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1 | INTRODUCTION

Abstract

Purpose: In-beam positron emission tomography (PET) is one of the modalities
that can be used for in vivo noninvasive treatment monitoring in proton therapy.
Although PET monitoring has been frequently applied for this purpose, there
is still no straightforward method to translate the information obtained from the
PET images into easy-to-interpret information for clinical personnel. The pur-
pose of this work is to propose a statistical method for analyzing in-beam PET
monitoring images that can be used to locate, quantify, and visualize regions
with possible morphological changes occurring over the course of treatment.
Methods: We selected a patient treated for squamous cell carcinoma (SCC)
with proton therapy, to perform multiple Monte Carlo (MC) simulations of the
expected PET signal at the start of treatment, and to study how the PET sig-
nal may change along the treatment course due to morphological changes. We
performed voxel-wise two-tailed statistical tests of the simulated PET images,
resembling the voxel-based morphometry (VBM) method commonly used in
neuroimaging data analysis, to locate regions with significant morphological
changes and to quantify the change.

Results: The VBM resembling method has been successfully applied to the
simulated in-beam PET images, despite the fact that such images suffer from
image artifacts and limited statistics. Three dimensional probability maps were
obtained, that allowed to identify interfractional morphological changes and to
visualize them superimposed on the computed tomography (CT) scan. In par-
ticular, the characteristic color patterns resulting from the two-tailed statistical
tests lend themselves to trigger alarms in case of morphological changes along
the course of treatment.

Conclusions: The statistical method presented in this work is a promising
method to apply to PET monitoring data to reveal interfractional morphological
changes in patients, occurring over the course of treatment. Based on simulated
in-beam PET treatment monitoring images, we showed that with our method it
was possible to correctly identify the regions that changed. Moreover we could
quantify the changes, and visualize them superimposed on the CT scan. The
proposed method can possibly help clinical personnel in the replanning proce-
dure in adaptive proton therapy treatments.

KEYWORDS
in-beam PET monitoring, proton therapy, voxel-based morphometry

(CT) scans are made along the course of treatment
in order to ensure that the treatment plan is still
appropriate.3~? This patient group is particularly prone to

Particle therapy is the treatment of solid tumors by
charged particles, mostly protons or carbon ions. Thanks
to their characteristic dose deposition profile (Bragg
peak), charged particles deposit their dose much more
locally than the conventionally used photons, allowing for
a better sparing of healthy tissue.! However, the steep
dose gradients also make it more sensitive to errors in
dose delivery?®> Among the main error sources are inter-
fractional patient variations, occurring because of setup
errors and anatomical modifications in patients during
the treatment course“ Such errors can possibly com-
promise the accuracy and affect therapeutic outcomes
of particle therapy treatments in particular.

For some patient groups, like head-and-neck patients,
typically one or more control computed tomography

interfractional morphological changes mostly from pres-
ence of cavities, tumor regression, inflammation, organ
motion, and weight loss>%9 If the plan is judged no
longer appropriate because of dose deteriorations, a
new plan is created (“replanning”or “adaptive planning”).

The control CTs are typically made at predefined inter-
vals over the course of treatment, driven by clinical expe-
rience for a given patient group and personal assess-
ment of the radiation oncologist. However, given the wide
variability in morphological changes between patients
throughout radiation therapy® the need for dose opti-
mization for each patient, and the time- and resource-
consuming nature of adaptive interventions, it would be
preferred to decide in an automated manner when to
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perform the control CT and eventually adapt the plan.*
Undoubtedly,cone beam computed tomography (CBCT)
can provide valuable information about the anatomy and
setup of the patient before treatment,'®'! however it
does not give indications about possible dose modifica-
tions. Online imaging techniques, that is, techniques that
can be used during dose delivery, that allow to raise red
flags in case of suspected morphological changes asso-
ciated with dose modifications are thus highly desired
to pursue patient-tailored treatment optimization.

In this context, various noninvasive in vivo treatment
monitoring techniques have been proposed in the past
decades that are based on detecting reaction products
of nuclear interactions of the beam in the patient, includ-
ing PET, prompt gammas, and charged fragment detec-
tion (see Refs. 12—14 and references therein). Treatment
monitoring with positron emission tomography (PET)
imaging is based on the measurement of the 8t activ-
ity, induced by nuclear interactions between the beam
and the patient tissue. Typically, measured PET images
are compared with predicted images, either from Monte
Carlo (MC) simulations or from previous measurements,
to estimate whether the dose was delivered correctly or
whether a new repeat CT is needed.

Among all PET data acquisition modalities, in-beam
PET monitoring is the only option allowing to assess the
dose delivery in real time.'>"5-"® In-beam PET imag-
ing is based on detecting the * activity from isotopes
like 120 (half life: 122.24 s), 3N (half-life: 2.84 min),
0C (half life: 19.29 s), and ''C (half life: 20.334 min).
At the National Center for Hadrontherapy (CNAO) in
Pavia,'? currently a dual imaging modality system (an in-
beam dual head PET scanner and a charged fragment
tracker) named INSIDE (INovative Solutions for In-beam
DosimEtry in hadrontherapy) is being used?° INSIDE
is currently in a clinical trial phase to test the clinical
feasibility and effectiveness in detecting morphological
changes in head-and-neck patients.

Despite the broad interest in PET monitoring, there
is still no straightforward method to translate the infor-
mation obtained from the PET images acquired during
a treatment session into useful and easy-to-interpret
information for clinical personnel. In fact, the obtained
PET data, arising from nuclear physics processes, can-
not be directly related to the delivered dose, determined
mostly by electromagnetic processes. Moreover PET
data cannot provide direct information about changes in
the anatomy of the patient. Various methods to solve this
issue have been proposed. The first attempts focused
on translating measured activity into dose?'?* Later,
several empirical methods were developed to detect
variations in particle range by studying the activity
profile, including the middle-point analysis?° the shift
approach,?% the most-likely-shift approach,?’ and range
evaluation based on iso-activity surface extraction 2830
The latter has resulted in the clinical validation of a data-
driven method to identify the pencil beams that pass
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through regions where morphological changes were
identified using the INSIDE PET data.*°

The goal of the current work is to propose an inno-
vative and fundamentally different approach to apply to
in-beam PET monitoring images, that is inspired by the
voxel-based morphometry (VBM) method widely used
in neuroimaging. In contrast to all previously published
works, the proposed method does not consider particle
range, but gives clear voxel-by-voxel statistical informa-
tion about the probability that a morphological changes
occurred. We test the method on a series of simu-
lated in-beam PET monitoring images based on the
INSIDE system, with artificially introduced morphologi-
cal changes.

2 | MATERIALS AND METHODS

2.1 | Patient data
This work included data from a 70-year-old patient
treated in 2018 for squamous cell carcinoma (SCC)
with proton therapy at CNAQ.'? A planning CT scan was
available with corresponding structure set. The resolu-
tion of the CT was 0.98 x 0.98 x 2 mm?3. Figure 1(a)
displays a slice of the planning CT scan, with the clinical
target volume (CTV) highlighted. The CTV was divided
in a low dose region (CTV-low) receiving 60 Gy in 30
fractions and a high dose region (CTV high) receiving
66 Gy in 33 fractions. Figure 1(b) shows the same CT
slice, but now with the region-of-interest, including the
sinonasal cavity, highlighted. An intensity modulated
proton therapy (IMPT) treatment plan based on the
planning CT scan was available (Syngo Treatment
Planning system version VB10, Siemens), which had
three orthogonal irradiation fields. The field at 270°
IEC (International Electrotechnical Commission) was
selected for this work, delivering 2.1x10° protons of the
total number of 7.0x10'%. The relevant characteristics
of the treatment plan are summarized in Table 1.
Furthermore a first control CT, taken after two frac-
tions, and a second control CT, taken after 22 fractions,
were available. A slice of the first and second control
CT is displayed in Figure 1(c) and (d), respectively. While
the morphological changes seen in the first control CT
were minimal and did not require adaptive interventions,
the second control CT demonstrated large morpholog-
ical changes caused by sinonasal cavity emptying, that
resulted in serious dose modifications requiring replan-
ning. A new treatment plan was thus created and applied
starting from fraction 23.

2.2 | INSIDE system

The INSIDE system is a bimodal in-beam treatment
monitoring system combining an in-beam PET system
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FIGURE 1

(a) Slice of the planning CT of the SCC patient with the CTV-low in yellow and the CTV-high in red. (b) Same, but now without

target structures and with the region of interest, indicated as orange rectangle, containing the sinonasal cavity. (c) Corresponding slice of the
first control CT. The sinonasal cavity is somewhat emptied, as can be seen by inspecting the region inside the orange rectangle. (d)
Corresponding slice of the second control CT, where further emptying of the sinonasal cavity is visible

TABLE 1 Relevant treatment plan characteristics of the SCC
patient. Np represents the number of particles

Treatment modality IMPT

Fractions 33

Fields 270° IEC, 0° IEC, 180° IEC
CTV-low: 139 mL
CTV-high: 40 mL

Tumor volume

Dose prescription CTV-low: 60 Gy
CTV-high: 66 Gy

Dose per fraction CTV-low: 2 Gy
CTV-high: 2 Gy

Field 1 nr of protons 2.1x10'° Np

Field 1 minimum energy 66 MeV

Field 1 maximum energy 168 MeV

Average duration of field 1 232s

and a secondary charged particle tracker. This work
focuses on the PET system, installed since 2019 at
CNAOZ It consists of two PET heads with a planar
geometry and an active area of 10 x 25 cm? each. Each
head has 2 x 5 detection modules, each made of a 16
X 16 matrix of lutetium fine silicate (LFS) scintillating
crystals, with 3.1 x 3.1 x 20 mm?3 size and 3.2 mm pitch.
The readout electronics consists of a 16 x 16 array
of Hamamatsu Silicon Photomultiplier (SiPM) coupled
one-to-one to each crystal. The resulting field of view
(FOV) is 11.2 x 22.4 x 26.4 cm® with a voxel size of
1.6 x 1.6 x 1.6 mm?, that is, 70 x 140 x 165 voxels.
Both the PET heads and the charged particle tracker
are mounted on a submillimetric precise mechanical
cart. With the current design, the INSIDE in-beam PET
is compatible with most head and neck treatments,

as well as brain treatments. At present the system is
undergoing a clinical trial 3’

2.3 | Analysis methodology
To determine whether and to which extent the effects
of morphological changes occurring over the treatment
course are detectable with the INSIDE PET system, a
statistical analysis pipeline has been set up. While the
current section is limited to the methodology, the tech-
nical details of the implementation follow in Section 2.4.
The procedure was inspired by the statistical para-
metric mapping (SPM) techniques, which are widely
used in neuroimaging studies, mainly involving PET
and magnetic resonance imaging (MRI) techniques®? in
the study of a large variety of disease conditions.33-3°
SPM maps aiming to highlight possible morphometric
differences between two groups of subjects (e.g., sub-
jects affected by a particular pathological condition and
control subjects) can be generated according to the
VBM approach.®8 In that case, three-dimensional brain
scans of two groups of subjects, once properly spatially
aligned, are compared at the single-voxel level accord-
ing to a statistical model. Typically, the general linear
model®? is used as a parametric model to describe
the voxel signals in terms of a number of predictors.
Statistical tests (e.g., two-sample t-test) are conducted
at each voxel, and a map of the p-value for each voxel to
contain significant distinguishing information between
the two cohorts is derived. This map, which has the
same dimension of the original images, can be overlaid
on the brain scan of a group-representative subject to
highlight the brain areas where significant differences
between the two populations have been detected. The
SPM map thus contains an easily viewable information,
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whose interpretation depends on the input data and on
the applied preprocessing steps.

In our analysis, rather than comparing two groups of
subjects, we examined data from a single subject, that
changes over time. In particular, we wanted to exam-
ine whether a given observed PET treatment-monitoring
image, affected by morphological changes, acquired dur-
ing a certain fraction along the treatment course, was
compatible within statistical fluctuations with the PET
monitoring image acquired at the beginning of the treat-
ment, that is, in absence of morphological changes. To
this purpose, we set the problem as a null hypothesis
statistical test, where empirical p-values were obtained
with the help of MC simulations. We generated the null
reference distribution of the voxel intensities (our test
statistics) for the PET image in absence of morphologi-
cal changes, by running the MC simulation of the treat-
ment based on the planning CT with N random seeds.
Moreover, we generated a series of observed’ PET
monitoring images, affected by morphological changes.
Then, for each voxel the null hypothesis being tested
was that the intensity value in that voxel in the observed
monitoring PET image was not different from the null
reference one, that is, without morphological changes.
Rejection of null hypothesis implied that the voxel inten-
sity had significantly changed.

In general, for each voxel in an observed image we
can calculate the empirical probability value p that its
intensity is compatible with the null hypothesis.®’=3° In
our problem, the observed voxel intensity could depart
from the null distribution in both directions, that is, it could
either be more than or less than the average simulated
voxel intensity. In fact, a range overshoot, caused for
instance by a region that is emptied such as a cavity,
could result in less activity than expected in the emp-
tied region, and more activity behind it. A two-tailed
implementation of the null hypothesis statistical test was
thus necessary. In this case, the null hypothesis Hy was
rejected when the p-value was sufficiently extreme and
thus unlikely to be the result of chance. When providing
a significance level «, the critical regions would exist on
the two tail ends of the 1-D distribution of voxel intensity
values. Let us define v, - as the intensity value in voxel i

in a PET image, V;im as the average intensity value over

all N replicates, and Vébs- as the intensity value in the
/)

observed PET image j. The empirical p-values at each
voxel i could then be computed as 37-39:

ri+1

Pi= N (1)

where N was the number of replicates and r; was the
number of replicates that produced a test statistic of

" We use the term “observed” throughout this work in order to be in line with
the terminology adopted in statistical analyses, despite that the PET images
including morphological changes were generated with MC simulations.
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The resulting p;-values evaluated for each voxel i of
the jth PET image can be reported as 3-D voxelized
maps. In particular, by setting the conventional significant
threshold a = 0.05, two separate masks were obtained,
highlighting only the voxels for which the null hypothe-
sis was rejected in favor of the alternative hypothesis,
that is, that V(IJbs- was either significantly larger or signif-
/i

icantly smaller than the reference intensity. These could
be overlaid onto the CT of the subject. The two masks
indicated the areas, where the activity was less-then-
expected or more-than-expected with respect to the ref-
erence treatment situation.

The proposed statistical analysis can thus be summa-
rized as follows:

+ Obtain the null reference distribution of intensities for
each voxel in the PET image by repeating the simula-
tion of the treatment on the planning CT N times with
different random seeds.

* Generate a series of observed PET images with MC,
simulating the PET signal from intermediate treatment
fractions j based on artificially modified CT scans.
As mentioned before, we stress that these observed
images are generated by MC simulations. Although
the method should naturally be extended to observed
PET images from experimental data, for the scope
of validating the statistical method and assessing its
sensitivity in detecting morphological changes, the
simulated observed PET images are sufficient.

» For each observed PET image j, do a voxel-wise two-
tailed null hypothesis test, yielding for each voxel a
p-value. Significant p-values, that is, p < «/2 = 0.025,
can be visualized with appropriate colors for the case

where v(")bs, > V’sim (significantly more activity than
j . .
expected) and v,, <V, (significantly less activity
)

than expected), respectively. These colored 3D maps
can be overlaid onto the original CT image, allow-
ing directly to localize the areas where changes in
patient’'s anatomy occurred, that may have caused an
over/under dose exposure.

* Apply the above method to the real first and second
control CT of the patient that were available, and iden-
tify the regions that changed.

2.4 | Technical implementation
2.4.1 | MC simulations of null reference
distributions of PET voxel intensities

The null reference distributions of PET intensities
in each voxel were obtained from MC simulations
by running the same patient simulation many times
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independently. The MC simulation tool developed for
INSIDE?840 was used for this purpose. The tool is based
on the FLUKA MC code, suited for particle therapy treat-
ment plan simulations*' The following issues were con-
sidered in the simulation of a treatment:

* Beam line. The last part of the CNAO beam line,
including exit window and nozzle were simulated. The
pencil beam transverse dimension and shape were
reproduced as in measurements for all pencil beam
energies. This was done with a previously developed
simulation FLUKA tool, that was also used for the dosi-
metric commissioning and quality assurance of pro-
ton and carbon beams at CNAQ#%—44

Time structure of the delivered protons, including time,

intensity, and duration of each single spot*®

* Patient geometry. This was obtained by importing
the CT scan with its original resolution in a voxel
FLUKA geometry. Tissue composition and densities
were determined according to the CT Hounsfield
Units method by Schneider:*

* Radiation transport and interactions of protons
in the patient. Although it was time consuming,
we used the maximum precision defaults of the
physics models options of FLUKA, and the energy
threshold for charged particle transport was set to
100 keV.

* Generation and decay of the 3-D spatial and time
distribution of 8% emitting isotopes. The slowest part
of the simulation was the proton transport from
the beam line to the production of the Btemitter
inside the patient. Therefore a two-step strategy was

implemented*° In the first step, a fraction f = %

of the entire statistics of the treatment field, that is,
fx2.1x10'° = 2,1 x 102 protons, was simulated up
to the production of the g+ emitter. A user scoring
routine in FLUKA was adopted to extract the spatial
coordinates and production time of the 8*emitting iso-
tope (''C,'°0,and so on). This collection of isotopes is
referred to as the isotope production map (IPM). Then,
in the second step, the IPM was used as positron gen-
erator. Each produced 8* emitting isotope was used
1/f=100 times to decay into a positron according to
the specific 8+ decay spectrum of the given isotope
and with random direction. The acollinearity angle of
the photons was also considered. Accurate photon
transport in the patient was simulated down to 100
keV.

* Geometry of the INSIDE PET detector, including the
individual pixelated LSF crystals. The patient geome-
try with the PET planes is given in Figure 2.

* Energy depositions of the pairs of 511 keV pho-
tons in the detector. Coincidences were selected,
that occurred between the start of treatment up to
about 6 min3® Previously developed software was
used to model energy depositions in the detector, and

energy and time resolutions were included by Gaus-
sian smearing*°

* Creation of line-of-responses (LORs) and subse-
quent image reconstruction. This was done with an
iterative maximum likelihood estimation maximization
(MLEM) procedure.*’

A 3-D PET image was obtained, with a FOV of 22.4 x
11.2 x 26.4 cm®,with 1.6 x 1.6 x 1.6 mm?® voxels, just like
in data (see Section 2.2). Due to the partial angular cov-
erage of the detector, the obtained images suffered from
reconstruction artefacts in the direction perpendicular to
the two PET detector planes. We applied a median filter
of 1.6 mm (1 voxel) in all directions in order to decrease
statistical fluctuations.

Since the MC simulations of an entire treatment are
computationally heavy, we relied on parallelization. A
number of N = 120 independent replicates was pro-
duced, each time changing the random number in the
FLUKA simulation. This resulted in 120 IPM and 120 cor-
responding PET images, making up the null distribution
in all voxels. These will be referred to as IPM and PET,
images, respectively. An illustration of the procedure to
create the null distribution for one of the voxels in the
PET image is given in Figure 3.

2.4.2 | MC simulation of PET images
including morphological changes

We had to estimate the response of the in-beam PET
monitoring images to the day-by-day evolution of the
emptying of the sinonasal cavity between the planning
CT and the control CTs. For this purpose, we created a
set of observed PET images representing various situ-
ations with morphological changes. Thus, a set of artifi-
cial CTs had to be created, that mimicked this evolution.
The control CTs were used as qualitative references for
mimicking volumes and directions of this process. An in-
house developed image processing tool in Python was
used to modify the CT scans as follows.

First, we used rigid coregistration to align the plan-
ning CT with the first and the second control CT. The
region where emptying of the sinonasal cavity occurred
was identified, referred to hereafter as cavity emptying
region. Then, in a first layer of voxels in the sinonasal
region, the tissue was replaced with air (Hounsfield
Unit= —1000) in the control CT, and an intermediate
CT scan was generated. This was repeated gradually,
emptying step-wise the entire left sinonasal cavity, each
time generating a new intermediate CT scan, up to the
moment that the cavity was empty. This latter situation
was very similar to the situation of the second control
CT.The planning CT together with three examples of the
intermediate CTs obtained with the above procedure are
given in Figure 4.
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In total, six intermediate treatment sessions (j= 1 to 6)
were simulated. A list of the reduction in tissue volume in
the cavity corresponding to each generated intermedi-
ate CT isreported in Table 2. Thus, the cavity in the mod-
ified CTs evolves from being totally filled (0 mL change
in tissue, i.e., no morphological modifications, first table
entry) to being totally emptied (13 mL change in tissue,
i.e., large morphological changes, last table entry). The
sample with j = 0 will be referred to hereafter as the

control sample. Regarding the size of the volume that
was changed, we remind that the CT image voxels had
a physical volume of 0.002 mL (0.98 x 0.98 x 2 mm?),
so the number of CT voxels that were modified ranged
from zero to a several thousands (13.1/0.002) voxels
when the cavity was emptied. In terms of PET voxels
(1.6 x 1.6 x 1.6 mm3 = 0.004 mL), a complete emptying
of the cavity would correspond to about 3x10° voxels
(13.1/0.004).
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FIGURE 4 Examples of artificially created CTs with different sizes of cavity tissue volume reductions: 0 mL (the planning CT, (a)), 3.8 mL
(b), 7.3 mL (c), and 13.1 mL (d). The region of interest containing the left sinonasal cavity is highlighted with an orange rectangle

TABLE 2 List of the generated intermediate CTs, with the
corresponding absolute and relative reduction in tissue volume in the
cavity

mod. CT j AV(mL) AV(%)
0 0 0
1 1.9 15
2 3.8 29
3 5.7 44
4 7.3 56
5 10.2 78
6 13.1 100

Using the same framework as discussed in Sec-
tion 2.4.1, for each volume change from Table 2 the IPM
and PET images were generated and stored. We will
refer to each observed image j as IPMgps; and PET s
images, respectively.

To estimate the statistical error in the evaluation of the
volume changes due to the MC simulations, the latter
were repeated 10 times on each artificially modified CT.

Besides the PET distributions based on the artificially
modified CTs, we also simulated the PET signal for the
first (no replanning) and second (replanning) control CT.
Rigid registration was applied before we simulated the
PET signal. These images will be referred to as “PETc74”
and “PETc1p”

2.4.3 | Voxel-wise null hypothesis test

Using the null reference distributions of PET intensities,
we calculated for each voxel in each observed monitor-
ing PET image, PET,s ;, from Table 2 the p-value as in
Equation (1). The significant threshold was a = 0.05, so
for either tail it was a/2 = 0.025. For each PET image

J the two-tailed statistical test lead to two voxel-wise p-
values maps identifying voxels whose intensity values
were unlikely to occur by chance:

* a blue map indicating voxels whose intensity value
was classified as significantly low with respect to the
null reference distribution;

* ared map indicating voxels whose intensity value was
classified as significantly high with respect to the null
reference distribution.

The same was done for the

PETc12 images.

PETCT1 and

2.5 | Assessment of the capability to
identify regions with morphological
changes
251 | Qualitative assessment

To validate that the statistical method can correctly iden-
tify regions where morphological changes occurred, the
3-D distribution of obtained p-values related to each
intermediate CT j was overlaid onto the planning CT. The
red and blue areas of the maps were then compared
to the artificially modified CT to confirm that the regions
identified as significantly different were indeed related to
the regions where morphological changes occurred. The
same was done for the PET11 and PET 7o images.

2.5.2 | Quantitative assessment

We also checked whether the method can give quan-
titative information about the morphological changes.
Knowing that the emptying of the cavity should result in
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voxels with an intensity value that is significantly reduced
with respect to expectations, we investigated whether
the size of the regions identified in the blue map were
related to the size of the modified cavity region in the
planning CT. Thus, for each of the observed PET moni-
toring images PET s (j = 1 to 6) plus the control sam-
ple (j = 0) we compared the volume that was actually
changed (emptied) in the CT scan, V!, with the size
of the volume that was classified as significant in the
blue (lack of activity) color map of the PET image anal-
ysis, VPET The latter was determined by summing the
volume of the PET image voxels in the blue p-value
map, that fall within the CTV-low. The value for V¢7  was
determined by summing the volume of the CT voxels,
whose densities were changed to air,and that were con-
tained inside the CTV-low.

2.6 | Influence of PET image artifacts

We also assessed to what extend the method was
affected by the typical image artifacts, that were present
in our PET images due to the partial angular coverage
of the detector and limited statistics. This was done by
repeating the analysis from Section 2.5, but using the 3-
D IPM maps rather than the PET images, that is, an ideal
theoretical situation without detector and image recon-
struction effects. Regarding the quantitative analysis in
Section 2.5.2, we now compared the size of the volume
that was classified as significant in the blue color map of
the IPM image analysis, V7", with VO _ calculated as
for the PET image analysis. The obtained results were
compared with results that were based on the analysis
of the PET images.

2.7 | Uncertainty analysis

In order to verify the robustness of the analysis results,
the assessments in Sections 2.5 and 2.6 were repeated
for each of the 10 repetitions of the simulations per-
formed for each tissue volume change in Table 2.
Each time the mean and standard deviation was evalu-
ated. Furthermore, the impact of various additional error
sources was evaluated for the case with the largest vol-
ume change of Table 2,13.1 mL, including the following:

» Experimental uncertainties in the cross sections for
BT emission in the MC simulation. These were
changed by +10% and —10% and the analysis of Sec-
tion 2.5 was repeated. This represents an extremely
pessimistic situation, where all cross sections are
changed in one direction.

* Uncertainties in the number of histories in the MC
simulations. We varied the fraction f of the number
of protons in the MC simulation (see Section 2.4.1),
which was 1/100. The simulation was repeated
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with f =1/60 and the analysis of Section 2.5 was
repeated.

* The position of the INSIDE dual head PET chart with
respect to the patient. In all relevant directions the
chart was moved with 1.6 mm and the analysis of Sec-
tion 2.5 was repeated.

3 | RESULTS
3.1 | Visualization of PET and IPM
images

We show in Figure 5 an example of a simulated PET
image in case of no sinonasal emptying (one of the 120
replicates) overlaid onto the planning CT in the coronal
(a), axial (b), and sagittal (c) planes. The corresponding
IPM images are also displayed in (d), (e), and (f), respec-
tively. A few observations can be made. First, strong
deformation in the axial and coronal planes can be seen
in the PET image, which is a result of the partial angu-
lar coverage of the detector. The coronal plane, parallel
to the PET planes, is the least affected and therefore
in the following selected for visualization of the anal-
ysis results. Second, the maximum activity generated
was not located in the target region, but much in front
with respect to the beam entrance, as expected (see for
instance Refs. 25, 30).

3.2 | Identification of regions with
morphological changes: Qualitative
assessment

In Figure 6 we display examples of the simulated PET
signal (one of the 10) for volume changes of 0 mL (a),
3.8 mL (b), 7.3 mL (c), and 13.1 mL (d), overlaid onto
the planning CT. In fact, this would represent the kind
of information that clinical personnel would observe if
looking directly at the PET signal. However, the insets at
the left bottom of Figure 6(b), (c), and (d) represent how
the situation in the CT actually changed. On one hand,
by looking carefully at the PET image, we see that the
distribution somewhat changes in the region-of-interest:
for instance, the activity in that region is somewhat
enlarged in Figure 6(c) and (d) with respect to Fig-
ure 6(a) and (b). Thus, we confirm that the activity signal
is sensitive to morphological changes. On the other
hand, it is very difficult to interpret the information: It is
not feasible to estimate the location and cause of the
change in the PET signal. It must be noted that simply
subtracting the expected PET images from an observed
PET image is not appealing, as shown already in various
works.*849 Since the significant differences in PET sig-
nal are often located in regions where the activity is only
moderate, statistical fluctuations cause the highlighted
regions to appear all over the activated zone, mostly
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beam
directio_n?" direction

beam

8] 20 40 60
FIGURE 5 Top figures: PET signal in the coronal (a), axial (b), and sagittal (c) planes. Deformation in the axial and coronal plane can be
seen. Bottom figures: IPM signal in the coronal (d), axial (e), and sagittal (f) planes. The beam direction is indicated with an arrow in the coronal

and sagittal plane, whereas it is orthogonal to the displayed plane in the axial view

0

FIGURE 6 Evolution of the PET signal with the gradual emptying of the sinonasal cavity, overlaid on the planning CT, for cavity tissue
volume reductions of 0 mL (a), 3.8 mL (b), 7.3 mL (c), and 13.1 mL (d). The small insets on the left bottom in (b), (c), and (d) represent the real
underlying situation in the artificially modified CT
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uncorrelated with the region where morphological
changes occurred.

In Figure 7 we show three different slices of the p-
value maps overlaid on the planning CT, resulting from
the statistical analysis of the control sample PET,,s 0
(Figure 7(a), (e), and (i)), and three intermediate PET
images, PET,ys; for j =2, 4, and 6, corresponding to
emptied volumes of 3.8 mL (Figure 7(b), (f), and (j)),
7.3 mL (Figure 7(c), (), (k)), and 13.1 mL (Figure 7(d),
(h), and (1)), respectively. First of all, we observe that
the region of morphological changes was well identi-
fied through the blue zones (lack of activity), and corre-
sponded well to the regions that were actually emptied in
the CT scan. The latter can be seen from the small insets
in the left bottom of the slices, showing the correspond-
ing region in the artificially modified CT scan. Second,
red zones are visible, located behind the cavity region
with respect to the beam entrance, representing voxels
with an excess of activity with respect to expectations.
This characteristic pattern, first blue and then red when
following the beam direction, is a strong indicator for a
significant morphological changes resulting in a beam
overshoot, here caused by a replacement of tissue by air,
resulting in a lower than expected PET signal in the tis-
sue emptying region, and in a large than expected activ-
ity behind it due to the increased beam range. Third, we
note in Figure 7 that some noise is visible across the
slice, that is not associated to anatomical changes. We
come back to this in Section 3.3.

Figure 8(a) and (b) show the p-value map resulting
from the statistical analysis performed on the PET T4
and PET -1, images corresponding to the first and sec-
ond control CT, respectively. In Figure 8(a), correspond-
ing to minimal changes, we see that the p-value map
highlights some small red zones behind the emptied
region, while no blue voxels can be seen. In Figure 8(b),
corresponding to the situation requiring adaptive inter-
vention (see Section 2.1), the significant regions are
remarkably well visible through the blue-red pattern.
Thus, the method clearly identifies the regions with mor-
phological changes also for the PET signal simulated on
the real CTs.

3.3 | Identification of regions with
morphological changes: Quantitative
assessment

Figure 9 shows the relationship between the volume
that was classified as significantly different from the null
reference distribution, VST, and the actually changed

volume, Vnc;‘gd. In this figure, the bullet points represent
the average values of the observed volume differences
obtained over the 10 simulations made for tissue volume
change (see Section 2.4.2), and the error bars are the
standard deviation. A linear fit is carried out, obtaining

the following parameters: a = 0.89 and b = 2.15, with an
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TABLE 3 Possible error sources in quantification of the tissue
emptying volume, for the case where VC! = 13.1 mL. The default

VPET for this case, Vyeraur, Was 12.6 mL

Size of
identified AV(mL)=Vyps —
Error source volume (mL) Viefault
Cross sections in MC +10% 8.7 -3.9
Cross sections in MC —10% 19.4 71
Fraction f = 1/60 12.7 0.1
Positioning 13.9 1.4

R? = 0.99. The fitted line is given in the figure, where the
line y = x is also given.

From Figure 9 we see that even small morphologi-
cal changes in the simulated images can be detected
through the VBM-like analysis we implemented. At the
same time we note that most of the points are located
above the line y = x. This is an expected effect of our
statistical analysis, due to the multiple testing problem.
A large number of statistical tests are actually carried
out simultaneously, as large as the voxel extent of the
CTV-low (approximately N, = 35 000 voxels in our case).
Once we fix the significance threshold for each test to a,
for the lower-than-expected part of the signals we will
obtain up to a/2 x N, voxels that are by chance erro-
neously classified as positive (False Positives or Type |
errors). This effect, causing also the noise in Figure 7,
can be mitigated by implementing suitable strategies to
correct for multiple comparisons which control the pro-
portion of Type | errors.

In addition to the statistical errors related to MC
simulations and to the VBM-like analysis, the impact
on the maps and the estimated volume change of
the following error sources mentioned in Section 2.7
was evaluated. All associated tissue volumes changes,
which were estimated for the point with the maximum
volume nominal volume change (Vr%d =13.1 mL), are
reported in Table 3. The corresponding maps are given
in Figure S1 of the Supplementary Material. Although it
is clear that the size of the identified volume is sensitive
to errors, the identification of the region was seen to
be robust. Moreover, most errors from Table 3 can be
mitigated by appropriate MC validation and alignment
procedures.

3.4 | Influence of PET image artifacts
Figure 10 shows three slices of the p-value map overlaid
onto the planning CT, based on the statistical analysis of
the IPM,,s images. The cavity emptying region is very
clearly identified and the image hardly contains noise.
This is because the images are free of artifacts, and
because statistical fluctuations are much smaller than
in the PET images displayed in Figure 7.
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FIGURE 7 p-value maps for emptied volumes of 0.0 mL (a, e, i), 3.8 mL (b, f,j), 7.3 mL (c, g,k),and 13.1 mL (d, h, l). The upper, medium, and
lower four plots correspond to a different CT slice. The small insets in the slices show the region that corresponds to the observed p-value map
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FIGURE 8 p-value maps overlaid on the planning CT, resulting
from the statistical analysis of the PET images corresponding to the
first control CT (a) and the second control CT (b). The small insets in
the slices show actual situation in the control CTs that gave rise to
the maps
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FIGURE 9 Observed volume reduction in PET images, VZET,
versus actually introduced volume reduction in the intermediate CT
scans, VT

In Figure 11 we demonstrate the observed volume
change VY versus the actually introduced volume

change, Vr%d.As in Figure 9, the bullet points represent
the average values of the observed volume differences
obtained over the 10 simulations made for tissue volume
change (see Section 2.4.2), and the error bars are the
standard deviation. Again a a linear fit with y = ax+ b
was carried out, yielding a= 0.89 and b = 2.15, with an
R? = 0.99. The line y = x is also given. When compar-
ing Figure 11 with Figure 9, the points in the former are
seen to be distributed much more regularly than those
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in the latter figure. Thus, the partial angular coverage
of the detector and the resulting small geometrical effi-
ciency result in much more fluctuations in the p-value
maps. Moreover a deviation can be seen from the line
y = x: the detected volume is biased toward somewhat
too high values. This is caused by False Positives, dis-
cussed before in Section 3.3, but since the IPM distribu-
tions are less fluctuated than the PET distributions, the
effect is small.

4 | DISCUSSION
Using MC simulations of a patient treatment with proton
therapy, we demonstrated that it was possible to produce
3-D probability maps of morphological changes based
on a VBMe-inspired method. There are various issues
that deserve discussion.

4.1 | Application of VBM method to
in-beam PET

We saw from Figure 7 that the quality of the p-value
maps was affected by the limited statistics and the
image artifacts in the PET images (Figure 5) when com-
pared to the ideal situation in Figure 10. To investigate
the fluctuations, we tested the effect of different sizes
of median filters, but we observed that one voxel in all
directions was sufficient to mitigate large fluctuations. To
decrease fluctuations from poor statistics, caused by the
detector geometry and the limited data acquisition time,
it would help to combine the different irradiation fields, so
more statistics could be collected.*° This is challenging,
since the PET signal acquired during the second and
third field delivery would be a mixed contribution of the
fields, but strategies are being developed to overcome
this problem 5% The time passing between the delivery of
one field and the next (typically of the order of minutes)
and combination of signals would have to be carefully
taken into account. This is part of future work. Con-
cerning the image artifacts, these cannot be mitigated
and are an intrinsic limitation of dual-head in-beam
PET systems. However, they did not hamper the correct
identification of the zones with morphological changes.

4.2 | Interpretation of color maps

Concerning the interpretation of the color maps, we
remind that in our case, the tissue volume change was
caused by an emptying of the cavity as a response to
the radiation, so it concerned a replacement of water-
like tissue by air. Water and air having a very different
activity signal, and given the beam direction, the method
resulted in the blue-red pattern indicating in this case
an air cavity followed by a beam overshoot. This was
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FIGURE 10 p-value maps resulting from the IPM analysis, for cavity tissue volume reductions of 0.0 mL (a, €, i), 3.8 mL (b, f,j), 7.3 mL (c, g,
k), and 13.1 mL (d, h, I). The upper, medium, and lower four plots correspond to a different CT slice. The small insets in the slices show the region
in the modified CT that corresponds to the observed p-value map
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FIGURE 11 Observed volume reduction in IPM maps versus
actually introduced volume change in the intermediate CT scans

just one example, we believe that the method would also
be sensitive to other kinds of anatomical changes, pro-
vided that the anatomical change results in a statisti-
cally significantly different PET signal. For instance, let
us consider the case of tumor shrinkage, which is a com-
mon phenomenon in clinical practice. If the tumor tissue
shrinks and is replaced by air, the same blue-red pattern
can be expected and the quantification of the volume
change would likely be possible. In case the tumor tis-
sue is replaced by water-like material, some differences
may be expected too, since (tumor) cell material con-
tains more carbon than water and thus the PET sig-
nal would change.®' However, maybe there would not
be a blue-red pattern, but only a local blue, or only a
local red pattern. Future research and patient data would
be needed to investigate the expected sensitivity of the
method to reveal different types of anatomical changes.
For the moment, the PET images can serve as a warning
(“red flag”), that should trigger the attention of the radia-
tion oncologist if changes are found before a control CT
is planned.

Finally, we would like to stress that our method should
be seen as complementary to already established imag-
ing techniques like CBCT imaging. In fact, CBCT can
give valuable information about the positioning of the
patient and the tumor anatomy before treatment, but it
does not give information about associated dose modi-
fications. For instance, there can be anatomical changes
that hardly alter the delivered dose, because the plan is
robust enough. In contrast, in-beam PET can give valu-
able information about the dose delivery during treat-
ment. Although PET activity and dose are only indirectly
correlated, the presence of significant changes in the in-
beam PET signal is undoubtedly a strong indication that
the patient dose has changed. We believe that the
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voxel-by-voxel method to identify the location of
changes as presented in this work can bring us a
step closer to a real dose reconstruction and sup-
port further research in the interpretability of PET
monitoring images.

4.3 | Free parameters
Another point of discussion is the presence of free
parameters in the p-value analysis. One free parameter
is the significance level a for defining significant p-values
(Section 2.3), which was fixed to 0.05,a commonly used
value. We repeated the analysis with a = 0.025 and saw
that the volume and especially the noise decreased
somewhat (see Supplementary Material), This is as
expected; only the most significant voxels remained.
Another free parameter is the number of replicates
N used to build the null reference distributions (Sec-
tion 2.3). We generated N = 120 replicates to build the
null distributions of the IPM and PET image voxels,
which turned out to be sufficient. We expect a larger N
to be somewhat more robust to statistical fluctuations.
However, this brings us to a drawback of our method:
the large amount of computing resources needed. It
took us about 18 h to simulate one replicate, however
this aspect can be greatly improved by further paral-
lelization of the simulations or by cloud-based comput-
ing resources. A possible implementation would be a
web interface that allows medical personnel to upload
all the relevant pieces of information, which would then
be processed by a cloud computing service, giving back
the results for subsequent analysis and interpretation.
Another possibility is the usage of fast MC simulation
codes, which are being more and more frequently used
in clinical practice.®?

4.4 | Other considerations

Regarding the applicability to real data, the viability and
effectiveness of the method in real treatments is still to
be tested. However, a few promising results were already
obtained in this study, that evidenced some clear advan-
tages of our method with respect to previously used
methods:

* The number of free parameters is small. Apart from
a and N, there are no free parameters in the analysis
method. It relies purely on statistical considerations,
with a priori fixed significance thresholds.

* The method gives voxel-by-voxel information. This
approach allows not only to detect problems, but also
to identify the regions where morphological changes
have likely occurred (Figures 7, 8, and 10) and to
quantify their volume (Figures 9 and 11), something
that is neither immediate nor feasible with other meth-
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ods. The voxel-by-voxel information would thus bring
us a step closer to eventually translate the results into
dose values that are of real clinical interest, using for
instance machine learning techniques and artificially
created series of customized CT scans including best
guesses of morphological changes.

* The method gives specific indications of what actu-
ally occurred regarding the morphological change in
terms of characteristic blue-red patterns, as we saw
from (Figures 7, 8, and 10). Looking from the beam
direction, for an air cavity, we expect a pattern of first
a blue zone followed by a red zone. And vice versa,
in case the beam passes first a zone of increased
density with respect to the unmodified CT, one would
observe first a red zone, followed by a blue zone.
The presence of such patterns are strong indica-
tions of morphological changes, giving qualitative and
quantitative indications about the changes ongoing
in the patient along the beam path. In case of a
gradually occurring morphological change, this signal
would become more notable over subsequent treat-
ment fractions. The information can be overlaid onto
the CT to investigate the cause. Not only such infor-
mation can be presented easily to medical personnel,
but it could also be used to automate adaptive inter-
ventions, for instance, by raising red flags in case the
pattern reaches a certain size.

Finally, the method was tested for in-beam PET
simulations, but can be applied also to other imaging
modalities, like in-room or after-beam PET treatment
monitoring, or eventually even charged particle or
prompt gamma detection.

5 | CONCLUSIONS

We presented a method to detect interfractional mor-
phological changes in a patient during a proton ther-
apy treatment. To the best of our knowledge, this is the
first time that a VBM resembling method, used in neu-
roimaging, has been applied to in-beam PET proton ther-
apy monitoring images. Using a set of simulated PET
images based on CT scans with and without morpholog-
ical variations, we tested the method for a patient with
a head-and-neck tumor where morphological changes
occurred, that was treated at CNAO. Although the via-
bility and effectiveness of the method in real treatments
are still to be confirmed, a few important results were
already obtained. First of all, we confirmed that a voxel-
wise statistical analysis resembling VBM is appropri-
ate to locate morphological changes through in-beam
PET images. This was possible despite the strong image
artifacts and limited statistics typically present in in-
beam PET images. Moreover, the analysis results could
be clearly visualized through characteristic colored pat-
terns that can be effortless overlaid onto the CT scans.

We believe that the presence of such patterns makes
the method particularly appropriate for raising red flags,
that is, warning signs to trigger the attention of the radi-
ation oncologist. Whether the method eventually allows
to automate adaptive planning can only be confirmed
in future research with large amounts of patient data.
Finally, we demonstrated a satisfactory sensitivity to the
detection of cavity volume changes and an approxi-
mately linear proportionality with the cavity tissue vol-
ume reduction, even down to small changes, which is
encouraging in view of applying the method to real data.
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