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Abstract: Recently, Delta-E effect magnetic field sensors based on exchange-biased magnetic multi-
layers have shown the potential of detecting low-frequency and small-amplitude magnetic fields.
Their design is compatible with microelectromechanical system technology, potentially small, and
therefore, suitable for arrays with a large number N of sensor elements. In this study, we explore
the prospects and limitations for improving the detection limit by averaging the output of N sensor
elements operated in parallel with a single oscillator and a single amplifier to avoid additional
electronics and keep the setup compact. Measurements are performed on a two-element array of
exchange-biased sensor elements to validate a signal and noise model. With the model, we estimate
requirements and tolerances for sensor elements using larger N. It is found that the intrinsic noise
of the sensor elements can be considered uncorrelated, and the signal amplitude is improved if the
resonance frequencies differ by less than approximately half the bandwidth of the resonators. Under
these conditions, the averaging results in a maximum improvement in the detection limit by a factor
of
√

N. A maximum N ≈ 200 exists, which depends on the read-out electronics and the sensor
intrinsic noise. Overall, the results indicate that significant improvement in the limit of detection is
possible, and a model is presented for optimizing the design of delta-E effect sensor arrays in the
future.

Keywords: magnetometer; delta-E effect; sensor array; magnetoelectric; cantilever; exchange bias

1. Introduction

The detection of small amplitude magnetic fields is of interest for various fields of
application, e.g., in magnetic recording, geomagnetism, and aerospace engineering [1].
Specific engineering and development challenges arise for biomedical applications, such as
cell and particle mapping [2,3], magnetomyography [4,5], or magnetocardiography [6–9].
Such applications are often connected to inverse solution problems that benefit from large
arrays with many sensor elements and the possibility of quick spatial field mapping [10,11].
Magnetic flux densities in this field of application are of the order of tens of picotesla and
less [12] with frequency components often well below 1 kHz [5,13]. Therefore, research
on sensor systems for biomedical applications is devoted to improving the minimum
detectable field at low frequencies while minimizing critical parameters such as size, power
consumption, and cost [13].

The gold standard for detecting such small magnetic fields is superconducting quan-
tum interference device (SQUID) magnetometry [14,15]. These sensors must be cooled and
magnetically well-shielded during operation, which makes them expensive and extensive
to operate. Such setups are limited in the number of sensor elements and their minimum
distance to the magnetic source. Atomic magnetometers [16–18] have been investigated as
an affordable alternative to SQUIDs and have achieved limits of detection (LOD) in the
fT/
√

Hz regime at low signal frequencies between 1–200 Hz [16]. Despite this progress,
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atomic magnetometers often require magnetic shielding, and their limited CMOS integra-
bility and downsizing reduce the number and density of sensor elements that can be used
in array applications. Miniaturization and MEMS fabrication of atomic magnetometers is
currently an active field of research [19,20]. Many magnetometers are being investigated
to overcome such limitations [4,15], and an overview and comparison of magnetic field
sensors for biomedical applications can be found [13].

In this work, we study magnetic field sensors based on magnetoelectric composite
resonators. Previously, sensor systems utilizing the direct magnetoelectric effect were
discussed for magnetocardiography [21] and magnetomyography [5], and limits of detec-
tion in the low and sub-pT/

√
Hz regime have been reached with a linear response over

several orders of magnitude [22]. Magnetoelectric sensors can be produced on a large
scale with standard micro-electro-mechanical system (MEMS) technology and dimensions
down to the micrometer range [23]. They are potentially cost-efficient, feature low power
consumption, and are integrable with CMOS electronics. These aspects make magnetoelec-
tric sensors promising candidates for sensor arrays. On the other hand, detecting small
magnetic flux densities is limited to a narrow bandwidth of a few hertz around the reso-
nance frequency, which is usually in the kilohertz regime for millimeter-sized resonators
or the megahertz regime for micrometer-sized devices. Such high and narrow frequency
regimes are not suitable for many applications [21]. Shifting them down increases the
contributions of 1/f noise and requires large resonators with low resonance frequencies,
which are susceptible to mechanical vibrations and reduce the spatial resolution.

Delta-E effect magnetometers extend the measurement range of magnetoelectric sen-
sors and shift it to low frequencies while avoiding 1/f noise and keeping the advantages of
magnetoelectric composites and the MEMS fabrication technology. In contrast to sensors
based on the direct magnetoelectric effect, delta-E effect sensors benefit from high reso-
nance frequencies because they operate on a modulation scheme. The higher resonance
frequencies permit miniaturization and render the devices robust against mechanical dis-
turbances. The modulation occurs via the magnetoelastic delta-E effect [24–26], i.e., the
magnetization induced change of the stiffness of the material, which leads to a detuning of
the resonance frequency upon the application of a magnetic field. This detuning can be
measured as a change of the electrical admittance of the sensor and causes a modulation of
the current through the sensor [27]. Although precursor steps towards the delta-E effect
sensor concept were already made in the 1990s [28], it took another two decades until
fully integrable delta-E effect sensors [29] were developed based on microelectromechan-
ical magnetoelectric composite cantilevers [26,30–34], plate resonators [35,36], or other
designs [37], including macroscopic laminate structures [38,39]. MEMS cantilever sensors
achieved LODs < 100 pT/

√
Hz in the frequency range from approximately 10–100 Hz [32].

This is currently of a similar order of magnitude as the LODs of some magnetoresistive
sensors [40,41]. As an application example of delta-E effect sensors, magnetic particle
mapping was recently demonstrated for cell localization [42]. In this setup, the sensor
was operated under a magnetic bias field provided by a permanent magnet. Most studies
rely on an external magnetic bias field to operate the sensor at an optimum signal-to-noise
ratio. Instead of a permanent magnet, the magnetic bias field is often created with external
coils. For delta-E effect sensor arrays with many sensor elements, coils and permanent
magnets can be inconvenient because their stray fields shift the operation points of adjacent
sensor elements, and the additional electrical components increase the volume of the sensor
system.

Recently, we demonstrated a first delta-E effect magnetometer based on exchange
biased magnetic multilayers that circumvents such complications and still achieves a mini-
mum detection limit of 350pT/

√
Hz at 25 Hz [34]. The exchange bias provides an internal

bias field and thereby paves the way to flexible and compact delta-E effect sensor arrays
with many sensor elements. Only recently were sensor arrays based on magnetoelectric
sensor elements reported [43–47], and were limited to direct magnetoelectric detection and
were mostly based on macroscopic resonators. A CMOS integrated array of magnetoelastic
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sensor elements was presented for vector magnetometry [48], but the sensor elements were
only characterized individually and without a signal and noise analysis. No attempts of
parallel operating delta-E effect sensor elements in array configurations or thorough signal
and noise analyses of such have yet been presented.

In this study, we explore the operation of delta-E effect sensor elements in arrays to
improve the signal, noise, and limit of detection. Instead of measuring the magnetic field at
different locations, spatial resolution can be sacrificed by averaging the outputs of several
sensors operating simultaneously. However, the large number of hardware channels
required to achieve the desired improvement in the LOD increases the size of the setup
and limits the number and density of sensors. As a solution, sensor elements are connected
in parallel and operated and read out simultaneously with one set of electronics. This
method of parallel operation is accompanied by other complications, and they are analyzed
here to identify the potential of such a setup. After presenting the sensor system, which is
based on exchange-biased delta-E effect sensors, a signal-and-noise model is developed
and validated with measurements. The model is used to analyze the sensor characteristics
as functions of the number of sensor elements and variations in the resonance frequency
that can occur during fabrication. Implications for the design of delta-E effect sensor arrays
are derived and requirements on the reproducibility are identified and discussed.

2. Sensor System

In this study, two MEMS fabricated sensor elements are used, based on 50 µm thick
poly-Si cantilevers with a length of 3 mm and a width of 1 mm. They are covered with a
4 µm thick exchange-biased magnetic multilayer [49] and a 2 µm thick piezoelectric AlN
layer [50] on the top. The AlN layer is contacted via two Ta-Pt electrodes on its top and
rear-side for excitation and read-out. The magnetic multilayer is based on alternating anti-
ferromagnetic Mn70Ir30 (8 nm) and soft ferromagnetic Fe70.2Co7.8Si12B10 (200 nm) layers.
In this configuration, the antiferromagnetic layer provides an exchange bias that serves as
an internal bias field for the ferromagnetic layer to ensure a nonzero sensitivity without
an externally applied magnetic field. Hence, all measurements shown in this study are
performed without a magnetic bias field. Details about the layer structure and fabrication
process and a comprehensive analysis of sensors with a similar geometry can be found
elsewhere [34]. Two sensor elements are mounted on a printed circuit board, respectively,
as shown in Figure 1. They are connected in parallel to each other and connected to the
input of a low-noise JFET-based charge amplifier [51]. A high-resolution A/D and D/A
converter (Fireface UFX+, RME, Chemnitz, Germany) is used for excitation and read-out
(24 bit, 32 kHz). For the measurements, the sensors are placed in a magnetically and
electrically shielded setup [52], based on a mu-metal shielding cylinder (ZG1, Aaronia AG,
Strickscheid, Germany), and are located in a copper fleece coated box that is mechanically
decoupled to reduce the impact of mechanical vibrations. All magnetic flux densities are
applied along the long axis of the cantilever.
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Figure 1. (a) Example sensor (without encapsulation) used in this study; it comprises a MEMS-fabricated cantilever
resonator as a sensing element mounted on a printed circuit board (PCB). The JFET charge amplifier on the PCB was used in
a previous study and is bypassed here and replaced by an external one. (b) Brass encapsulation for mechanical protection
and electrical shielding during the measurements. Further details are reported in Ref. [34].
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3. Array Modeling

In an alternating magnetic field, the delta-E effect causes an oscillation of the mechan-
ical stiffness of the cantilever. The response of the cantilever to this stiffness change is
damped with increasing magnetic field frequencies because of its mass inertia. Previously,
this behavior was modeled with a first-order Bessel filter [27,53], applied to the demod-
ulated simulated output signal of the charge amplifier. Later, a dynamic sensitivity was
introduced [54] to consider the low-pass filter characteristics of the sensor as a function
of the magnetic field frequency. The dynamic sensitivity was derived from the frequency
response of a simple damped harmonic oscillator; however, it is only fully valid if the
sensor is excited at its mechanical resonance frequency. For many previously analyzed
sensors [33,53,55], this approximation was well justified, as their resonance frequency was
close to their optimum excitation frequency, i.e., the excitation frequency with the largest
signal-to-noise ratio. This is not a general property of such sensors but depends on their
geometry, material, and electrical capacitance. Significant quantitative and qualitative
deviations between measurements and simulations can occur if the excitation is not in
mechanical resonance [56] (p. 139). In an array, not all sensor elements can be excited in
mechanical resonance because of variations in their resonance frequencies that occur during
fabrication. In this section, a signal and noise model is developed based on an altered
approach, and it permits describing the output signal of an array of N sensor elements
excited at an arbitrary excitation frequency.

3.1. Signal Model

During operation of the sensor array, a sinusoidal voltage uex(t) with amplitude
ûex and frequency fex is applied. It excites the magnetoelectric resonators of each sensor
element at, or close to, its respective resonance frequency fr,n. In linear approximation, the
voltage at the charge amplifier’s output can be described by:

uco(t) ≈ −Zf( fex)·is(t). (1)

In this equation, the time is denoted by t and the feedback impedance of the charge
amplifier by Zf. The current is through the array of parallel-connected sensor elements
can be expressed as the sum of all individual currents is,n that flow through the respective
sensor element n. To describe is,n, we use a modified Butterworth-van Dyke (mBvD)
equivalent circuit representation, illustrated in detail in Appendix A. It consists of a series
resonant circuit with a resistance Rr,n, inductance Lr,n, and capacitance Cr,n that consider
the resonant behavior of the cantilever. The electrodes of each sensor element form a
capacitor with the piezoelectric layer. It is described by a capacitance Cp,n and resistance
Rp,n, both in parallel to the series LCR-circuit. Further, the current is,n can be separated
into a current ir,n, which passes through the resonant LCR circuit, and a current ip,n, which
passes through the parallel pathway. A sketch of the circuit model is provided in Figure A1
(Appendix A). For N parallel-connected sensor elements, is can be described by:

is(t) =
N

∑
n=1

is,n =
N

∑
n=1

(
ip,n + ir,n

)
. (2)

The current ip,n is described as a function of the magnitude
∣∣Yp,n

∣∣ and the phase angle
φp,nangle

{
Yp,n

}
of the electrical admittance Yp,n of the parallel pathway, and results in:

ip,n = ûex·
∣∣Yp,n( fex)

∣∣· cos
(
2π fext + φp,n( fex)

)
. (3)

This current is independent of the magnetic field, and the corresponding electrical
admittance Yp,n( f ) = R−1

p,n + 2π f Cp,n as a function of frequency f is entirely determined
by the capacitance Cp,n of the respective piezoelectric layer-electrode configuration and its
resistance Rp,n. Similarly, the current ir,n can be described as a function of the magnitude
|Yr,n| and the phase angle φr,nangle{Yr,n} of the magnetic-field and frequency-dependent
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admittance Yr,n of the resonant circuit of a sensor element n. The current ir,n is filtered in the
time domain to consider the frequency response of the resonator. We use a second-order
digital peaking (resonator) filter with a rational transfer functionHr that is determined by
the resonance frequency fr and the quality factor Q (Appendix B). It is given by:

ir,n = Hr{ûex·|Yr,n( fex, B, t)|· cos(2π fext + φr,n( fex, B, t))}. (4)

In contrast to ip,n, the resonant current ir,n depends on the magnetic flux density
B = B0 + Bac(t), which can be expressed as a static magnetic flux density B0, superposed
by a small, time t dependent contribution Bac(t). For small amplitudes B̂ac of Bac(t), the
admittance Yr,n( f , B) around B0 and at f = fex can be approximated by a first-order Taylor
series:

|Yr,n( fex, B, t)| ≈ |Yr,n( fr, B0)|+
d|Yr,n( f , B0)|

d f

∣∣∣∣
f= fex

d fr,n(B)
dB

∣∣∣∣
B=B0

·Bac(t), (5)

and

φr,n( fex, B, t) ≈ φr,n( fr, B0) +
dφr,n( f , B0)

d f

∣∣∣∣
f= fex

d fr,n

dB

∣∣∣∣
B=B0

·Bac(t). (6)

Because the damping of the carrier relative to its maximum value at fex = fr is already
considered byHr, the zero-order element in the series expansion is taken at f = fr instead
of f = fex. If not stated differently, we always use B0 = 0 because the exchange bias sensors
used here do not require an externally applied magnetic bias field.

3.2. Definition of Sensitivities

The derivatives in the previous two equations describe the influence of the magnetic
field on the electrical admittance and can be referred to as sensitivities. A magnetic
sensitivity can be defined as:

Smag,n =
d fr,n

dB

∣∣∣∣
B=B0

, (7)

and two electrical sensitivities Sel,am,n and Sel,pm,n as:

Sel,am,n =
d|Yr,n( f , B0)|

d f

∣∣∣∣
f= fex

, Sel,pm,n =
dφr,n( f , B0)

d f

∣∣∣∣
f= fex

. (8)

These definitions of electrical sensitivities differ from previous work [26,53,57], which
is further discussed at the end of this section. A normalization, as in Refs. [26,57], is
still required to compare the electric and magnetic sensitivity of sensors with different
resonance frequencies. After amplification by the charge amplifier, the output signal uco(t)
is fed into a quadrature amplitude demodulator to obtain the demodulated signal u(t).
The amplitude spectrum Û( f ) of u(t) can then be used to define the voltage sensitivity
SV( f ) as a normalized measure for the sensor’s signal response:

SV( fac) =
Û( fac)

B̂ac
with [SV] =

V
T

. (9)

The voltage sensitivity SV( fac) can be estimated by applying a sinusoidal magnetic
test signal Bac = B̂ac sin(2π fact), with well-defined amplitude B̂ac and frequency fac, to
obtain U( fac) from the measurement. With SV( fac), a measure for the smallest detectable
magnetic field can be defined. This measure is frequently referred to as limit of detection
(LOD) [22,27], equivalent magnetic noise [58,59], or detectivity [40]:

LOD( fac) =
E( fac)

SV( fac)
with [LOD] =

T√
Hz

, (10)
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where E( fac) is the voltage noise density of u(t) at fac, after demodulation and measured
without any magnetic field applied. The response of Delta-E effect magnetometers to
magnetic fields depends on the mutual orientation of the magnetic field and sensor element.
Consequently, the sensitivities and LOD (Equations (7)–(10)) are generally functions of the
orientation of the magnetic field. Details about the signal-and-noise characterization of
∆E-effect magnetometers can be found elsewhere [27,53,54].

The definitions of the electrical sensitivities (Equation (8)) differ from previous for-
mulations [26,53,57] limited to the special case of one sensor element excited in resonance
( fex = fr). The electrical sensitivities defined within those models use the total sensor
admittance YsYr + Yp instead of Yr to form the derivatives with respect to the frequency.
Here, the parallel admittance Yp is considered in the total sensor current is. This definition
arises naturally from separating the sensor current into the resonator current and the
current though the capacitor, and it is used to consider the response of the resonator to the
alternating magnetic field.

3.3. Noise Model

In the following, we modify and extend the model presented in Ref. [54] to analyze
the noise of the array sensor system and how it is influenced by adding parallel sensor
elements. Additional sensor elements are considered and minor noise sources, e.g., of
the cables, are omitted. The equivalent circuit noise model is shown in Figure 2 and a
summary of the parameters is given in Table A1 in Appendix C. The noise of the excitation
source is described by a thermal-electrical noise source Eex of the D/A converter’s output
resistance Rex and the D/A converter’s quantization noise EVex. Similarly, EAD describes
the noise that occurs during the analog-digital conversion. The noise source of the JFET
charge amplifier is calculated from the model in [51] and is summarized in EJCA. Each
sensor element of the array is described by the mBvD equivalent circuit (Figure 2b). For the
sensor intrinsic noise of the nth sensor element, we consider the thermal-electrical noise
source Ep,n of the piezoelectric layer and the thermal-mechanical noise source Er,n of the
resonator. The value of the thermal-electrical noise sources can be calculated from:

Ex =
√

4kBTRx with x ∈ {ex, p, r}, (11)

with Boltzmann’s constant kB = 1.38× 10−23J/K and the temperature T = 290 K. The noise
source EVex and EAD were obtained from measurements. Here, we consider small excitation
amplitudes ûex < 100 mV only and obtain EVex = 26.8 nV/

√
Hz and EAD = 6.9nV/

√
Hz

in this case. Each noise source is transformed to the output of the charge amplifier to
analyze its contribution to the total noise density at the charge amplifier’s output. To
simplify the final expressions, the following impedances are defined. The impedance Zs,n
of the nth sensor is obtained from:

Zs,n = Zr,n‖Zp,n , (12)

Zr,n = Rr,n + jωLr,n +
1

jωCr,n
, (13)

Zp,n =
1

jωCp,n
‖Rp,n , (14)

where || denotes the parallel operator (a||b = (a−1 + b−1)−1).
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The total impedance of all N sensor elements connected in parallel is:

Zs =

[
N

∑
n=1

Z−1
s,n

]−1

. (15)

The impedance ZC2 of the cable with capacitance CC2 and resistance RC2 between the
sensor elements and the charge amplifier is given by:

ZC2 =
1

jωCC2
‖RC2, (16)

and the feedback impedance of the charge amplifier by:

Zf =
1

jωCf
‖Rf, (17)

with the capacitance Cf and the resistance Rf. The total voltage noise density at the output
of the charge amplifier is obtained from the superposition of the individual output referred
noise sources,

E2
co = E2

co,JCA + E2
co,Vex + E2

co,AD + E2
co,s , (18)

Eco,JCA of the charge amplifier, Eco,Vex of the D/A converter, Eco,AD of the A/D con-
verter, and the contribution Eco,s of the parallel sensor elements. These noise contributions
are given by:

E2
co,JCA = E2

JCA

∣∣∣∣1 + Zf
Zs + ZC2

∣∣∣∣2 , (19)

E2
co,Vex = E2

Vex

∣∣∣∣Zf
Zs

∣∣∣∣2 , (20)

E2
co,AD = E2

AD , (21)

E2
co,s =

N

∑
n=1

(
E2

r,n

∣∣∣∣ Zf
Zr,n

∣∣∣∣+ E2
p,n

∣∣∣∣ Zf
Rp,n

∣∣∣∣) E2
co,r + E2

co,p. (22)

4. Characterization and Validation of the Signal-and-Noise Model

In this section, the sensor elements and the array are characterized regarding their
impedance, signal, and noise as well as their frequency response. The measurements
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are compared with simulations to demonstrate the validity of the model. Details on the
implementation of the model are given in Appendix D.

4.1. Electrical Sensitivity and Admittance Characterization

To eventually compare simulations with measurements, the admittance of the sensor
elements is characterized. Measurements of the admittance magnitude |Ys| as functions
of frequency f are shown in Figure 3a (top) for the two sensor elements S1, S2, and both
connected in parallel (S1||S2). All measurements were made at B0 = 0 and an excitation
voltage amplitude of ûex = 10 mV. An mBvD equivalent circuit as described earlier
and illustrated in Appendix A is fitted to the magnitude data. The parameters obtained
from the fit are given in Table A1 in Appendix C. From the mBvD parameters, we obtain
resonance frequencies of fr,1 = 7674.9 Hz and fr,2 = 7676.5 Hz and quality factors of
Q1 = 642 and Q2 = 558 (equations in Appendix A). This results in resonator bandwidths
fBW,n ≈ fr,n/Qn of fBW,1 ≈ 12 Hz and fBW,2 ≈ 14 Hz. Hence, the difference in resonance
frequencies ∆ fr = | fr,2 − fr,1| = 1.6 Hz is significantly smaller than the bandwidth of the
sensor elements.
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Figure 3. (a) Top: magnitudes |Ys| of the admittance of the sensor elements S1, S2 and both connected
in parallel (S1||S2) measured at an applied magnetic flux density of B = 0 and an excitation voltage
amplitude of ûex = 10 mV, compared with a modified Butterworth-van Dyke (mBvD) equivalent
circuit fit; middle: magnitude |Yr| of the electrical admittance of the LCR series circuit of the mBvD
model; bottom: derivative of |Yr| with respect to the frequency f, which we refer to as electrical
amplitude sensitivity. (b) Top: corresponding phase angles φs of the sensor elements obtained from
the mBvD model; middle: phase angles φr of the admittance of the LCR series circuits; bottom: their
derivates, which we refer to as electrical phase sensitivities.

With the mBvD parameters, the phase angle φs,n is calculated and plotted in
Figure 3b (top). It shows the typical minimum of an electromechanical resonator that
is caused by the superposition of the current through the resonator and the current through
the parallel capcitance Cp,n and resistance Rp,n. The values of Ys,n and φs,n are similar



Sensors 2021, 21, 7594 9 of 18

to other electromechanical resonators that have been operated as delta-E effect sensors
(e.g., [32,34,54]). Hence, the chosen sensor elements are representative examples. The ad-
mittance magnitude |Yr,n| and phase angle φr,n of the series resonance circuit are obtained
from the mBvD model by omitting the parallel current ip,n and are plotted in Figure 3a,b
(middle). They exhibit the behavior expected from a linear resonator and the main differ-
ence between the two sensor elements is the small difference in their resonance frequencies.
The electrical sensitivities Sel,am,n and Sel,pm,n are calculated following the definitions in
Equation (8) from the derivaties of |Yr,n| and φr,n with respect to the frequency. They are
plotted in Figure 3a,b (bottom). Both sensor elements have similar electrical sensitivities
with extrema of Smax

el,am,1 ≈ Smax
el,am,2 ≈ ±0.15 µS/Hz and Smax

el,pm,1 ≈ Smax
el,pm,2 ≈ −8.5/Hz.

Note that Sel,am,n = 0 at fex = fr,n, but Sel,pm,n = Smax
el,pm,n. Because the two sensor elements

have very similar resonance frequencies, their total electrical admittance Ys = Ys,1 + Ys,2
in parallel connection ( S1||S2 ) shows qualitatively the same behavior but with a much
increased admittance magnitude and electrical amplitude sensitivity by approximately a
factor of two compared to the single sensor elements. The corresponding plots are shown
in Figure 3. Comparing the magnitude and phase of Ys( S1||S2 ) emphasizes that an im-
provement in the sensitivity is only expected for the electrical amplitude sensitivity Sel,am,
because the magnitudes |Yr,n| add up. In contrast, the electrical phase sensitivity Sel,pm
does not improve, as it results from averaging Sel,pm,1 and Sel,pm,2. For a more comprehen-
sive and general discussion, signal and noise must be considered and, in particular, their
dependencies on the magnetic field frequency and the differences in resonance frequency.
For that, the signal model is validated in the following section.

4.2. Frequency Response of the Sensor

The electrical sensitivities and sensor parameters found in the previous section are
used here in the signal model and the simulations are compared with measurements.
In Figure 4a, the spectrum Ûco of the modulated signal is shown from a measurement
of the sensor element S1 (top) and S1||S2 (bottom) using an excitation signal with a
voltage amplitude of ûex = 25 mV, a frequency fex = 7680 Hz and a sinusoidal magnetic
test signal with an arbitrarily chosen frequency of fac = 5.8 Hz, and an amplitude of
B̂ac = 1 µT. Besides the carrier peak at fex, both spectra show one pair of peaks at fex ± fac,
which corresponds to the modulating signal caused by the magnetic field. Following the
magnitude-frequency response of the transfer function of the resonator, the side peak
closest to the resonance frequency at fr,1 = 7674.9 Hz (S1) is the largest. The signal model
fits the measurements very well for magnetic sensitivities of Smag,1 ≈ Smag,2 = 24 Hz/mT.
Considering the normalization required for a comparison [26,57], Smag,n/ fr,n is in the
typical range expected from similar sensor elements [34,57].

Several fex 6= fr are chosen to analyze the sensor’s magnitude-frequency response
for operating out of resonance. They are indicated in Figure 4b for S1 (top) and S1||S2
(bottom) as the difference ∆ fex,1 fex − fr,1 of fex to the resonance frequency fr,1 of S1, and
the difference ∆ fex,2 fex − fr,2 of fex to fr,2, respectively. For each excitation frequency,
the voltage sensitivity SV as a function of the magnetic field frequency fac was measured
four times, averaged, and plotted in Figure 4c. As expected, the measurements of both
configurations (S1 and S1||S2) show qualitatively the same behavior. For excitation
frequencies close to fr, the sensor’s voltage sensitivity SV exhibits a low-pass behavior with
a maximum voltage sensitivity at the lowest magnetic field frequency fac.

With an increasing deviation of fex from fr, the maximum shifts to larger values of fac
and further reduces its value. The reduction of the voltage sensitivity is caused by a change
of the electrical sensitivities as well as the transfer function of the resonator. The model
matches the measurements well with deviations mostly smaller than a factor of two and
well within the estimated errors of the measurements. In line with the estimation based
on the electrical sensitivity in the previous section, the simulations, and measurements of
S1||S2, show an overall improved voltage sensitivity compared to S1. A more detailed
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analysis of this is given in Section 5, where the model is used to estimate the influence of a
resonance mismatch for otherwise identical sensor elements.
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Figure 4. Comparison of simulations with measurements. (a) Example amplitude spectrum of the measured and simulated
output signal using only the sensor element S1 (top) and both sensor elements in parallel S1||S2 (bottom) (ûex = 25 mV).
(b) Magnitude |Hr| of the transfer function Hr of the resonator used to indicate several excitation frequencies fex by
∆ fex,1 fex − fr,1, relative to the resonance frequency fr,1 = 7674.9 Hz of the sensor element S1 (top), and ∆ fex,2 fex − fr,2,
relative to the resonance frequency fr,2 = 7676.5 Hz of the sensor element S2 (bottom). (c) Measured and simulated voltage
sensitivity SV (Equation (9)) as a function of the magnetic field frequency fac for the excitation frequencies indicated in (b)
for the sensor element S1 (top) and both sensor elements in parallel S1||S2 (bottom) (ûex = 10 mV).

4.3. Validation of the Noise Model

We omit the effect of ûex on the quality factor and noise floor for the small ûex used
in this work, in line with previous investigations [53,54]. Noise measurements are per-
formed for ûex = 0, i.e., the sensor’s input is shortened to ground potential, and data are
recorded for 5 min with a sample rate of 32 kHz. The measured noise density spectra
are compared with the simulations in Figure 5. The contributions of the sensor intrinsic
thermal-mechanical noise Eco,r, and piezoelectric thermal-electric noise Eco,p, as well as
the operational amplifier’s noise Eco,JCA, are shown. The measurements and simulations
match well and show what is expected for no excitation, or small excitation amplitudes.
Thermal-mechanical noise dominates the noise floor around the resonance frequency and,
further away, thermal-electrical noise of the piezoelectric resistance. The maximum noise
density peak in Figure 5 is increased by a factor of approximately 1.3 compared to the
single sensor elements. This is slightly less than the maximum increase by a factor of

√
2

expected from Equation (22), and it is likely caused by the resonance mismatch.
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Figure 5. Comparison of the simulated and measured total voltage noise density Eco (Equation (18)) around the sensor’s
resonance frequency. The simulated contributions of the thermal-mechanical noise density Eco,r, the thermal-electrical
noise density Eco,p of the piezeoelectric layer, and the operational amplifier’s noise density Eco,JCA are shown as well.
Measurements and simulations are compared for a sensor system with (a) a single sensor element S1, (b) a single sensor
element S2, and (c) two sensor elements connected in parallel (S1||S2).

5. Implications for Sensor Arrays
5.1. Influence of the Number of Sensor Elements

The noise model is used to estimate the influence of the number N of sensor elements
on the minimum detectable magnetic flux density. First, we consider the ideal case of
identical sensor elements described with the mBvD parameters of the sensor S1. In this
case, the signal magnitude increases linearly with N. The change of the total voltage noise
density is less trivial because the various noise contributions depend differently on N. A
simulation of the voltage noise density at the resonance frequency is shown in Figure
6 as a function of N. While the sensor intrinsic thermal-mechanical noise and thermal-
electrical noise increase ∝

√
N, the noise of the JFET charge amplifier is ∝ N. This linear

relationship can be explained with the expression for the noise gain |1 + Zf/(Zs + ZC2)|
of the amplifier in Equation (19). According to this expression, the noise gain is in good
approximation (Zs � ZC2, 1) inversely proportional to the impedance Zs of the array.
Each additional sensor element increases the capacitance and reduces Zs (Equation (15)),
and therefore, the noise gain increases linearly with N if all sensor elements are identical.
The thermal-mechanical noise and the thermal-electrical noise of the amplifier dominate
the noise floor at different N owing to their different dependencies on N. At small N,
the thermal-mechanical noise dominates the noise floor and the LOD ∝ 1/

√
N can be

improved by adding sensor elements. At large N, the noise contribution of the amplifier
dominates and no improvement in the LOD can be achieved because signal and noise are
both ∝ N. A transition region exists at intermediate values of N where the improvement
in LOD decreases continuously with N. This transition region is approximately around
N = 200Nmax for the set of sensor parameters considered.
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Figure 6. (a) Simulation of the voltage noise density at the resonance frequency as a function of the number N of the parallel
connected sensor elements. Below approximately N = 200, the noise level is dominated by the sensor intrinsic thermal-
mechanical noise and increases ∝
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N. At approximately N > Nmax ≈ 200, the noise of the charge amplifier dominates the

noise floor and is ∝ N. No significant improvement in the signal-to-noise ratio is expected for N > Nmax ≈ 200 because
the signal amplitude increases ∝ N as well. (b) Simulated gain SV/SV,1 in the voltage sensitivity SV of a system with two
parallel connected sensor elements relative to the voltage sensitivity SV,1 of a single sensor element as a function of the
difference ∆ fr in their resonance frequencies, normalized to the bandwidth fBW fr/Q of the resonator. Examples are shown
for three different parallel capacities, expressed as multiples of the parallel capacitance Cp,1 of the sensor element S1. The
minima are indicated with red dots.

5.2. Influence of Resonance Frequency Mismatch

The reproducibility of sensor elements can be considerably impaired by the relaxation
of small stress during fabrication [60] and by small variations in the resonator geometry. The
condition fex = fr cannot be fulfilled simultaneously for all N sensor elements because both
mechanisms cause a distribution in resonance frequency fr. At this point, it remains unclear
to what extent such a distribution impairs signal, noise, and LOD. However, knowing
the tolerable variation in resonance frequency is important for the design of sensor arrays
because it imposes limitations on the resonator geometry and on the tolerances of the
fabrication process.

First, the voltage sensitivity SV is calculated as a function of the resonance frequency
mismatch because it must be known to estimate the LOD (Equation (10)). The model sensor
system considered comprises two sensor elements connected in parallel. Both sensor
elements have identical resonance frequencies and sensitivities, and they are described
by the same set of mBvD equivalent circuit parameters of the sensor element S1. The
resonance frequency fr ∝ 1/

√
LrCr of one sensor element is altered by increasing the mBvD

parameters Lr and Cr in equal ratios. This keeps the quality factor Q ∝ Lr/Cr constant
(Appendix A), and it causes only a negligible change in the bandwidth for the range of
resonance frequencies tested. For each difference ∆ fr in the two resonance frequencies,
we simulate the output signal using a magnetic test signal with a frequency of fac = 1 Hz,
and calculate the voltage sensitivity SV (Equation (9)). This procedure is repeated for three
different example capacities Cp with values that are multiples of the parallel capacitance
Cp,1 of the sensor element S1. We define the sensitivity gain SV/SV,1 by the voltage
sensitivity SV of the two parallel sensor elements, normalized to the voltage sensitivity
SV,1 of the single sensor element. The results are plotted in Figure 6b as functions of ∆ fr
normalized to the bandwidth fBW = fr/Q of S1.

For all three values of Cp, the sensitivity gain reaches a maximum value of SV/SV,1 = 2,
when the resonance frequencies are identical ∆ fr/ fBW = 0. It decreases to a minimum of
around SV/SV,1 = 1 at roughly ∆ fr/ fBW = 0.5, indicated in Figure 6b with red dots. For
larger ∆ fr/ fBW, SV/SV,1 increases slightly but it does not reach its maximum value again.
The influence of the parallel capacitance Cp on SV/SV,1 is distinct but it does not change the
curves qualitatively in the considered range. A larger Cp reduces SV/SV,1 at high ∆ fr/ fBW
and shifts the location of the minimum to a larger ∆ fr/ fBW; hence, it slightly broadens
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the peak around the maximum of SV/SV,1. Consequently, the condition of approximately
∆ fr/ fBW < 0.5 (depending on Cp) should be fulfilled to increase the signal magnitude in
an array with two sensor elements. This condition can be expressed as:

∆ fr,BW
∆ fr

fBW
≈ ∆ fr

fr
·Q < 0.5 . (23)

The simulations in Figure 6b demonstrate that Equation (23) is not a strict criterium
because the locations of the minima on the ∆ fr,BW-axis vary by up to 50% for different
tested values of Cp (e.g., for Cp = 2Cp,1 the minimum is at ∆ fr,BW ≈ 0.75). The exact
location of the minimum depends on the contribution of the current through the LCR
pathway to the total sensor current, relative to the capacitive contribution of Cp. For all
practical purposes, these two contributions can hardly be varied independently because
changing the parallel capacitance is accompanied by a change of the excitation efficiency,
e.g., by altering the electrode geometry [32] or the piezoelectric material [33].

Not only for the voltage sensitivity, but also the sensor intrinsic thermal-mechanical
noise referred to as the output follows the transfer function of the resonator; this is demon-
strated with the measurements and simulations in Figure 5. Therefore, the LOD is constant
if the sensor intrinsic thermal-mechanical noise dominates the noise floor, which is typ-
ically fulfilled for excitation frequencies fex within the bandwidth of the resonator and
sufficiently small magnetic field frequencies fac. This conclusion is in line with other exper-
imental results [55] (Figure 6) and does still hold for two parallel operating sensor elements
with different resonance frequencies. Consequently, it is also LOD(∆ fr,BW) = const. if the
thermal-mechanical noise dominates the voltage noise density at fex + fac. The frequency
band around the resonance frequency where the LOD is constant depends on the difference
between the thermal-electric noise level and the resonance-amplified thermal-mechanical
noise level and changes with N. For the sensors analyzed, this range is approximately
< fBW around fr, as shown in Figure 5.

6. Discussion and Conclusions

The signal-and-noise model developed matches well with measurements on exchange-
biased sensor elements operated separately and in parallel in a setup with a single oscillator
and amplifier. The model does still hold for excitation frequencies out of resonance and
more than one sensor element. Hence, two major limitations of previous models have
been solved and a tool is presented that can further support the design of delta-E effect
sensors and sensor arrays. From the good match of the model and consistency with noise
measurements, we find that the sensor intrinsic noise in our setup can be considered as
uncorrelated, despite the parallel connection of sensor elements and their operation and
read-out by a single oscillator and single amplifier. This is an essential precondition for
improving the sensor performance by operating in parallel while using fewer electronic
elements to keep the setup compact. Additional requirements were identified, which
must be fulfilled to improve the signal and the limit of detection by operating many sensor
elements in parallel. For the given sensor system, no significant improvement in the limit of
detection can be achieved if a maximum number Nmax ≈ 200 of sensor elements is exceeded.
Above this number, the noise contribution of the amplifier dominates the noise floor and
increases, like the signal amplitude ∝ N. Below, the sensor intrinsic noise dominates around
the resonance and increases merely ∝

√
N, which results in LOD ∝ 1/

√
N. With the given

Nmax, this would correspond to an LOD improvement by a factor of approximately 14.
The value of Nmax depends on the contribution of the thermal-mechanical noise relative to
the thermal-mechanical noise. Therefore, Nmax can potentially be improved by reducing
the noise contribution of the charge amplifier. The proportionalities found do only hold
strictly if all sensor elements are identical. Simulations of the voltage sensitivity confirmed
that the improvement in signal amplitude depends significantly on the difference in the
resonance frequencies of the sensor elements. It vanishes at a bandwidth normalized
resonance frequency difference of approximately ∆ fr,BW ≈ 0.5, depending on the value of
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the parallel capacitance of the sensor element. Consequently, a large signal improvement
by parallel operation requires tight tolerances on the resonance frequency and, therefore, on
the reproducibility provided by the fabrication process. Because the sensor intrinsic noise
follows the same resonator transfer function as the signal, we expect the LOD to be constant
with ∆ fr,BW for sufficiently small ∆ fr,BW, and here at approximately ∆ fr,BW < 2. This value
depends on the level of the thermal-mechanical noise, relative to the thermal-electrical
noise of the piezoelectric layer and the noise contribution of the amplifier.

In conclusion, a model was presented that overcomes previous limitations and can
be used to explore the signal and noise characteristics of delta-E effect sensor arrays. The
results from measurements and simulations indicate that large arrays of parallel operating
sensor elements can be an option to improve the signal and limit of detection in the future.
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Appendix A. Equivalent Circuit Model

The equivalent circuit model used to describe the electrical admittance of each sensor
element is illustrated in Figure A1a and the structure of the modeled sensor array in
Figure A1b.
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mal-mechanical noise, relative to the thermal-electrical noise of the piezoelectric layer and 
the noise contribution of the amplifier. 

In conclusion, a model was presented that overcomes previous limitations and can 
be used to explore the signal and noise characteristics of delta-E effect sensor arrays. The 
results from measurements and simulations indicate that large arrays of parallel operating 
sensor elements can be an option to improve the signal and limit of detection in the future. 
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Appendix A. Equivalent Circuit Model 
The equivalent circuit model used to describe the electrical admittance of each sensor 

element is illustrated in Figure A1a and the structure of the modeled sensor array in Fig-
ure A1b. 

. 

Figure A1. Illustration of (a) the modified Butterworth-van Dyke equivalent-circuit model used to 
describe the sensor elements, with the current ,  through the resonator LCR-circuit and ,  as 
the parallel capacitive pathway, and (b) all N parallel-connected sensor elements of the array, with 
the current ,  through the nth sensor element and the total current  through the array. 

The following equations are used to estimate the resonance frequency ,  and the 
quality factor  of the nth sensor element: 

Figure A1. Illustration of (a) the modified Butterworth-van Dyke equivalent-circuit model used to
describe the sensor elements, with the current ir,n through the resonator LCR-circuit and ip,n as the
parallel capacitive pathway, and (b) all N parallel-connected sensor elements of the array, with the
current is,n through the nth sensor element and the total current is through the array.

The following equations are used to estimate the resonance frequency fr,n and the
quality factor Qn of the nth sensor element:

Qn =
1

Rr,n

√
Lr,n

Cr,n
, (A1)
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and
fr,n =

1
2π
√

Lr,nCr,n
. (A2)

Appendix B. Transfer Function of the Resonator

The frequency response of the resonator is modeled as second-order infinite impulse
response (IIR) peaking filter with the transfer functionHr(z) [61]:

Hr(z) =
n1 + n2z−1 + n3z−2

d1 + d2z−1 + d3z−2 , (A3)

and the components ni of the numerator coefficients as well as di of the denominator
coefficients, which are functions of the quality factor Q and the resonance frequency fr [62]:

n =

 1− g
0

g− 1

 , d =

 1− g
−2g· cos(π fr)

2g− 1

 . (A4)

To ensure a gain of −3 dB at the bandwidth, the factor g is set to:

g =

[
1 +
√

2· tan
(

π

2
fr

Q

)]−1
. (A5)

Appendix C. System Parameters

In the following Table A1, the model parameters of the sensor system and the equiva-
lent circuit parameters of the two sensor elements S1 and S2 are summarized.

Table A1. Parameters of the equivalent circuit noise model and the modified Butterworth-van Dyke
(mBvD) model.

Component Parameter Value Parameter Value

Excitation Rex 75 Ω

Cable C1 RC1 147 MΩ CC1 208 pF

Cable C2 RC2 184 MΩ CC2 36 pF

Sensor element S1

Rp,1 295 MΩ CME,1 47.157 pF
Rr,1 663.47 kΩ Cr,1 48.725 fF
Lr,1 8.826 kH fr,1 7674.9 Hz

Sensor element S2

Rp,2 310 MΩ CME,2 48.568 pF
Rr,2 755.96 kΩ Cr,2 49.112 fF
Lr,2 8.753 kH fr,2 7676.4 Hz

Amplifier Rf 5 GΩ Cf 30 pF

Appendix D. Implementation of the Model

The equations, which describe the signal-and-noise model (Equations (1)–(22)), are
implemented in MATLAB (The MathWorks, Inc., Natick, MA, USA). The voltage at the
charge amplifier’s output uco(t) is calculated in the time domain using Equations (1)–(6),
and the electric sensitivities (Equations (7) and (8)) obtained from the impedance measure-
ments in Section 4.1. Estimated magnetic sensitivities of Smag,1 ≈ Smag,2 = 24 Hz/mT
are used, which is in the typical range expected from similar sensor elements [34,57]. The
simulated time domain signal is demodulated with a quadrature amplitude demodulator
and subsequently converted to the frequency domain using Welch’s method [63]. From
the power spectral density estimate, we calculate the amplitude spectrum Û( f ) of the
demodulated signal u(t) and the voltage sensitivity following the definition provided by
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Equation (9). For the noise simulations, Equations (11)–(22) are implemented to obtain the
voltage noise density at the output of the charge amplifier in the frequency domain.
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