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Maintaining proper eye alignment is necessary to generate a cohesive visual image. This 
involves the coordination of complex neural networks, which can become impaired by 
various neurodegenerative diseases. When the vergence system is affected, this can 
result in strabismus and disorienting diplopia. While previous studies have detailed the 
effect of these disorders on other eye movements, such as saccades, relatively little is 
known about strabismus. Here, we focus on the prevalence, clinical characteristics, and 
treatment of strabismus and disorders of vergence in Parkinson’s disease, spinocerebellar 
ataxia, Huntington disease, and multiple system atrophy. We find that vergence abnor-
malities may be more common in these disorders than previously thought. In Parkinson’s 
disease, the evidence suggests that strabismus is related to convergence insufficiency; 
however, it is responsive to dopamine replacement therapy and can, therefore, fluctuate 
with medication “on” and “off” periods throughout the day. Diplopia is also established 
as a side effect of deep brain stimulation and is thought to be related to stimulation 
of the subthalamic nucleus and extraocular motor nucleus among other structures.  
In regards to the spinocerebellar ataxias, oculomotor symptoms are common in many 
subtypes, but diplopia is most common in SCA3 also known as Machado–Joseph 
disease. Ophthalmoplegia and vergence insufficiency have both been implicated in 
strabismus in these patients, but cannot fully explain the properties of the strabismus, 
suggesting the involvement of other structures as well. Strabismus has not been reported 
as a common finding in Huntington disease or atypical parkinsonian syndromes and 
more studies are needed to determine how these disorders affect binocular alignment.

Keywords: strabismus, diplopia, neurodegenerative, Parkinson’s disease, spinocerebellar ataxia, Machado–
Joseph disease

iNTRODUCTiON

Proper alignment and coordination of the eyes is essential for accurately perceiving the visual 
environment. Because the eyes are separated in space and thus receive different images, fine ocular 
motor control is required in order to reconcile this disparity and achieve a cohesive image. This 
is done in part via sensory fusion, which is a cortical neurological process by which the cortex 
perceives the two retinal images as one. There is a level of normal disparity that is tolerated by the 
cortex, referred to as the fixation disparity (1). Within this visual angle, also known as Panum’s 
area, the cortex is able to achieve visual fusion and process the two distinct images as one. Panum’s 
area is transiently exceeded when subjects make head movements (2) or under real-world natural 
viewing conditions (3, 4) with no perception of diplopia. However, when the cortex is unable to 
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FigURe 1 | Schematic of neural circuits that result in abnormalities of vergence and strabismus in basal ganglia and cerebellar disorders. Abbreviations: PSP, 
progressive supranuclear palsy; MSA, multiple system atrophy; SCA, spinocerebellar ataxia.
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achieve sensory fusion, extraocular vergence movements work 
to bring the eyes within the bounds of Panum’s area to permit 
fusion. Thus, the vergence system is an important component of 
ocular motor control and is essential for achieving a coherent 
visual image. Vergence eye movements can be broadly divided 
into two categories: fusional, which is stimulated by a disparity 
between the retinal images as discussed above, and accommo-
dative, which works alongside accommodation of the lens and 
pupil to correct the visual blur.

The neuroanatomy of the vergence system has been the subject 
of much research and discussion. Understanding the neuroana-
tomical substrates involved in vergence aids in understanding 
how these pathways are affected by disease and how they interact 
with other ocular motor networks such as saccades. The gene-
ration of vergence commands starts with premotor commands, 
which are generated in the brainstem and then transmitted via 
ocular motor neurons to the extraocular muscles. The areas of 
the brainstem that have been found to be involved in vergence 
movements are the midbrain supraoculomotor area, the medial 
longitudinal fasciculus (MLF), and the paramedian pontine 
reticular formation (PPRF). The midbrain supraoculomotor 
area contains neurons that control slow extraocular muscle fibers 
involved in vergence (5–7), with different neurons responsible 
for vergence velocity and angle (8, 9). Increased activation of 
this region of the midbrain has been demonstrated by fMRI  
during vergence movements (10). On the other hand, the MLF is 
thought to carry signals that inhibit vergence, evidenced by stud-
ies of induced acute internuclear ophthalmoplegia in primates 
(11–13). The PPRF contains premotor burst neurons that play a 
role in controlling horizontal saccades and vergence movements; 
together these help generate gaze shifts in 3-D space (14, 15). 
Next, after the premotor commands have been generated in the 
brainstem, ocular motor neurons carry the commands to the 
extraocular muscles that carry out the movements. These ocular 
motor neurons are divided into four subgroups A–D within 

the oculomotor nucleus, with subgroup C believed to be most 
closely involved with the generation of slow eye movements 
such as vergence (6, 16). It is believed that outflow of the basal 
ganglia affects the brainstem network responsible for binocular 
control. As a result, an impairment in the basal ganglia outflow, 
as expected in degenerative forms of neurological disorders 
such as parkinsonism, can lead to abnormal binocular control 
(Figure 1).

The cerebellum is also involved in vergence, although its exact 
role is unclear. Evidence for this is seen in patients with acute 
cerebellar lesions who exhibit convergence insufficiency (17), and 
also the observation that ablation of the cerebellum in monkeys 
causes transient paralysis of vergence (18). Functional imaging 
also demonstrates activation of the cerebellar hemispheres and 
vermis during the near response (19) and while performing a 
bino cularity discrimination task (20). Figure  1 depicts a sche-
matic diagram of the neural substrate responsible for vergence 
eye movements and how disorders of basal ganglia and cerebel-
lum affect them.

Under real-world viewing conditions, vergence movements 
almost always occur with saccadic eye movements to account 
for rapid shifts in space and depth (21, 22). For instance, an 
approaching target that is moving across the field of vision, 
rather than just directly head-on, will require horizontal sac-
cades in addition to vergence to correctly track the object. Thus, 
it is important to consider how the neural networks for these 
two types of eye movements interact. A vergence integrator has 
been proposed to explain how the eyes maintain their vergence 
position at the end of saccadic eye movements (23). Much like 
the neural integrator for gaze holding, the vergence integrator is 
thought to receive signals from vergence burst cells and combine 
information about vergence velocity and position (24). While this 
vergence integrator is conceptually separate from the gaze holding 
integrator, there is evidence that suggests that they send signals 
over the same neural networks (25–27). Vergence movements 
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Table 1 | Eye movement abnormalities in neurodegenerative disorders.

Disorder Oculomotor findings

Parkinson’s disease Increased saccade latency, decreased saccade 
amplitude, increased anti-saccade error rate  
(53, 55, 56)
Diplopia in up to 20% (58)
Convergence insufficiency (57)
Increased convergence and divergence latency (60)

SCA3 Ophthalmoplegia, lid retraction, diplopia (74, 77)
Strabismus in up to 83% (78)
Divergence insufficiency (77)

SCA6 Diplopia in up to 50% (84)
Vertical nystagmus, horizontal gaze-evoked 
nystagmus (85)

Huntington disease Increased saccade latency, decreased saccade 
velocity, increased anti-saccade error rate (91–94)

Multiple system atrophy Blepharospasm, square-wave jerks (97)
Rare reports of vergence paresis resulting  
in diplopia (99)

Progressive supranuclear 
palsy

Slow vertical saccades, vertical gaze palsy (100)
Square-wave jerks (101)

Corticobasal degeneration Asymmetric saccadic apraxia, increased saccade 
latency, increased anti-saccade error (106, 107)

Dementia with Lewy 
bodies

Increased saccadic latency, increased anti-saccade 
error rate (110, 111) Case reports of supranuclear 
gaze palsy (112)
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are faster when they occur with saccades; an increase in saccadic 
peak velocity corresponds with an increase in the vergence peak 
velocity (28, 29). To explain this correspondence, it has been pro-
posed that parallel saccadic and vergence pathways both receive 
input from omnipause neurons (30). However, this alone is not 
sufficient to explain the proportionate changes in velocity. One 
potential explanation is that the saccadic drive amplifies vergence 
motor error signals (29). However, an exception to this is seen 
when subjects are asked to make a shift from a far target to a near 
target that is higher. Under these viewing conditions, which are 
a relatively rare occurrence in nature, the vergence peak velocity 
is delayed from the saccadic peak velocity by about 100 ms (31).  
In conclusion, the vergence and saccadic systems are concep-
tually distinct, but interact with one another when they occur  
at the same time.

Phoria adaptation is another aspect of oculomotor control that 
interacts with vergence. Phoria is defined as the relative devia-
tion of the visual axes of the two eyes that occurs when a single 
target is viewed with one eye. For example, if a wedge prism is 
placed in front of one eye, the subject’s phoria changes with the 
prismatic demand (32). Phoria also responds to the vestibulo-
ocular reflex (33) and accommodation (34, 35), which provide 
different contexts for adaptation of vergence. Adjustments in 
phoria can be thought of as changes in tonic vergence. Tonic 
vergence is the product of fast and slow fusional systems (36, 37).  
Both are leaky integrators, in which the fast fusional system has 
a time constant of seconds compared to minutes in the slow 
fusional system (34, 38). Of note, individuals with convergence 
insufficiency have been demonstrated to have impaired prism 
adaptation in the horizontal (but not vertical) plane (39, 40). 
This supports the evidence that phoria adaptation and vergence 
movements are closely related. However, the neuroanatomical 
substrates of phoria adaptation are not completely understood. 
There is likely some overlap with the neuroanatomical struc-
tures involved in vergence described above. Studies in primates 
have demonstrated the importance of the midbrain vergence- 
related neurons in carrying phoria signals (41). The role of the 
cerebellum in phoria adaptation is somewhat controversial, and 
some studies have shown impairment in phoria adaptation in 
patients with cerebellar lesions (42, 43) while other studies show 
no effect of cerebellar lesion on phoria adaptation (44). Lesions 
made in the dorsal vermis in monkeys impaired binocular move-
ments, including phoria adaptation (45).

Considering the anatomical dispersion of these neural net-
works, it is not surprising that they are often affected by neu-
rodegenerative disease. These disorders, including Parkinson’s 
disease, atypical parkinsonism, spinocerebellar ataxias (SCA), and 
Huntington disease, have diverse effects on motor and cognitive 
function. Many ocular motor effects have been well-documented 
and can even aid in the diagnosis of disorders that have cha-
racteristic eye movement abnormalities (46, 47). Furthermore, 
these deficits have been shown to have a significant negative 
impact on vision-related quality of life (48, 49). Discussion of eye 
movement abnormalities in disease has been focused primarily 
on voluntary movements, such as saccades; however, there is a 
paucity of literature discussing the effects of neurodegeneration 
on binocular alignment. Thus, this review will address strabismus 

as a disorder of ocular alignment and vergence in neurodegene-
rative disorders affecting the motor system, such as the Parkinson’s 
disease and SCA.

Strabismus is defined as a misalignment of the eyes and 
can result in disorienting diplopia, loss of depth perception, 
and the negative social impact and a higher rate of symptoms 
related to depression and anxiety (50). Strabismus is present 
in an estimated 2–4% of children, an incidence that decreases 
significantly with age (51, 52). The etiology of strabismus may 
be broadly divided into congenital and acquired categories. 
Although it is commonly congenital, acquired strabismus may 
be a sign of a more serious underlying condition. In elderly 
individuals, strabismus is commonly found as an ocular mani-
festation of various neurodegenerative disorders. This review  
will focus on vergence abnormalities and strabismus as it appears 
in Parkinson’s disease, atypical parkinsonism, Huntington 
disease, and SCA. We will discuss clinical features as they relate 
to these disorders and their utility in diagnosis and tracking 
disease progression, as well as their response to treatment. 
Finally, we will discuss the underlying neural pathways behind 
these findings and their significance in disease pathology. The 
neurodegenerative disorders also present with other ocular 
motor deficits; although they are not discussed in detail, Table 1 
provides a summary.

SaCCaDeS, veRgeNCe, aND 
STRabiSMUS iN PaRKiNSON’S DiSeaSe

Parkinson’s disease is a progressive neurological disorder 
characterized by loss of dopaminergic neurons in the substantia 
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nigra, interfering with the dopamine signaling pathways of the 
basal ganglia and resulting in the classic constellation of tremor, 
bradykinesia, and postural instability. Growing evidence shows 
that the motor symptoms of Parkinson’s disease also extend 
to eye movements. Visual and ocular motor disturbances may 
be more common than previously thought and can have a sig-
nificant impact on an individual’s quality of life and ability to 
navigate their surroundings. A study of 27 Parkinson’s disease 
patients revealed a significantly lower composite Visual Function 
Questionnaire (VFQ) score compared to healthy controls 
(87.1 ± 8.69 vs. 96.6 ± 3.05), including lower scores on almost 
every subscale, most notably those for near vision and ocular 
motor function (48). Specifically, patients with Parkinson’s dis-
ease display increased saccade latency and decreased amplitude 
of saccades, requiring a greater number of saccades to reach the 
desired target, and displaying more frequent errors during anti-
saccade tasks (53–55). These findings seem to suggest that the 
classically observed motor findings of difficulty initiating move-
ment and carrying out smooth repetitive movements, i.e., the 
small shuffling steps of a Parkinson’s patient, extend to saccadic 
eye movements as well.

Strabismus may present in Parkinson’s disease as a non-
specific complaint such as double vision (diplopia) or difficulty 
reading. One study of 39 Parkinson’s disease patients reported 
tired or blurred eyes while reading (n = 9, 23.1%) and diplopia 
(n  =  3, 7.7%) as the most common visual complaints. Other 
studies report diplopia in 18–20% of Parkinson’s disease patients 
(56, 57), and all subjects in a study of 44 Parkinson’s disease 
patients with diplopia also had convergence insufficiency (56). 
The prevalence of strabismus in Parkinson’s disease suggests 
that dopamine may play a role in vergence pathways, and that 
disruption of the vergence system in Parkinson’s disease may be 
more common than previously thought.

A study of vergence eye movements in 18 Parkinson’s 
disease patients using video-oculography found significantly 
increased latency for both convergence and divergence 
movements in the horizontal and vertical planes, compared 
to healthy controls. Decreased velocity and gain were also 
described, but only for divergence movements in the vertical  
plane (58). These findings are consistent with previous studies 
in primates showing that separate areas in the brain control 
convergence and divergence, and that the midbrain supraocu-
lomotor area plays a large role in controlling vergence move-
ments (5, 59). The mesencephalic reticular formation, which is 
involved in mediating the velocity of vergence eye movements, 
is complemented by a separate group of convergence burst 
cells located in the dorsal mesencephalic region, rostral to 
the superior colliculus (24). It is possible that a more robust 
neural network is in place for mediating convergence eye move-
ments, enabling them to compensate for motor insufficiency 
in Parkinson’s disease.

As discussed above, the vergence and saccadic oculomotor 
pathways interact whenever these movements occur at the same 
time. Thus, disorders of vergence in Parkinson’s disease may be 
the result of direct effects of the disease on vergence motor con-
trol, coupled with disturbances in the saccadic pathway indirectly 
leading to effects on vergence. Saccadic dysfunction has been well 

documented in Parkinson’s disease, thus it should be unsurpris-
ing that vergence abnormalities are common as well.

Response to Treatment
Convergence insufficiency has been shown to improve upon 
administration of levodopa (60) and with deep brain stimula-
tion (DBS) in conjunction with levodopa/carbidopa (48).  
In the previously mentioned study of 27 Parkinson’s patients, the 
convergence amplitude improved in the “on” phase of medica-
tion compared to the “off ” phase (14.8 ±  10.3 vs. 10.7 ±  9.0), 
although it was still significantly worse than healthy controls 
(24.1  ±  8). Similarly, the near point of convergence improved 
in the “on” phase compared to the “off ” phase (13.1  ±  9.1 vs. 
18.1 ± 12.2), but was still more remote than controls (8.7 ± 4.5). 
However, although most subjects exhibited substantial exotropia 
at near, there was no difference in the mean exodeviation or 
ocular ductions with medication on/off periods (48). The fact 
that convergence ability fluctuates with dopamine dosage through-
out the day presents a particular challenge in the ophthalmic 
manage ment of these patients and may contribute to the negative 
impact on vision-related quality of life. Timing with medication 
should be considered when performing an ophthalmologic exam 
on PD patients.

Strabismus Following DbS
Dystonia and eye deviation are well-documented side effects of 
subthalamic nucleus (STN) stimulation, the most commonly 
targeted structure in DBS surgery (61). Patients undergoing 
DBS surgery can develop transient diplopia that usually resolves 
after reprogramming the stimulation parameters; diplopia was 
observed in 2 of a study of 79 patients receiving DBS (2.5%) (62, 63).  
The diplopia is likely related to the direct, high frequency sti-
mulation of the STN and surrounding structures, such as the 
corticospinal and corticobulbar tracts as they pass through the 
internal capsule, lateral to the STN. The suprabulbar fibers of the 
extraocular motor nerve or nuclei may also be affected, as fibers 
pass along the border of the red nucleus and may be affected by 
implants placed too far medially (61).

A case of hypertropia resulting in vertical diplopia was reported 
in a Parkinson’s disease patient following DBS implantation, 
although this was due to hemorrhage at the site of implantation 
and not the stimulation itself (64). Strabismus has also been 
reported as a side effect of DBS of the medial forebrain bundle 
as a treatment for depression; this strabismus was only present 
at high currents and could be rapidly resolved by adjusting the 
stimulation parameters (65, 66). Strabismus and diplopia are 
established side effects of DBS, and patients should be moni-
tored for these conditions post-operatively to ensure that these 
symptoms do not interfere with quality of life and to rule out 
underlying structural abnormalities that can arise as surgical 
complications.

Strabismus as a biomarker
Examining the qualities of strabismus and vergence characteristics 
in Parkinson’s disease offers insight into disease pathophysiology 
and explores the question of whether these findings are useful as 
biomarkers of disease progression. A study of 39 patients with 
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Parkinson’s disease examined the correlation between ocular 
abnormalities and duration and severity of disease (67). Visual 
complaints, most commonly convergence insufficiency, were 
more common in patients with Parkinson’s disease than healthy 
controls (12/39 vs. 0/39). When Parkinson’s disease patients were 
stratified based upon duration of disease, there was no significant 
difference in the rates of ocular findings; however, there was a 
significant correlation between severity of disease and frequency 
of visual complaints. Thus, vergence insufficiency may be useful 
as a measure of disease severity and quality of life independent 
of disease duration.

The response of convergence insufficiency to conventional 
Parkinson’s treatment supports its correlation with overall disease  
pathophysiology and symptomatology. While these ocular 
find ings are neither necessary nor sufficient for a diagnosis of 
Parkinson’s disease and are less useful than the existing diagnostic 
criteria in this regard, their correlation with overall severity of 
disease and the fact that they may be quantitatively and non-
invasively measured in the clinic offers a promising biomarker 
for tracking disease progression. More studies are required to 
establish their reliability and reproducibility as biomarkers.

SaCCaDeS, veRgeNCe, aND 
STRabiSMUS iN SPiNOCeRebellaR 
aTaXia

The SCA are a heterogeneous group of disorders characterized 
by polyglutamine repeats, resulting in cerebellar ataxia and 
degeneration of structures, such as the basal ganglia, brainstem, 
dorsal columns and ventral horn of the spinal cord, and periph-
eral nerves (68–71). Although the precise role of the cerebellum 
in vergence is unclear, the cerebellar lesions in primates cause 
transient vergence paralysis (18). Additional symptoms, such as 
nystagmus, slow saccades, extrapyramidal signs, and tremor, are 
associated with various types of SCA, depending on the location 
of the genetic abnormality. At least 40 types have been identified 
to date, of which 28 have an identified pathogenic gene (72).

Ocular findings in SCA are common and have a negative 
impact on vision-related quality of life. A study of 19 SCA patients 
found significantly decreased scores on VFQ in regards to general 
vision, near vision, distance vision, driving, peripheral vision, 
and overall composite score compared to the general population  
(49). Like many other trinucleotide repeat disorders, symptom 
severity and age of onset vary with the size of the repeat expan-
sion, and it is expected that ocular findings follow this pattern. 
Unlike Parkinson’s disease, in which ocular findings are usually 
not specific enough to be sufficient for diagnosis, certain types 
of SCA have characteristic ocular findings, which may aid in 
guiding the diagnosis of a particular type of SCA. An excellent 
summary of characteristic ocular findings in various SCAs may 
be found in Leigh and Zee’s Neurology of Eye Movements (73).

SCA3, also known as Machado–Joseph disease (MJD), is the 
most common of the autosomal dominant SCA (74). SCA3 is 
caused by a mutation in the SCA3/MJD gene on chromosome 
14q32, which encodes the ataxin 3 protein (75). Characteristic 
findings include ophthalmoplegia, diplopia, lid retraction 

resulting in a “staring” or “bulging eye” appearance, facial fas-
ciculations, spasticity, muscle fasciculations, and severe hyper- or 
hyporeflexia (74). Diplopia has been found to be more common 
in SCA3 than the other SCAs (74, 76). A study of 12 SCA3 patients 
found strabismus in 10 individuals (83%) (77). The prevalence 
of strabismus in SCA3 invites consideration of the underlying 
mechanism and pathways affected.

The study of one Japanese family with SCA3 found that this 
diplopia was the result of impaired divergence, which mani-
fested itself as double vision that worsened when looking at 
distant targets but improved on lateral gaze (as opposed to an 
abducens palsy in which diplopia would be expected to worsen 
on lateral gaze) (76). Another study of seven patients with 
adult-onset esotropia found the esotropia to be of cerebellar 
origin, despite an initial misdiagnosis as lateral rectus paresis 
(78). These studies suggest that diplopia may be an early sign 
of cerebellar dysfunction. Cerebellar dysfunction has been 
implicated in increased convergence tone (79), offering a 
possible cerebellar pathophysiology for strabismus in patients 
with SCA. In addition, MRI and pathological studies of SCA3 
patients have found significant atrophy of the brainstem and 
cerebellar vermis corresponding with the size of the trinu-
cleotide repeat expansion in SCA3, particularly affecting the 
pontine reticular formation, but with relative sparing of the 
oculomotor, trochlear, and abducens nuclei (80, 81). These find-
ings differentiate the pathophysiology of strabismus in SCA3 
from an oculomotor or abducens nerve palsy, suggesting that 
the primary mechanism of strabismus is not ophthalmoplegia, 
but rather the lesion occurs higher in the vergence command 
pathway with the generation of premotor commands in the 
brainstem and cerebellum.

While it is possible that both vergence impairment and 
ophthalmoplegia may be present, the severity and incidence of 
the diplopia does not correspond to the severity of ophthalmo-
plegia (82), suggesting that ophthalmoplegia alone is not solely 
responsible for the ocular findings in SCA3. In the previously 
mentioned study of 12 SCA3 patients, those with exotropia 
had no distance-near disparity, and no patients had esotropia 
that worsened at distance, suggesting the absence of divergence 
insufficiency in this patient sample. Overall, the properties of 
strabismus in half of the strabismus patients in the study could 
not be explained by co-existing ophthalmoplegia and vergence 
abnormalities, suggesting involvement of structures above and 
beyond the vergence pathways, such as the midbrain, deep 
cerebellar nuclei, and superior cerebellar peduncle (77).

Diplopia has also been reported in up to 50% of patients with 
SCA6 (83). Downbeat nystagmus is considered a characteristic 
ocular finding for SCA6, as it was found in 84% of SCA6 patients 
compared to 5.2% of patients with other forms of SCA (84). 
Although there is less evidence describing the underlying patho-
physiology of the strabismus in these patients, it is likely that a 
similar combination of ophthalmoplegia, vergence insufficiency, 
and other structures are involved.

Response to Treatment
Given that treatment of SCAs is mostly supportive with little 
in the form of disease-modifying drugs, not much is known 
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about the response of strabismus to treatment in these disorders.  
A recent randomized trial of varenicline, a nicotinic acetylcholine 
receptor partial agonist used in smoking cessation, in 20 patients 
with SCA3 demonstrated improvement in gait, rapid alternating 
movements, and timed 25-foot walk (85). However, eye move-
ments and vision-related outcomes were not measured as part 
of the study. It is possible that improved motor control in gait 
and rapid alternating movements will also be reflected in ocular 
motor control, although this is yet to be confirmed. Another 
recent study evaluating the use of nerve growth factor as a treat-
ment for 21 patients with SCA3 also demonstrated improvements 
in ataxia (65), particularly in subsections on stance, speech, 
finger chase, rapid alternating movements, and heel-to-shin (86). 
While these studies suggest promising potential treatments for 
SCA, more thorough study is needed. Given that oculomotor 
findings feature prominently in several SCA subtypes, including 
eye movement and vision-related outcomes in studies of potential 
SCA treatments would offer additional insight into the impact  
of treatment on disease pathophysiology and quality of life.

SaCCaDeS, veRgeNCe, aND 
STRabiSMUS iN HUNTiNgTON DiSeaSe

Huntington disease is an autosomal dominant neurodegenerative 
disorder caused by a trinucleotide repeat expansion in the hun-
tingtin gene (87). Characteristic symptoms include choreiform 
movements, dystonia, hyperreflexia, and dementia (88, 89). 
Ophthalmologic symptoms have also been reported; specifically, 
saccade latency is increased along with anti-saccade error rate 
and impaired ability to suppress saccades (90–93). In contrast, 
vestibulo-ocular reflex and smooth pursuit movements are 
relatively preserved until late into the disease (93, 94). Of note, 
a slight increase in saccade latency and a decreased number 
of memory-guided saccades were found in presymptomatic 
Huntington gene carriers compared to non-gene carriers, sug-
gesting that oculomotor control in Huntington could serve as an 
early biomarker (95).

While saccades are certainly affected in Huntington disease 
and may potentially serve as a biomarker for detection of symp-
toms and tracking disease progression, little is known about how 
Huntington disease affects vergence control. Diplopia is rarely 
reported in Huntington patients, suggesting that this is not usu-
ally a prominent finding. Further study may be warranted into 
how Huntington disease affects binocular fusion, if at all, or if 
there is some disconjugacy of saccades that may reflect a disrup-
tion of binocular ocular motor control.

SaCCaDeS, veRgeNCe, aND 
STRabiSMUS iN aTYPiCal 
PaRKiNSONiaN SYNDROMeS

Multiple system atrophy (MSA), progressive supranuclear 
palsy (PSP), corticobasal degeneration (CBD), and dementia 
with Lewy bodies (DLB) are examples of atypical parkinsonian 
syndromes. That is, parkinsonian motor features are included 
in their constellation of symptoms, although the fundamental 

pathophysiology may differ. Since there is an overlap of symp-
toms, it is not unreasonable to expect that many of the ocular 
motor findings seen in Parkinson’s disease would be seen in 
atypical parkinsonism as well.

Multiple System atrophy
Multiple system atrophy is characterized by parkinsonism, ataxia, 
and autonomic dysfunction (96). It can be broken down into 
three types: parkinsonian, in which parkinsonian symptoms are 
predominant, cerebellar, in which cerebellar symptoms such as 
impaired coordination and speech are predominant, and com-
bined, which has features of both types.

Given the similarities between Parkinson’s disease and MSA, 
one might expect diplopia to also feature prominently in MSA. 
One study of 20 patients with MSA found that reading speed was 
mildly affected, but no diplopia was reported (97). A case study 
described two MSA patients with diplopia that was the result of 
vergence paresis, with no signs of abducens palsy (98). However, 
a recent study of 39 MSA patients identified conjugate eye move-
ment abnormalities in 33% of patients and ocular misalignment 
in another 18%. Additionally, the presence of ocular findings 
was correlated with a shorter time from diagnosis to death (99). 
These more recent findings suggest that abnormalities of eye 
alignment are more prevalent in MSA than previously known 
and also that they correlate with a poorer prognosis. More study 
would be worthwhile to further characterize these findings and 
explore their potential as biomarkers of disease progression and 
prognosis. Unlike in Parkinson’s disease, patients with MSA have 
a variable response to levodopa/carbidopa therapy (100). Little is 
known about how these treatments affect vision and oculomotor 
control.

Progressive Supranuclear Palsy
As the name suggests, PSP is characterized by parkinsonism 
plus gaze palsies. Although the disease primarily and initially 
affects eye movement in the vertical direction, it can progress to 
involve horizontal saccades as well and develop into complete 
ophthalmoplegia (101). A common eye movement finding in 
PSP is square-wave jerks, which are saccadic intrusions that occur 
during attempted fixation (102).

A case report published in 2009 described a case of PSP that  
had horizontal diplopia as its presenting symptom, thought to 
be due to vergence abnormalities from degenerative effects on 
midbrain nuclei (103). It is interesting that this individual pre-
sented with horizontal gaze abnormalities, although he did go on 
to develop slowing of vertical saccades and square-wave jerks as is 
typical in PSP. The proximity of midbrain structures responsible 
for controlling vergence and horizontal and vertical saccades 
could explain this presentation, as this area of the midbrain is 
heavily affected by tau pathology in PSP (104). More studies 
are needed to determine exactly how common vergence abnor-
malities and diplopia are in PSP, although the proposed pathology 
suggests that these structures may be frequently involved.

Corticobasal Degeneration
The syndrome of CBD can have a diverse presentation and is, 
therefore, difficult to diagnose. Increasingly it is thought that CBD 
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is not a singular disease, but may stem from various etiologies 
and present in a variety of ways. Symptoms may include asym-
metric parkinsonism, apraxia, rigidity, and the infamous “alien 
limb” syndrome (105). Eye movement abnormalities are present 
in about 33% of patients at diagnosis, and involve up to 60% 
of cases throughout the disease course (106). Saccadic apraxia 
manifests as increased latency and difficulty initiating saccades, 
and an increase in anti-saccade errors (107, 108). This is often 
asymmetric, like the other motor findings of CBD.

Unfortunately, unlike Parkinson’s disease, patients with CBD 
tend to have a poor response to levodopa (105, 109). Currently, 
no disease-modifying therapies exist. Supportive treatments that 
have been used to alleviate symptoms include intramuscular 
botulism toxin and benzodiazepines for dystonia and myoclonus 
(110). Given the prevalence of eye movement findings in CBD, 
care of these patients should include attention to visual symptoms 
and appropriate supportive treatment.

Dementia with lewy bodies
Dementia with Lewy bodies is a particularly vicious form of 
dementia in which affected individuals suffer from progressive 
memory loss, visual hallucinations, and parkinsonian motor 
features. Studies of eye movements in DLB have shown that, like 
in Parkinson’s disease, these individuals tend to have increased 
saccade latency, reduced saccade velocity, and an increase in 
variability of saccades (111, 112). In addition, there has been 
a case report of a patient with supranuclear gaze palsy initially 
misdiagnosed as PSP (113). However, there is little known about 
how vergence is affected in DLB. Future studies of oculomotor 
findings in DLB should include diplopia and vergence abnormali-
ties to assess if these disturbances are as common in DLB as they 
are in Parkinson’s disease.

CONClUSiON

The presence of new-onset strabismus in an adult can range in 
severity from mild to debilitating and merits consideration of an 

underlying neurodegenerative disorder. Strabismus is a common 
finding in Parkinson’s disease and can present as diplopia or dif-
ficulty reading. It has been found to correlate with overall disease 
symptomatology and presents a possible biomarker for tracking 
disease progression. Diplopia generally responds well to treat-
ment in Parkinson’s, although it fluctuates with dopamine dos-
age, which can present a challenge in management. Strabismus 
is also a common finding in certain types of spinocerebellar 
ataxia and can aid in the clinical diagnosis of a particular SCA 
type. It is especially common in SCA3/MJD, where a combina-
tion of vergence insufficiency and ophthalmoplegia have been 
found to play a role in the pathogenesis of diplopia, offering 
insight into disease pathophysiology and the structures affected. 
However, little is known about the response of strabismus to 
treatment in SCA, as there is a scarcity of disease-modifying 
treatment. Finally, other neurodegenerative disorders, such as 
Huntington and atypical parkinsonian syndromes, also have 
well-documented eye movement effects, although there is less 
known about strabismus and its response to treatment in these 
disorders.
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