
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4202  | https://doi.org/10.1038/s41598-021-83340-8

www.nature.com/scientificreports

Head‑to‑head comparison 
of clustering methods 
for heterogeneous data: 
a simulation‑driven benchmark
Gregoire Preud’homme1,2, Kevin Duarte1, Kevin Dalleau3, Claire Lacomblez1, 
Emmanuel Bresso3, Malika Smaïl‑Tabbone2,3, Miguel Couceiro3, 
Marie‑Dominique Devignes2,3, Masatake Kobayashi1,2, Olivier Huttin1,2, 
João Pedro Ferreira1,2, Faiez Zannad1,2, Patrick Rossignol1,2 & Nicolas Girerd1,2,4*

The choice of the most appropriate unsupervised machine‑learning method for “heterogeneous” or 
“mixed” data, i.e. with both continuous and categorical variables, can be challenging. Our aim was 
to examine the performance of various clustering strategies for mixed data using both simulated and 
real‑life data. We conducted a benchmark analysis of “ready‑to‑use” tools in R comparing 4 model‑
based (Kamila algorithm, Latent Class Analysis, Latent Class Model [LCM] and Clustering by Mixture 
Modeling) and 5 distance/dissimilarity‑based (Gower distance or Unsupervised Extra Trees dissimilarity 
followed by hierarchical clustering or Partitioning Around Medoids, K‑prototypes) clustering methods. 
Clustering performances were assessed by Adjusted Rand Index (ARI) on 1000 generated virtual 
populations consisting of mixed variables using 7 scenarios with varying population sizes, number 
of clusters, number of continuous and categorical variables, proportions of relevant (non‑noisy) 
variables and degree of variable relevance (low, mild, high). Clustering methods were then applied on 
the EPHESUS randomized clinical trial data (a heart failure trial evaluating the effect of eplerenone) 
allowing to illustrate the differences between different clustering techniques. The simulations 
revealed the dominance of K‑prototypes, Kamila and LCM models over all other methods. Overall, 
methods using dissimilarity matrices in classical algorithms such as Partitioning Around Medoids and 
Hierarchical Clustering had a lower ARI compared to model‑based methods in all scenarios. When 
applying clustering methods to a real‑life clinical dataset, LCM showed promising results with regard 
to differences in (1) clinical profiles across clusters, (2) prognostic performance (highest C‑index) 
and (3) identification of patient subgroups with substantial treatment benefit. The present findings 
suggest key differences in clustering performance between the tested algorithms (limited to tools 
readily available in R). In most of the tested scenarios, model‑based methods (in particular the Kamila 
and LCM packages) and K‑prototypes typically performed best in the setting of heterogeneous data.

Cluster analysis aims to partition unlabeled data into homogeneous groups, such that two instances are similar if 
they belong to the same cluster, and dissimilar otherwise. Although this unsupervised machine-learning task is 
often considered in the context of either continuous or categorical datasets, this task remains challenging when 
dealing with “heterogeneous” or “mixed” data, i.e. with both types of variables. As previously emphasized, clus-
tering of mixed data is challenging because it is difficult to directly apply mathematical operations to both types 
of feature  variables1. One of the main issues arising in the framework of mixed data clustering is thus the choice 
of the most appropriate distance or model to simultaneously process both data types. Indeed, clinical research 
usually relies on heterogeneous data: clinical datasets typically include a mix of variables related to clinical history 
(usually categorical variables), general/anthropometric data (usually continuous variables such as age and body 
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mass index), physical examination (both categorical and ordinal variables) and laboratory or imaging findings 
(often continuous variables). Note that among laboratory variables, omics data are increasingly available today. 
Such heterogeneity urges for ways to guide users and clinical practitioners in choosing appropriate clustering 
approaches for heterogeneous clinical datasets in order to achieve efficient phenomapping of patients in various 
clinical settings.

Discretization and dummy-coding are some of the simple and intuitive solutions to obtain a homogeneous 
dataset containing only categorical data on which classical techniques can be applied. However, this approach may 
introduce distortion in the original data and may consequently lead to increased  bias2. Fortunately, a wide range 
of clustering algorithms has been specifically developed to deal with mixed data. A detailed taxonomy of available 
methods has been reported recently by Ahmad and Khan 1. Nevertheless, the end-user may be bewildered when 
choosing one of these techniques as there is no clear guidance for choosing the most appropriate technique in a 
given context. To our knowledge, few benchmark studies have examined the performance of clustering strategies 
for mixed type variables on both real and simulated  data3. Moreover, only a few of the available techniques have 
been tested in previous benchmark attempts. In addition, an external assessment of available techniques, by a 
group not directly involved in their development, may further strengthen the generalizability of the results. In 
fact, a better understanding of the strengths and weaknesses of each clustering strategy may help to clarify the 
lack of reproducibility and generalization sometimes observed in the setting of mixed data clustering.

The present study aims to assess the performance of clustering strategies for mixed data in both simulated 
and real case scenarios. In the first group of scenarios, virtual populations with available mixed variables were 
generated on which a benchmark of clustering techniques was conducted. The same techniques were subse-
quently applied to a real-life dataset from the EPHESUS randomized clinical  trial4 to illustrate the importance 
of choosing the appropriate clustering technique. As our focus was to test tools readily/easily available to clinical 
researchers, we therefore restricted our analysis to “off-the-shelf ” tools readily available from the R software (R 
Core Team), that cover only a portion of all available methods for clustering heterogeneous data.

Methods
Clustering algorithms. Design questions. From a formal point of view, three design questions must be 
addressed in the specific setting of mixed data clustering. The first question (Q1) is how to calculate similarities/
distances for categorical and numeric data when using distance-based algorithms, or how to transform the data 
for model-based methods. The second question (Q2) is related to the methodology to merge numerical and 
categorical parts. The last question (Q3) is the choice of the algorithm that will be used to build optimal clusters.

As mentioned above, to facilitate the evaluation process, we selected only clustering algorithms either already 
present or easily implementable in the R software (R version 3.6.3, R Core Team). Thus, and due to computing 
time load and lack of availability of some of them, only a limited number of representative techniques were 
retained for this study. The selected algorithms are described in Table 1 according to the three design questions 
relevant for heterogeneous data. Algorithms are grouped as distance-based or model-based. In the first group, 

Table 1.  Description of selected methods with regards to design questions related to (1) similarities/distances 
or data transformation, (2) methodology to merge numerical and categorical parts and (3) algorithm choice. 
NA, Not applicable; EM, Expectation Maximization ; PAM, Partitioning Around Medoids; HAC, Hierarchical 
Ascendant Clustering; UET, Unsupervised Extra Trees dissimilarity. a clustMixType package (PAM function): 
https ://cran.r-proje ct.org/web/packa ges/clust MixTy pe. b Cluster package (daisy function): https ://cran.r-proje 
ct.org/web/packa ges/clust er. c Yet unpublished UET package, available at https ://gitla b.inria .fr/kdall eau/uetcp 
p, build_randomized_tree_and_get_sim function. d Stats (R-base package, hclust function): https ://stat.ethz.
ch/R-manua l//R-devel /libra ry/stats /html/00Ind ex.html. e clustMixType package (kproto function); see a. 
f Kamila package (kamila function): https ://cran.r-proje ct.org/web/packa ges/kamil a. g poLCA package (poLCA 
function): https ://cran.r-proje ct.org/web/packa ges/poLCA . h VarSelLCM package (VarSelCluster function): 
https ://cran.r-proje ct.org/web/packa ges/VarSe lLCM. i Rmixmod package (mixmodCluster function): https ://
cran.r-proje ct.org/web/packa ges/Rmixm od.

Clustering method

Q1: Distance or transformation

Q2: Merge mode Q3: Optimization algorithmNumeric Categorical

Distance-based methods

PAMa
Normalized difference Hamming Gowerb K-medoids

UETc UETc NA  K-medoids

Ascendant hierarchical 
 clusteringd

Normalized difference Hamming Gowerb HAC + Ward link

UETc UETc NA  HAC + ward link

Kprotoe Euclidean Hamming Weighted sum Kmeans

Model-based methods

Kamilaf Euclidean Probabilities ensemble-like approach K-means and EM

LCAg Discretisation and probabilities Probabilities NA EM and Newton–Raphson

LCMh Probabilities Probabilities NA EM + feature selection

Mixmodi Probabilities Probabilities NA EM

https://cran.r-project.org/web/packages/clustMixType
https://cran.r-project.org/web/packages/cluster
https://cran.r-project.org/web/packages/cluster
https://gitlab.inria.fr/kdalleau/uetcpp
https://gitlab.inria.fr/kdalleau/uetcpp
https://stat.ethz.ch/R-manual//R-devel/library/stats/html/00Index.html
https://stat.ethz.ch/R-manual//R-devel/library/stats/html/00Index.html
https://cran.r-project.org/web/packages/kamila
https://cran.r-project.org/web/packages/poLCA
https://cran.r-project.org/web/packages/VarSelLCM
https://cran.r-project.org/web/packages/Rmixmod
https://cran.r-project.org/web/packages/Rmixmod
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the dissimilarities (Q1) used by the various algorithms are different between numeric and categorical data 
except for the UET distance (see below "Unsupervised extra trees dissimilarity (UET)" section). Merging (Q2) 
is therefore not required with UET distance. Two optimization algorithms (Q3): K-medoids or hierarchical 
ascendant clustering (HAC) using Ward aggregation measure (see below "Partitioning around medoids (PAM)" 
and "Ascendant hierarchical clustering (HC)" sections respectively) have been used with Gower and UET dis-
similarity matrices, whereas the K-prototypes (see "K-prototypes (kproto)" section) uses K-means. For most 
model-based methods, the distributions of both numeric and categorical variables are transformed (Q1) into 
probabilities, except for Kamila which uses Euclidean distance to handle numeric variables and probabilities for 
categorical ones (see "Kamila" section). Therefore, Kamila needs to set up an ensemble-like approach to merge 
(Q2) both types of data, using both K-means and Expectation Maximization (EM) as optimization algorithms 
(Q3). The three other model-based methods do not need any merging procedure as both types of variables are 
included in a unique probabilistic model and use EM algorithms with specific variants (see below "Clustering 
by mixture modeling (Mixmod)" to "Latent class analysis (LCA)" sections).

The following sections aims at briefly describing all the clustering methods used in this study and their 
underlying mechanisms. The following notations are used throughout this section: G is the number of clusters, 
N the size of the population, p the total number of variables.

Distance‑based methods. This family of methods relies exclusively on explicit distances or dissimilarities 
between individuals. Some algorithms such as Partitioning Around Medoids (PAM) or Hierarchical Ascendant 
Clustering (HAC) can take any dissimilarity matrix as an input, whereas K-prototypes rather build their own 
distance. Note that in the present analysis, by misuse of language, the term “distance” sometimes means “dis-
similarity” as some measures do not necessarily verify the triangular inequality.

Gower-based dissimilarity. For two observations x and y , the  Gower5 (1971) similarity coefficient is repre-
sented as:

where s
(

xj , yj
)

 equals 1 if xj = yj and 0 otherwise, and Range(j) represents the absolute difference between 
extreme values of the j-th variable.

The first term of the right part is the similarity on the continuous variables, while the second term deals with 
categorical variables. By dividing the difference |xj—yj| by the range of variable j, both coefficients for numeric 
and categorical variables are included in the interval [0, 1] . The dissimilarity matrix is then comprised of the 
dissimilarity coefficients calculated between each pair of observations. In the daisy function from the cluster R 
package, the transformation 1− S

(

x, y
)

 is used, although 
√

1− S
(

x, y
)

 was initially proposed by  Gower5 (1971). 
In this implementation of the Gower-based dissimilarity, as emphasized in Table 1, the categorical part of the 
data is actually handled by the Hamming distance.

Unsupervised extra trees dissimilarity (UET). This recently  published6 method for computing dissimilarity 
measurements relies on the principle of decision trees. Unlike traditional approaches, UET does not require a 
target variable to assess the homogeneity of the final nodes and to perform the respective splits. Rather, at each 
step, the method samples a variable without replacement and then samples a threshold among the values of this 
variable. The population of the parent node is divided into two child nodes, according to the value of the obser-
vation relative to the threshold (lower/greater than for continuous variables, equal/different for categorical vari-
ables). The tree growth is halted when there is no remaining variable or attribute, or if the current node has a size 
lower than a certain value, the smoothing parameter. This parameter controls the depth of each tree. For each tree 
built, the similarity matrix is updated: for each pair of observations, if they are in the same terminal node, their 
similarity is incremented by 1. The algorithm is repeated M times so that each pairwise similarity is divided by 
M at the end. The similarities are then converted into dissimilarities using the formula 

√

1− S
(

x, y
)

.
Unlike other dissimilarities such as the Euclidean distance for k-means clustering, the UET dissimilarity does 

not require scaling the data displaying different magnitudes, thus preserving the original structure. This approach 
is moreover functional for homogeneous as well as heterogeneous data and is robust to outliers and  noise6.

There is presently no official R package for this algorithm, but the source code and the instructions for its 
installation can be found on Gitlab (https ://gitla b.inria .fr/kdall eau/uetcp p).

Each of the previous dissimilarity matrices can then be incorporated into one of the two following clustering 
algorithms: Partitioning Around Medoids (PAM) and Hierarchical Clustering (HC).

Partitioning around medoids (PAM). The PAM  method7 builds a partition by affecting observations to the 
closest “medoid”, i.e. the best representative subject of its cluster. The algorithm is composed of two steps: one for 
building the current clustering similarly to the K-means (BUILD phase), and another to improve the partition 
toward a local optimum (SWAP phase).

The minimization criteria is the Total Deviation (TD):

S
�

x, y
�

=
1

m





q
�

j=1

�

1−

�

�xj − yj
�

�

Range
�

j
�
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+

p
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j=q+1

s
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xj , yj
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
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where (m1, ...,mG) are the medoids,(C1, ...,CG) the respective clusters they represent, and d
(

xj ,mg

)

 the dissimilar-
ity between the subject xj and the medoid of the cluster Cg.

The BUILD phase finds the first medoid which minimizes the total deviation, i.e. with the smallest dissimilar-
ity to all other subjects. The remaining G − 1 medoids are then successively found by maximizing the reduction 
of the TD.

The SWAP phase subsequently improves the existing partition by considering all possible “swaps” of the G 
medoids with the non-medoids. The swaps which reduce TD the most are applied, and the process is repeated 
until no further improvement is found. This method is implemented in the pam function of the cluster R package.

Ascendant hierarchical clustering (HC). This well-known clustering method begins with N clusters (one per 
subject), then at each step aggregates the two closest clusters until only one remain. The successive fusions are 
represented on a dendrogram to facilitate the a posteriori choice of an optimal number of clusters. In general, the 
best partition is the one preceding the first sizeable increase in intra-cluster variance.

Let us suppose that at a particular aggregation step, clusters Ci and Cj are the next to be merged. To determine 
the distance of the merged cluster Ci ∪ Cj with any other cluster Ck , the dissimilarity matrix must be updated by 
one aggregation method belonging to the Lance-Williams algorithm family:

The coefficients α, β and η are dependent on the aggregation method. These methods for computing distances 
between clusters are called linkage criteria. For the present benchmark, Ward’s  algorithm8 was chosen, which 
aims at minimizing the increase in intra-cluster variance at each binary fusion, such that convex and compact 
clusters are more likely to be formed. With the Ward’s aggregation method, the formula becomes:

with ni , nj and nk representing the respective sample sizes of Ci,Cj and Ck.
Ward’s algorithm is implemented in the hclust function of the stats R package, when method = “ward.D2” is 

selected.

K-prototypes (Kproto). The K-prototypes  algorithm9 defines G virtual individuals (or prototypes) as the centers 
of the groups, built from the means by group for numeric variables, and modes by group for categorical variables. 
The distance between two subjects X and Y is then defined as: d2(X,Y) =

∑q
j=1

(

xj − yj
)2

+ γ
∑p

j=q+1δ
(

xj , yj
)

where the first term is the squared Euclidean distance measurement for the continuous variables and the 
second term is the Hamming  distance10 (1950). The weight γ is used to avoid favoring either type of attribute. It 
can be specified by the user or estimated via a combined variance of the data.

The minimization criteria is the total sum of distances (TSD) between the subjects and the prototype of the 
class bg to which they belong: TSD =

∑G
g=1

∑

x∈Cg

(

∑q
j=1

(

xj − bg ,j
)2

+ γ
∑p

j=q+1δ
(

xj , bg ,j
)

)

In practice, the algorithm is very similar to the k-means: initial G prototypes are selected as temporary centers 
of the clusters, then each subject is allocated to the closest prototypes. When all subjects are allocated, the pro-
totypes are updated to represent their optimal class. The subjects are then reallocated to the updated prototypes 
if needed, and the process is repeated until the partition is stable. This algorithm can be found in the (kproto, 
Kproto) function of the clustMixType R package.

Model‑based methods. Kamila. The Kamila  algorithm2 is a model-based adaptation of the k-means for man-
aging heterogeneous datasets. The sample of continuous variables is assumed to follow a mixture distribution 
with arbitrary spherical clusters (where the density of the data is only dependent on the distance to the center of 
the distribution). This assumption is less restrictive than those from Mixmod or LCM (see below). Categorical 
variables are supposed to be sampled from a mixture of multinomial variables. Factors are also assumed to be 
conditionally independent given the clusters to which they belong.

The Kamila algorithm begins with a set of centroids for the continuous variables and a set of parameters for 
the categorical variables. For continuous variables, the Euclidean distance with the closest centroid is computed. 
This set of N minimal distances is used to estimate the mixture distribution of continuous variables. For categori-
cal variables, the probabilities of observing the data given the cluster are computed.

The log-likelihood of the sum of these two components is then used to find the most appropriate cluster for 
each subject. Based on this temporary partition, the centroids and the parameters are updated to best represent 
the clusters.

These steps are repeated until the clusters are stable. Finally, multiple runs of this process are performed with 
different initializations, and the partition maximizing the sum of the best final likelihoods is retained.

The R package kamila is a direct implementation of this technique by its authors.

Clustering by mixture modeling (Mixmod). Clustering by mixture modeling was proposed a number of years 
 ago11, although powerful computers are needed to realize its full potential. Nowadays, many R packages imple-

TD =

G
∑

g=1

∑

xj∈Cg

d
(

xj ,mg

)

d
(

Ci ∪ Cj ,Ck

)

= αd(Ci ,Ck)+ βd
(

Cj ,Ck

)

− ηd
(

Ci ,Cj

)

d
(

Ci ∪ Cj ,Ck

)

=
ni + nk

ni + nj + nk
d(Ci ,Ck)+

nj + nk
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d
(
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)

−
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d
(
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ment mixture models such as clustMD or fpc, although we preferred the Rmixmod12 package for its rich para-
metrization and cross-platform implementation.

Mixture models assume that continuous variables follow a multivariate normal distribution whereas categori-
cal variables follow a multivariate multinomial distribution. For an observation xi , the probability distribution 
function is defined as:

where h
(

xi|αg
)

 is the distribution function for cluster g , with parameters αg . For example, if h is defined as a 
multivariate normal distribution, αg would be the mean vector µg and the variance–covariance matrix �g . The 
mixing proportions τg ∈]0, 1[ sum to 1, and thus describe the expected size of each cluster. The set of parameters 
to be determined is θ =

(

τ1, ..., τg ,α1, ...,αg
)

.
Given the parameters and the data, the probability for a subject i to be classified into cluster g is:

Thus, for each individual i , we define the G × 1 dummy vector zig (θ) containing 1 where tig (θ) is maximum, 
and 0 elsewhere. These zig are then introduced into the completed log-likelihood of the observed data:

Following an Expectation–Maximization (EM) framework, the set of parameters θ is computed such that the 
log-likelihood is maximized. The tig (θ) are then updated and so forth until convergence is reached.

The crucial portion of this process relies on the choice of the model for the data within a specific cluster, i.e. 
the distribution function h . Several models are available with different levels of constraints.

For continuous variables, the variance–covariance matrices are assumed to be diagonal. The user can decide 
to set all cluster volumes equal, and/or all intra-variances equal, which yields 4 possible models.

With regard to categorical variables, a re-parametrization allows an interpretation similar to the center and 
the variance matrix used for continuous data. The dispersion parameter can be chosen to be the same across 
clusters and/or across variables, or across levels, thereby yielding 5 possibilities.

Latent class model (LCM). This method, implemented by its authors in the VarSelLCM R  package13, is another 
type of mixture modeling quite similar to Mixmod but, in addition, it can also determine whether a variable is 
useful for clustering, as well as the optimal number of clusters.

If the j-th variable is relevant (i.e., its distribution differs significantly across clusters), it is labeled with ωj = 1 
and belongs to � . If j is irrelevant (i.e. its distribution is similar across clusters), it is labeled with ωj = 0 and 
belongs to � ’s complementary, i.e. �c . Let ω =

(

ω1, ...,ωp

)

 be the binary vector of the role of the p variables, and 
let m = (G,ω) be the resulting model.

For an observation xi , the probability density function of the mixture distribution is:

In LCM, the variables are assumed to be independent within clusters. Similarly to Mixmod, an EM algorithm 
is used to determine the optimal partition.

When the selection of relevant variables is enabled, a penalization on the Bayesian Information Criterion 
(BIC) or the Maximum Integrated Complete-data Likelihood (MICL) is applied at the maximization step. The 
selection of the number of clusters is achieved by running the algorithm for each number of clusters in a speci-
fied range, and selecting the one which yields the best value of the selected criterion. These selection features 
were not used in the present study due to the lengthy computing time, although the user may find convenient 
having an all-in-one tool via this function.

Latent class analysis (LCA). This clustering technique is derived from the Latent Class  Regression14 and imple-
mented in the poLCA R package 15. Since poLCA was used in Ferreira et al.16 on the EMPHASIS and EPHESUS 
studies, this technique was selected in our benchmark. LCA has the particularity of being applied to categorical 
data only, implying that continuous variables must be discretized. This transformation can be achieved based on 
percentiles in order to obtain balanced level counts, or based on practitioner knowledge such that the categories 
are clinically relevant. Each categorical variable is supposed to be sampled from a mixture of multinomial dis-
tributions, depending to which latent cluster the subjects belong to. Similarly to mixture modeling methods, the 
overall density function is used:

f (xi|θ) =

G
∑

g=1

τgh
(

xi|αg
)

tig (θ) =
τgh

(

xi|αg
)

f (xi|θ)

Lc(θ , z) =

N
∑

i=1

G
∑

g=1

zig ln
(

τgh
(

xi|αg
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hj
(

xij|α1j
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In this instance, the αg are the sets of probabilities for each level of each categorical variable if the subject belongs 
to the latent cluster Cg . Initially, the τg are uniform (equal cluster sizes), and the αg are randomly sampled. As in 
Mixmod, the tig (θ) are computed and used to update the αg according to the Bayes theorem and the observed 
data. With the new probabilities of the multinomial mixture, the τg are updated. Finally, the new parameters 
allow computing the log-likelihood of the present iteration:

The parameter update is repeated until the maximum number of iterations is achieved, or the difference 
between two successive log-likelihoods is too small (1e−10). Several runs are subsequently performed to avoid 
finding a local optimum, and the run with the best final log-likelihood returns the resulting partition.

Simulation framework. General process. To assess the performance of each previous clustering method, 
1000 datasets were generated with a particular design (e.g. set of parameters), yielding continuous and cat-
egorical variables which were representative of a true known partition. Each method then yielded its predicted 
partition that was compared to the original partition. The agreement scores over the 1000 repetitions were then 
summarized and graphically represented, allowing a visual comparison of the clustering performance for each 
method.

Investigated scenarios. The datasets were simulated under various scenarios in order to approach the diversity 
of real-life data. These scenarios were defined by controlling the following parameters:

• The size of the population (300, 600, 1200);
• The number of clusters (2, 6, 10);
• The ratio between the number of continuous and categorical variables;
• The proportion of relevant (non-noisy) variables (20%, 50%, 90%);
• The degree of relevance of the variables (low, mild, high)

Ideally, all combinations of the different values of the parameters should be tested to avoid hidden interac-
tions. However, due to the overwhelming computational time, it was decided to investigate one parameter at a 
time. By default, the size of the population was 300, the number of clusters was 6, the continuous and categorical 
variables were equally represented (4 each), mildly relevant (see below for the definitions) and without any fully 
irrelevant variables. The seven scenarios and their investigated parameters are summarized in Table 2.

For example, in scenario n°1, three series of 1000 datasets were generated, corresponding to respective 
population sizes of 300, 600 and 1200. This enabled the visualization of the impact of sample size on clustering 
performance.

Simulated datasets. Each population was created according to the following process:
Continuous variables were generated by Qiu and Joe’s  method17, an improvement of Milligan’s  method18. 

This algorithm finds a multivariate normal distribution for each cluster such that a degree of separation of each 
cluster with its closest neighbor is verified. The N × q covariates values are then sampled and returned with the 
true partition. In practice, the continuous covariates were generated by using the genRandomClust function from 
the clustergeneration package. This function uses the separation index as a parameter, included in the ] − 2,+2[ 
interval. The larger the index, the more the clusters are separated. Therefore, this index can be deemed as a degree 

LogLik(x|θ) =

N
�

i=1

loge
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

G
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x|αg
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Table 2.  Parameters of the simulated populations according to each tested scenario.

1 2 3 4 5 6 7

General parameters

Population size 300/600/1200 300 300 300 300 300 300

Number of clusters 6 2/6/10 6 6 6 6 6

Continuous variables

Total number 4 4 2/4/8 4 4 4 10

Proportion of relevant 
variables 100% 100% 100% 100% 100% 100% 20%/50%/90%

Degree of relevance Mild Mild Mild Low/mild/high Mild Mild Mild

Categorical variables

Total number 4 4 2 / 4 / 8 4 4 10 4

Proportion of relevant 
variables 100% 100% 100% 100% 100% 20%/50%/90% 100%

Degree of relevance Mild Mild Mild Mild Low/mild/high mild Mild
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of relevance for continuous variables. In the scenarios presented in Table 2, the separation index values “− 0.3”, 
“0” and “0.3” represent a “low”, “mild” and “high” degree of relevance, respectively.

In practice, when using the Euclidean distance such as in K-prototypes, continuous data should be scaled 
(i.e. subtracted by the mean and divided by the standard deviation). Indeed, variables having the highest values 
tend to play an over-represented role when computing the distance to the closest center of the class. Although all 
simulated continuous variables had roughly the same scale, the datasets were scaled for precautionary reasons. 
For the purpose of equity, all methods utilized the same scaled dataset as input, since we were more interested 
in relative performance than in absolute performance.

Categorical variables were then added to the population based on the existing partition. By convenience, 
the number of levels per variable was equal to the number of clusters, such that a single categorical variable can 
theoretically predict the entire partition. At the outset, each cluster and its corresponding subjects were affected 
to one level of one variable. Thereafter, a fraction of the categorical variable levels was resampled within each 
cluster, thus introducing a controlled “noise” in the variable.

For example, in order to generate a three-level variable and to control the information carried by latter rela-
tive to a partition of 3 groups with 50 subjects each, the simulation began with the “perfect” situation: on the 
left panel of supplementary Fig. 1, one level corresponds to one cluster. A noise proportion of 20% was then 
introduced, meaning that 20% of the population had its value randomly resampled among one of the three levels 
(right panel of supplementary Fig. 1).

Similarly to continuous variables, the introduced proportion of noise can be considered as a degree of rel-
evance for categorical variables. In the scenarios presented in Table 2, the “low”, “mild” and “high” degrees of 
relevance represent noise proportion of 95%, 85% and 75%, respectively.

Noisy variables, i.e. which do not carry information regarding the latent partition, can also be added to the 
dataset in order to modify the proportion of relevant variables in the dataset, as described for scenarios 6 and 7 in 
Table 2, leading to proportions of 1/5, 1/2 and 9/10 for a total of 10 variables for the varying type. For continuous 
variables, the genRandomClust function automatically produces the latter, while for categorical variables, a full 
random sampling of the levels of the new variable is sufficient.

In order to visualize the data and assess the difficulty of the clustering task, we applied t-distributed stochastic 
neighbor embedding (t-SNE)19 on the numerical values to obtain a 2D representation of the clusters. The result-
ing plots are presented in Supplementary Fig. 2 for all scenarios. This representation shows that the simulated 
clusters have regular convex shapes more or less well delineated depending on the relevance degree of the vari-
ables (scenario 4) or on the % of noise added to the data (scenario 7).

Parameters of the clustering methods. The various clustering methods presented in "Clustering algorithms" sec-
tion feature parameters which directly influence the resulting partition. Since thousands of datasets were gener-
ated for each of the seven scenarios, it was not possible to fine-tune the parameters individually. Thus, default 
parameters were chosen following the guidelines of the documentation, and the same parameters were imple-
mented for every dataset. Particular attention was given to the number of initializations (e.g. for UET, K-Proto) 
which represents a trade-off between the robustness of the partition and computation time.

Typically, the true number of clusters is unknown and is determined a posteriori, either according to an 
objective criterion or according to practitioner knowledge. In this simulation framework, allowing the methods 
to estimate the optimal number of clusters would be hard to implement as well as extremely time-consuming 
and would ultimately impair the performance comparison. It is thus assumed that the true number of clusters 
is a given parameter for each method.

Assessing the performance. To compare a partition produced by any of the clustering methods with the original 
method, the Adjusted Rand Index (ARI)20 was used. The ARI provides an agreement score between the two 
partitions, ranging from 0 (complete disagreement) to 1 (complete agreement). Since the clustering methods 
are applied to 1000 repetitions by design, the resulting ARI are summarized by classical univariate statistics, and 
graphically represented by boxplots.

Application on a real‑life dataset: the EPHESUS study. The EPHESUS  study4 is a randomized mul-
ticenter double-blind placebo controlled clinical trial, conducted on 6632 patients having a recent acute Myo-
cardial Infarction (MI) and a Left Ventricular Ejection Fraction (LVEF) lower than 40%, with heart failure or 
diabetes. The treated group, which received eplerenone, had significantly lower mortality and hospitalization 
rates. This study has been used previously by our group as a first approach of clustering for clinical trial data, 
using the latent class analysis (LCA)  method16.

The clustering techniques presented above were used to partition the patients of the EPHESUS study on 16 
clinical features recorded at baseline. The six continuous variables consisted of age (AGE), body mass index 
(BMI), left ventricular ejection fraction (LVEF), estimated glomerular filtration rate (GFR), potassium (K), 
and sodium (NA). The categorical variables consisted of 9 binary ones: gender (SEX), anemia, hypertension 
(HTN), diabetes mellitus (DIAB), chronic obstructive pulmonary disease (COPD), atrial fibrillation (AFIB), 
previous stroke, angina pectoris, and percutaneous coronary intervention or coronary-artery bypass grafting 
(PCI_CABG), and one polytomous one: smoking status (SMK).

For the purpose of this analysis, the number of clusters of subjects was set to 4 for all the algorithms tested.
These clusters were subsequently analyzed from three perspectives:

• Prognostic ability: Does the survival differ significantly between groups?
• Predictive ability: Does the treatment effect differ significantly between groups?
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• Characteristics of the cluster: which key baseline variables best discriminate the clusters?

In order to analyze these dimensions, Kaplan–Meier representations of the risk as well as Cox models with 
interaction were used. The C-index was used to quantify the ability of the model to predict the primary outcome. 
The mean treatment effects in each group and their respective 95% confidence interval are presented via for-
est plots. Finally, radar-charts and absolute standardized mean differences (ASMD) were used to quantify the 
discriminative influence of the variables used in the clustering.

All methods used with simulated clusters were also used with the EPHESUS data. For the LCA method, the 
continuous variables were discretized according to the method described in Ferreira et al16.

Results
Simulated datasets. Impact of population properties. Figure 1 shows the impact of population size (left 
panel) and the number of clusters (right panel) on the mean ARI calculated with each clustering method (sce-
narios 1 and 2 respectively in Table 2). The first five sets of boxplots (in green) are from the distance-based meth-
ods, while the four remaining sets of boxplots (in blue) are from the model-based techniques.

An increase in the number of subjects (Fig. 1, left panel) appeared to only positively impact LCA and Mix-
mod, two model-based methods. Meanwhile, Kamila, Kproto and LCM exhibited a constant good performance 
irrespective of population size, surpassing the ARIs achieved with other methods.

When increasing the number of clusters up to 10 (Fig. 1, right panel), the mean ARIs dropped for all meth-
ods. K-prototypes outperformed all other techniques when the number of clusters was maximum (10 in the 
present instance). LCM and Kamila displayed the shortest boxplot size, indicating the most reliable results over 
replications.

Figure 1.  Influence of population size and number of clusters on clustering performance in simulation studies. 
This figure title was generated using R (R: A Language and Environment for Statistical Computing, R Core 
Team, R Foundation for Statistical Computing, Vienna, Austria, 2020, https ://www.R-proje ct.org).

https://www.R-project.org
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For both population size and number of clusters scenarios, the model-based methods and K-prototypes 
attained higher ARIs than other distance-based methods. Specifically, the Gower distance yielded the worst 
results when combined with either HC or PAM methods.

Impact of the characteristics of the variables. Figure 2 shows the influence of the characteristics of the variables 
on clustering performance.

When increasing the number of continuous variables with a constant number of categorical variables [ratio 
numeric versus categorical 1:2, 1:1 and 2:1)], the ARI of K-prototypes increased, while the ARIs of Kamila, 
LCM and Mixmod were constantly high. In contrast, when the proportion of categorical variables increased 
symmetrically, the ARIs of all methods decreased except for Kamila, which maintained a low variance and a 
satisfactory mean ARI in all cases.

The impact of the respective relevance of continuous and categorical variables is illustrated in the middle 
panels in Fig. 2. As expected, the mean ARIs increased with the relevance of the variables. Indeed, clustering 
becomes an easier task when all variables are more relevant.

The impact of varying the proportion of relevant variables (2/10, 5/10 and 9/10), is illustrated in the bottom 
panels of Fig. 2. Kamila, LCM, Mixmod and K-prototypes exhibited rising ARIs with the reduction in noise.

We used statistical tests to compare ARIs within distance-based methods, within model-based methods and 
between models-based and distance-based methods. All of these numerous comparisons (96 tests) retrieved p 
values < 0.0001 (Supplementary Table 1).

Importantly, runtimes differed across methods as reported in Supplementary Table 2 for scenarios 1 and 2. 
Yet none of them exceeded 20 s.

In summary, distance-based methods (except the K-prototypes) displayed low ARIs in this simulation frame-
work. The lowest ARIs were observed for Gower’s distance either with PAM or hierarchical clustering. In contrast, 

Figure 2.  Influence of characteristics of continuous and categorical variables on clustering performance in 
simulation studies. Top panels: scenario 3 applied to continuous (left) and categorical (right) variables; middle 
panels: scenarios 4 (left) and 5 (right) ; bottom panels : scenarios 6 (left) and 7 (right)—as defined in Table 2. 
This figure title was generated using R (R: A Language and Environment for Statistical Computing, R Core 
Team, R Foundation for Statistical Computing, Vienna, Austria, 2020, https ://www.R-proje ct.org).

https://www.R-project.org
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Kamila and LCM displayed the highest and most stable ARI overall in the vast majority of the scenarios presented 
herein.

Application to real‑life data: the EPHESUS clinical trial. The results obtained with distance-based 
and model-based clustering methods on the EPHESUS dataset are respectively presented in Figs. 3 and 4.

The clusters are numbered from 1 to 4 according to the ascendant overall risk as estimated by the 
Kaplan–Meier curve. Thus, regardless of the method used, group 1 (green) had the lowest risk of hospitalization 
or death related to heart failure, while group 4 (red) had the highest risk.

Prognostic approach. When considering the survival rate of the subjects via the Kaplan–Meier curves, 
the K-prototypes method was the only distance-based method that distinguished four groups with noteworthy 
survival differences together with a C-index > 0.60. For model-based methods, LCA distinguished four well-
separated survival patterns, which confirmed the findings of Ferreira et al.16. Meanwhile, the LCM algorithm, 
which had the highest C-index of all methods, identified only 3 distinct survival patterns (the 2nd and 3rd clus-
ters virtually displaying identical survival over time).

Predictive approach. To quantify the treatment effect across clusters, Cox models were constructed with 
treatment, cluster and respective interaction as covariates. For distance-based approaches, only group n°4 
in HC + UET experienced less treatment benefit relative to group 1 (reference ; 0.99 [0.80;1.20] versus 0.75 
[0.64;0.88]) (Second row, Fig. 3).

In the model-based results, significant interactions were identified with LCM and Mixmod. The 3rd cluster 
identified in LCM had the highest risk reduction observed in our analysis (0.58 [0.45; 0.73]) (second row, Fig. 4), 
whereas the 3rd cluster identified with MixMod showed less treatment benefit than the reference (0.98 [0.8:1.21]).

Cluster characteristics approach. The radar charts and dot charts depicted in Figs. 3 and 4 highlight the 
between-cluster differences in the variables used in the algorithms.

For all methods, both gender and smoking status appeared in the top 5 ASMD (Absolute Standardized Mean 
Differences). The K-prototypes and the PAM + UET methods yielded the most distinct radar shapes among 
distance-based clustering methods. Interestingly, the partition provided by the HC + UET was highly driven by 
two well-known risk factors: smoking status and history of diabetes (ASMD of 16.4 and 8.2 respectively). The 
groups exhibiting the highest proportion of these factors were also those most at risk, given the overall survival 
probability. Considering the model-based method, only the Latent Class Model method had very distinct cluster 

Figure 3.  Results obtained with the distance-based clustering algorithms in the EPHESUS dataset. This 
figure title was generated using R (R: A Language and Environment for Statistical Computing, R Core Team, R 
Foundation for Statistical Computing, Vienna, Austria, 2020, https ://www.R-proje ct.org).

https://www.R-project.org
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profiles on the radar chart. Age, glomerular filtration rate (GFR) and smoking status were in the top 5 highest 
ASMD for all model-based methods.

Overall, on the EPHESUS trial data, the K-prototypes and the LCM methods identified clusters with notable 
differences in characteristics and prognosis although only the LCM method identified a subgroup with substantial 
treatment effect.

Discussion
The present findings highlight substantial differences in clustering performance (as measured by ARI on simu-
lated data) between the various methods tested; these methods cannot consequently be considered as inter-
changeable in the setting of heterogeneous data. Overall, our simulations demonstrate the dominance of K-pro-
totypes, Kamila and LCM over all other methods. In addition, the classical methods using dissimilarity matrices 
such as Partitioning Around Medoids and Hierarchical Clustering generally performed poorly in comparison 
with model-based methods. Furthermore, when applying the clustering methods to a real-life clinical dataset, 
LCM yielded the most promising results, in that it (1) featured the most striking differences in clinical profiles 
across clusters, (2) exhibited the best prognostic performance of all clustering methods (highest C-index) and 
(3) identified a subgroup of patients with substantial treatment effect (HR < 0.6).

Large differences in performance of clustering methods in the benchmark study. Complex 
situations in cluster analysis have already been emphasized (e.g. in the scikit-learn documentation, https ://sciki 
t-learn .org/stabl e/modul es/clust ering .html). Yet, in our analysis, as shown in Supplementary Fig. 2, the clusters 
are relatively well defined, and have “classical” shapes as illustrated by the t-SNE analysis. This suggests that the 

Figure 4.  Results obtained with the model-based clustering algorithms in the EPHESUS dataset. Radar 
charts were created from the means (per, by) group on scaled values (dichotomous and ordinal variables were 
coded numerically for convenience). The dot charts show the average Absolute Standardized Mean Difference 
(ASMD) over all clusters. This figure title was generated using R (R: A Language and Environment for Statistical 
Computing, R Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2020, https ://www.R-proje 
ct.org).

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://www.R-project.org
https://www.R-project.org
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complexity/difficulty of the clustering is emerging from the heterogeneity of the data rather than the “shape” of 
the clusters.

The satisfactory performance of LCM and Kamila was partly expected since the simulated data matched their 
assumptions (better grasp of data heterogeneity). However, Kamila appeared to better tackle the high imbalance 
between continuous and categorical data than any other method.

Although Mixmod featured a good mean ARI, its great variability (as assessed by the width of the box plots) 
calls into question the reliability of this algorithm in a given experiment. This level of performance variability 
may be explained by the choice of the mixture model, which was the least constrained of the 40 available models. 
Indeed, it allowed different cluster sizes, volumes, shapes, as well as different parameter sets according to clus-
ter, variable and levels. Given all the parameters to be estimated, the number of runs (only one by default) and 
iterations (200 by default) may not have been sufficient to reach the global minima. Nevertheless, increasing the 
number of runs and iterations would have led to an impractical computation time, in this context of simulations.

The K-prototypes technique is an interesting case, being the only efficient distance-based method in this 
benchmark. Although conceptually similar to PAM, its weighted combination of distances may be the key to its 
success. However, its performance may be greatly diminished on unfavorable datasets with continuous variables 
of low relevance, (as illustrated in Fig. 2).

The under-performance of LCA may be due to the choice of the cut-points to discretize the continuous 
 variables21. Indeed, the cut-point was determined automatically such that three balanced classes arose from each 
continuous variable, which is not likely to reflect the underlying partition. Nevertheless, this approach represents 
the routine use of LCA, which is a popular clustering approach.

Choosing the most appropriate clustering methods. With the present results in mind, the following 
points could help researchers in choosing adequate clustering methods in the setting of heterogeneous data.

• If the dataset is assumed to stem from a normal-multinomial distribution, model-based methods should 
logically be preferred. If supplementary assumptions are made relative to cluster size, orientation, volume and 
levels, a sound option could be to use the corresponding model offered by the Mixmod method. However, 
using LCM (VarSelLCM package) will probably be sufficient, including additional extra features such as a 
selection of covariates, handling of missing data, and selection of the number of clusters.

• When the normal-multinomial assumption does not hold, the use of Kamila seemingly appears as a safer 
choice as opposed to LCM or Mixmod. The K-prototypes method could also be a good alternative, as shown 
here for datasets with scaled continuous variables (or when continuous variables do not need scaling because 
they have the same magnitude), and for datasets in which each level of categorical variables is equally repre-
sented.

• From a time-efficiency standpoint, the Kamila method offers the best performance when dealing with large 
datasets (thousands of observations, dozens of variables). Indeed, the method has been specifically imple-
mented to work in a Big-Data setting by taking advantage of the scalability of its algorithm. For other model-
based methods such as LCM and Mixmod, the computation time depends on the complexity of the selected 
model, the number of iterations and the additional features.

Perspectives. The present analysis aimed to provide some guidance in the choice of a clustering method for 
heterogeneous data. Given the growing access to multiple data sources, it has become crucial to be able to man-
age all types of variables through recent advances in statistics and machine-learning. While a few clustering tools 
for mixed data have been investigated in the present analysis, many more have been developed for this purpose. 
Nonetheless, this abundance of techniques may confuse end users, since they generally ignore the performance 
of these techniques relative to each other. As noted by Ahmad and  Khan1, this mainly stems from the fact that the 
methods are often evaluated on a restricted number of datasets which cannot be extrapolated to every usage. For 
example, the popular “Heart-Cleveland” dataset has an arbitrary target variable, while the “Australian Credit” 
dataset has only a binary target. The generated simulated datasets herein were hence based on a combination of 
the Qiu and Joe’s17 method and a simple home-made stratified sampling.

The benchmark itself, although conducted over a limited selection of methods, revealed a huge performance 
gap observed between “popular” algorithms (such as Hierarchical Clustering and PAM) and more sophisticated 
methods (such as Kamila or LCM) in all tested scenarios. However, this does not imply that the former will 
never be useful, or that the latter will always perform better. For instance, in a setting where groups are nested 
circles, Kamila will fail to identify the clusters, whereas a hierarchical algorithm with a single linkage aggregation 
method will easily complete the task.

Even if a clustering technique yields excellent results, its potential is nonetheless ineffective if such technique 
cannot be implemented in current popular software packages. Indeed, efficiently translating an algorithm into 
a program is an arduous task for most users of such tools. Of even greater importance is that the quality of 
the implementation directly determines the computation time. Despite the increased performance of current 
computers, the clustering time can rapidly become overwhelming, especially when multiple runs are required 
to determine the number of clusters, or in selecting variables such as in the LCM algorithm. This aspect should 
not be underestimated as the datasets can quickly reach huge proportions in a big-data context. As already stated 
above, the Kamila algorithm is particularly well suited for a big-data setting.

According to  Hennig22, multiple relevant partitions can be found in a population, just as a deck of cards can 
be clustered according to colors, shapes, values or faces. Consequently, cluster analysis can be considered as suc-
cessful only if the partition makes sense for the practitioner. Therefore, the involvement of field specialists in the 
clustering process is essential to determine the question of interest as well as a suitable knowledge of the relevant 
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variables or the number of clusters. Despite the immense progress enabled by artificial intelligence in recent years, 
human experience and intuition remain the best judge in cluster analysis. That being said, it is very likely that 
useful clinical information will arise only from clustering algorithms displaying good intrinsic performance. In 
keeping with the latter, the results of the present benchmark analysis could strengthen the collaboration of data-
analysts, clinical researchers and physicians by using the most appropriate machine-learning tools. Importantly, 
our results provide guidance on how to use all available (heterogeneous) clinical, biological and imaging data 
for clustering analysis in clinical research cohorts. UET as a stochastic–based method for computing pairwise 
distances while avoiding the burden of data preparation is particularly relevant both for large heterogeneous 
datasets (with thousands of variables) and  structures6. Conversely, its underperformance could be related to the 
simulated datasets using normal distributions for continuous variables, which are a better fit with model-based 
methods. Nonetheless, a number of continuous variables often follow a normal distribution in clinical research.

Limitations. Although the genRandomClust function allows unbalanced cluster sizes and outliers, these fea-
tures were not used herein due to lack of time. The impact of these characteristics would be worth investigating 
in subsequent studies. In addition, scenarios with non-normal continuous variables may yield different results 
and should be tested in subsequent studies. However, our simulation study already covers a number of scenarios 
which could already be useful in a range of clinical studies.

An important limitation of our work is the use of the Hamming distance for the categorical data in the 
distance-based algorithm implemented in R software (as shown in Table 1). The use of other approaches could 
have resulted in largely different clustering performance. More advanced approaches, such as the novel cluster-
ing algorithm developed by Hautamaki et al.23, based on local search for its objective function using entropy, 
could provide clustering quality comparable to the ones obtained with model-based approaches in our analysis. 
However, to our knowledge, such algorithms are not yet incorporated in “ready-to-use” dedicated software pack-
ages, easily usable by non-expert teams.

Conclusion
The results from the present simulation study focused on ”ready-to-use” tools from R and suggest that model-
based tools (p.e. the Kamila and LCM packages implemented in R) usually perform better than distance-based 
tools (except K-prototypes packages implemented in R) in the setting of heterogeneous data such as clinical 
research datasets including both numeric and categorical variables. The present results suggest that model-based 
tools that are currently readily available to biology and clinical researchers can be useful practical solutions for 
performing clustering in situations involving heterogeneous data. Future work should continue this effort for 
benchmarking "ready-to-use" clustering tools on mixed data, possibly using our simulated datasets (available on 
http://mbi.loria .fr/clust ering -of-mixed -data/). Eventually, benchmarking platforms of mixed data should arise, 
which would make it possible to test new tools in the future and compare them with previously benchmarked 
tools. We believe this effort is necessary as only the use of the most relevant approaches could improve our ability 
to identify clinically relevant subgroups in numerous clinical settings, by feeding efficient clustering algorithms 
with both clinical and biological data.

Received: 28 September 2020; Accepted: 2 February 2021

References
 1. Ahmad, A. & Khan, S. S. Survey of state-of-the-art mixed data clustering algorithms. IEEE Access 7, 31883–31902 (2019).
 2. Foss, A. H. & Markatou, M. K. Clustering mixed-type data in R and hadoop. J. Stat. Softw. 83(13), 44 (2018).
 3. Foss, A., Markatou, M., & Ray, A. H. A semiparametric method for clustering mixed data. Mach. Learn. 105(3), 419–458 (2016).
 4. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. 

N Engl J Med 348(14), 1309–1321 (2003).
 5. Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27(4), 857–871 (1971).
 6. Dalleau, K., Couceiro, M., & Smail-Tabbone, M. Unsupervised extra trees: a stochastic approach to compute similarities in het-

erogeneous data. Int. J. Data Sci. Anal. 9(4), 447–459 (2020).
 7. Kaufman, L., & Rousseeuw, P. J. Partitioning around medoids (program PAM). Finding Groups Data 1990: 68–125 (1990).
 8. Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963).
 9. Huang, Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Disc. 2(3), 

283–304 (1998).
 10. Hamming, R. W. Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950).
 11. Everitt, B. S. A finite mixture model for the clustering of mixed-mode data. Stat. Probab. Lett. 6(5), 305–309 (1988).
 12. Lebret, R., Iovleff, S., Langrognet, F., Biernacki, C., Celeux, G., & Govaert, G. Rmixmod: The R package of the model-based unsu-

pervised, supervised, and semi-supervised classification mixmod library. J. Stat. Softw. 1, 6 (2015).
 13. Marbac, M. & Sedki, M. VarSelLCM: an R/C++ package for variable selection in model-based clustering of mixed-data with miss-

ing values. Bioinformatics 35(7), 1255–1257 (2018).
 14. Bandeen-roche, K., Miglioretti, D. L., Zeger, S. L. & Rathouz, P. J. Latent variable regression for multiple discrete outcomes. J. Am. 

Stat. Assoc. 92(440), 1375–1386 (1997).
 15. Linzer, D. A., & Lewis, J. B. poLCA: an R package for polytomous variable latent class analysis. J. Stat. Softw. 1(6), 2011 (2015).
 16. Ferreira, J. P. et al. Data-driven approach to identify subgroups of heart failure with reduced ejection fraction patients with different 

prognoses and aldosterone antagonist response patterns. Circ Heart Fail 11(7), e004926 (2018).
 17. Qiu, W. & Joe, H. Generation of random clusters with specified degree of separation. J. Classif. 23(2), 315–334 (2006).
 18. Milligan, G. W. An algorithm for generating artificial test clusters. Psychometrika 50(1), 123–127 (1985).
 19. Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
 20. Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2(1), 193–218 (1985).

http://mbi.loria.fr/clustering-of-mixed-data/


14

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4202  | https://doi.org/10.1038/s41598-021-83340-8

www.nature.com/scientificreports/

 21. Kerber R. ChiMerge: discretization of numeric attributes. In Proceedings of the Tenth National Conference on Artificial Intelligence 
123–8 (San Jose, California, AAAI Press, 1992).

 22. Hennig, C. What are the true clusters?. Pattern Recogn. Lett. 64, 53–62 (2015).
 23. Hautamaki, V., Pollanen, A., Kinnunen, T., Lee, K. A., Li, H., & Franti, P. A comparison of categorical attribute data clustering 

methods. In Fränti, P., Brown, G., Loog, M., Escolano, F., & Pelillo, M. (eds) Structural, Syntactic, and Statistical Pattern Recognition 
S+SSPR 2014 Lecture Notes in Computer Science 8621 (2014).

Acknowledgements
This work and the publication of this article were funded by the Agence Nationale de la Recherche (grant num-
ber ANR-15-RHUS-0004: RHU FIGHT-HF) and by the CPER IT2MP (Contrat Plan État Région, Innovations 
Technologiques, Modélisation & Médecine Personnalisée) and FEDER (Fonds Européen de Développement 
Régional). Kevin Dalleau was recipient of a RHU-Region Lorraine doctoral fellowship.

Author contributions
N.G. designed the article and approved the final version to be published. G.P. drafted the article. N.G. and G.P. 
analyzed and interpreted the data. All other authors reviewed and revised critically the manuscript for important 
content.

Competing interests 
Pr. Rossignol reports grants and personal fees from AstraZeneca, Bayer, CVRx, Fresenius, and Novartis, personal 
fees from Grunenthal, Servier, Stealth Peptides, Vifor Fresenius Medical Care Renal Pharma, Idorsia, NovoNor-
disk, Ablative Solutions, G3P, Corvidia, Relypsa. Pr Rossignol and Pr Zannad are the cofounder of CardioRenal. 
Pr Zannad has received fees for serving on the board of Boston Scientific; consulting fees from Novartis, Takeda, 
AstraZeneca, Boehringer-Ingelheim, GE Healthcare, Relypsa, Servier, Boston Scientific, Bayer, Johnson & John-
son, and Resmed; and speakers’ fees from Pfizer and AstraZeneca. Pr Girerd reports personal fees from Novartis, 
Astra Zeneca and Boehringer. All other authors declare no competing interest related to this paper.

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.
org/10.1038/s4159 8-021-83340 -8.

Correspondence and requests for materials should be addressed to N.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-83340-8
https://doi.org/10.1038/s41598-021-83340-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark
	Methods
	Clustering algorithms. 
	Design questions. 
	Distance-based methods. 
	Gower-based dissimilarity. 
	Unsupervised extra trees dissimilarity (UET). 
	Partitioning around medoids (PAM). 
	Ascendant hierarchical clustering (HC). 
	K-prototypes (Kproto). 

	Model-based methods. 
	Kamila. 
	Clustering by mixture modeling (Mixmod). 
	Latent class model (LCM). 
	Latent class analysis (LCA). 


	Simulation framework. 
	General process. 
	Investigated scenarios. 
	Simulated datasets. 
	Parameters of the clustering methods. 
	Assessing the performance. 

	Application on a real-life dataset: the EPHESUS study. 

	Results
	Simulated datasets. 
	Impact of population properties. 
	Impact of the characteristics of the variables. 

	Application to real-life data: the EPHESUS clinical trial. 
	Prognostic approach. 
	Predictive approach. 
	Cluster characteristics approach. 

	Discussion
	Large differences in performance of clustering methods in the benchmark study. 
	Choosing the most appropriate clustering methods. 
	Perspectives. 
	Limitations. 

	Conclusion
	References
	Acknowledgements


