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This editorial refers to ‘Identification of undiagnosed at-
rial fibrillation using a machine learning risk-prediction
algorithm and diagnostic testing (PULsE-AI) in primary
care: a multi-centre randomized controlled trial in
England’, by N.R. Hill et al., https://doi.org/10.1093/
ehjdh/ztac009.

To see things in the seed, that is genius.
Lao-Tzu

Undiagnosed atrial fibrillation (AF) is an important cause of stroke.1

AF screening may enable prompt detection of AF and initiation of
oral anticoagulation (OAC) to prevent stroke.2 The 2007 SAFE trial
reported a roughly 50% increase in AF diagnosis with screening indi-
viduals aged ≥65 years using electrocardiography (ECG) with or
without pulse palpation,3 resulting in a Class I recommendation
from the European Society of Cardiology4 and the Cardiac Society
of Australia and New Zealand5 for AF screening using ECG among
individuals aged ≥65 years.

However, more recent studies suggest that mass screening may
not be effective.6,7 The efficiency of AF screening may be improved
by AF risk estimation,8 which is feasible using clinical risk scores.9

However, such scores have had limited uptake due to complexity,
modest predictive performance, and lack of automation.10 Machine
learning, a form of artificial intelligence (AI) comprising a variety of
models utilizing iterative adjustment to minimize prediction error,11

has demonstrated promise in disease risk prediction and has poten-
tial to address many of these limitations. Beyond prediction and
screening, AI can influence howwe treat patients with AF and poten-
tially impact outcomes.

This issue of European Heart Journal: Digital Health reports the re-
sults of prediction of undiagnosed atrial fibrillation using a machine

learning algorithm (PULsE)-AI,12 a multi-centre randomized con-
trolled trial testing use of a neural network AI model to identify indi-
viduals at high AF risk, who were then targeted for screening using
12-lead ECG and serial one-lead handheld ECG (Figure 1). Across
six general practices in England, 23 745 participants aged ≥30
years without known AF were randomly allocated to intervention
(n= 11 849) and control (n= 11 896) arms. A total of 768 individuals
in the intervention arm with high AI-predicted risk of AF were of-
fered AF screening, of whom 256 (33.3%) accepted. Individuals in
the control group received usual care. Over the 20-month study per-
iod (extended from 6 months due to the COVID-19 pandemic),
the incidence of the primary endpoint of AF, atrial flutter, and fast
atrial tachycardia was 5.63 and 4.93% among individuals at high pre-
dicted AF risk in the intervention and control arms, respectively,
which was not a statistically significant difference [odds ratio (OR)
1.15, 95% CI 0.77–1.73, P= 0.486]. Among intervention participants
who actually underwent screening, however, the rate of the primary
endpoint was 9.41%, which was substantially greater than the control
rate (OR 2.23, 95% CI 1.31–3.73, P= 0.003).

Discussion
PULsE-AI is an important demonstration of prospective rando-
mized assessment of an AI model intended to guide clinical practice.
Despite a recent proliferation of AI-based models to predict dis-
ease,11 there has been comparably little integration of AI models
into real-world clinical practice.10,11 Valid concerns surrounding
clinical AI models include the potential for overfitting (i.e. poorer
performance in populations distinct from those in which models
were derived), thereby limiting their generalizability. Beyond this
there are also concerns regarding whether AI models may disrupt
clinical workflows on account of complexity, computation time,
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or provider apprehension.10 To this end, randomized assessment is
critical to establish whether prospective deployment of AI models is
feasible, valid, and clinically effective. Only by meeting such a stand-
ard will AI models gain widespread acceptance in clinical practice.

In this case, despite successful implementation, AI-enabled screen-
ing did not meaningfully improve AF detection, with similar AF diag-
nosis rates between the intervention and controlarms. Nevertheless,
the AF diagnosis rate was roughly two-fold higher among those ran-
domized to intervention who ultimately underwent screening, when
compared with controls. Although the latter per-protocol analysis is
subject to selection bias and must be interpreted with caution, it
highlights the reality that for any AI-based intervention to be effect-
ive, it must be broadly acceptable to its target population. To this
end, only a third of individuals invited to screening ultimately adhered.
The authors propose that unfamiliarity with contemporary technol-
ogy (e.g. one-lead ECG) may have been an important barrier.
Importantly, this highlights the risk of furthering disparities in care es-
pecially amongst the elderly, rural, and disenfranchised communities.
However, given evidence suggesting that electronic risk management
may improve outcomes in AF,13 we submit that a fully remote
screening option may have improved participation, particularly given
the challenges of the COVID-19 pandemic. Indeed, in the future both
AF risk estimation and active screening may even be performed using
the same mobile technology (Figure 1).

PULsE-AI also provides an important demonstration of the po-
tential for risk estimation to improve the efficiency of AF screen-
ing. The AI algorithm the investigators deployed was generally
accurate, as individuals predicted to have elevated AF risk (i.e.
AF probability ≥7.4%, a threshold corresponding to 90%

specificity in the algorithm’s derivation) had an AF diagnosis rate
of approximately 5%, as compared to 0.6% among individuals
not classified as high-risk. Although there is evidence for some
miscalibration, since one would expect an AF diagnosis rate great-
er than 5% when using a risk threshold of 7.4%, such enrichment
remains powerful when compared to recent AF screening trials
which report AF incidence rates of roughly 1–2%/year among in-
dividuals aged ≥65 years (i.e. those with a guideline-based indica-
tion for AF screening4,5). Future work is needed to establish
whether AF risk estimation may be deployed more broadly to pri-
oritize individuals for AF screening and whether such screening
improves outcomes.
Although the work by Hill et al.12 is an important advance, several

important considerations remain. Notably, their algorithm utilizes a
vast array of detailed clinical risk factor information to generate pre-
dictions. Recent models utilizing AI-enabled analysis of raw data (e.g.
ECG14,15) may reduce reliance on electronic health record-based
clinical inputs which may be subject to misclassification. Beyond
this, even very efficient AF detection may fail to improve outcomes
if screen-detected AF is not truly actionable. Future work is needed
to assess whether AI-based methods can be used to enrich for ac-
tionable AF and better integrate diagnosis with initiation of oral antic-
oagulationand other preventive interventions. Third, prospective
evaluation is key, but AI-based risk models also require broad exter-
nal validation in dissimilar populations (e.g. outside the UK) before
generalizability can be established.
In summary, PULsE-AI provides demonstration of the feasibility

of AI-based AF risk estimation and provides a good example of
how to deploy and assess clinical AI-based interventions. Whether

Figure 1 Overview of artificial intelligence-guided atrial fibrillation screening. Depicted is a summary of artificial intelligence-guided atrial fibrilla-
tion screening, the overall concept assessed in the PULsE-artificial intelligence study. The top panel provides an overview of the concept of artificial
intelligence-enabled atrial fibrillation risk estimation to guide screening, in which only individuals who are estimated to have elevated atrial fibrillation
risk using artificial intelligence are offered the screening intervention. The bottom panel highlights several challenges associated with artificial
intelligence-based atrial fibrillation screening, with potential solutions proposed below.
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AI-enabled AF risk estimation can improve the efficiency of AF
screening and lead to improved outcomes will need further investi-
gation. It is quite possible that these calculated risks will yield consid-
erable rewards.

Data availability
This editorial does not include any original data.
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