phosphoenolpyruvate [26]. Enolase consumes energy for

cells to actively transport organic compounds to the intracellular

space or transport such compounds from the intracellular space to

the extracellular space [53]. Pérez-Pantoja [54] reported that the

enolase superfamily does not participate in aromatic pollutant

degradation by Mycobacterium smegmatis. Nevertheless, we still

believe that enolase may be indirectly involved in PCB degrada-

Figure 4. Gene expression levels in control and PCB-treated groups. Expression levels of genes encoding for (a) dioxygenase, (b)
cytochrome b6f Fe-S protein, (c) ABC transporter substrate-binding protein, (d) porin, (e) enloase, (f) fraH, (g) malate-CoA ligase, and (h) methanol
dehydrogenase. Data represented the mean 6 SD, and significant difference from the control group was determined by *p,0.05 and **p,0.01.
doi:10.1371/journal.pone.0091162.g004
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tion by Anabaena PD-1 because of the significant upregulation in

both protein (Figure 3) and gene levels (Figure 4). The

upregulation of ATP synthase b subunit and FOF1-ATP synthase

b subunit (3619) indicates that the ATP consumption of nitrogen-

fixing cyanobacterial cells exposed to Aroclor 1254 significantly

increases because cyanobacterial cells actively transport PCB

molecules to the extracellular space to protect themselves from the

toxicity of PCBs. Another possibility is that cyanobacterial cells

consume energy to transport PCB molecules to the intracellular

space for degradation. Stress proteins are consistently upregulated

Figure 5. Hypothetic scheme of PCB degradation by Anabaena PD-1. Numbers in brackets present the different proteins in Table 2.
doi:10.1371/journal.pone.0091162.g005

Table 3. Comparison of induced proteins by (chlorinated) aromatic compounds in Anabaena PD-1 and other microorganisms.

Induced proteins in this study Organic pollutant stressors Microorganisms Approaches References

molecular chaperone DnaK quinclorac Burkholderia cepacia WZ1 2-DE, MALDI-TOF MS/MS [37]

3,4-dichloroaniline Variovorax sp. WDL1 2-DE, MALDI-MS(/MS) [38]

4-chlorophenol Pseudomonas putida 2-DE, MALDI-TOF MS [39]

4-chloronitrobenzene Comamonas sp. strain CNB-1 2-DE, MALDI-TOF MS [40]

benzoate Pseudomonas putida P8 2-DE, MALDI-TOF MS [28]

ABC transporter substrate binding protein 2,4-dichlorophenoxy acetic acid Corynebacterium glutamicum 2-DE, MALDI-TOF MS/MS [41]

phenol Pseudomonas putida KT2440 2-DE, MALDI-TOF MS [42]

benzoate Pseudomonas putida P8 2-DE, MALDI-TOF MS [28]

benzoate & succinate Pseudomonas putida KT2440 iTRAQ, 1-DEMudPIT [43]

translation elongation factor TS 4-chloronitrobenzene Comamonas sp. strain CNB-1 2-DE, MALDI-TOF MS [40]

enolase 4-chloronitrobenzene Comamonas sp. strain CNB-1 2-DE, MALDI-TOF MS [40]

branched-chain amino acid uptake ABC
transporter periplasmic solute-binding protein

benzoate Pseudomonas putida P8 2-DE, MALDI-TOF MS [28]

doi:10.1371/journal.pone.0091162.t003
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to protect cells from organic pollutant stressors. Therefore, the

upregulation of several proteins involved in polypeptide folding

and synthesis is expected [55]. Molecular chaperone DnaK (3814)

is a member of the HSP 70 (heat shock protein weighing 70 kDa)

family. HSPs are highly conversed proteins that can assist in the

refolding or hydrolysis of abnormal proteins [56]. The expression

of these proteins in cells is usually upregulated under several stress

conditions to protect cells [57–58]. Aromatic compounds can

disrupt the synthesis of cell membranes, produce unfolded

membrane proteins, and activate the stress response of membrane

proteins [59]. Thus, the presence of PCBs causes stress to

nitrogen-fixing cyanobacteria. The upregulated expression of

chaperone proteins indicates that Anabaena PD-1 cells produce

several stress responses to PCBs probably to protect themselves

from the toxicity of PCBs.

In summary, changes in the proteome of Anabaena PD-1 cells

during PCB degradation, gene encoding, and upregulation of

proteins were observed for the first time. Twenty-five upregulated

proteins were successfully identified. The cbaA gene encoding for

3-chlorobenzoate-3,4-dioxygenase was upregulated. Electron

transport protein petC gene product was upregulated as well.

The largest group of proteins enhanced by PCBs consists of the

substrate-binding proteins of ABC transporters and proteins

involved in energy metabolism. Although stress protein DnaK

and several other proteins, such as elongation factors, compose a

small portion of the upregulated proteins, they may still have

important functions in the adaptation of Anabaena PD-1 to PCB

and the degradation of PCBs by Anabaena PD-1. Thus, more

studies should be conducted to identify the metabolites of PCBs

and explore the PCB degradation pathway by Anabaena PD-1.
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