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Abstract: Uterine serous carcinoma (USC) is an aggressive variant of endometrial cancer that has
not been well characterized. It accounts for less than 10% of all endometrial cancers and 80%
of endometrial cancer–related deaths. Currently, staging surgery together with chemotherapy
or radiotherapy, especially vaginal cuff brachytherapy, is the main treatment strategy for USC.
Whole-exome sequencing combined with preclinical and clinical studies are verifying a series
of effective and clinically accessible inhibitors targeting frequently altered genes, such as HER2
and PI3K3CA, in varying USC patient populations. Some progress has also been made in the
immunotherapy field. The PD-1/PD-L1 pathway has been found to be activated in many USC patients,
and clinical trials of PD-1 inhibitors in USC are underway. This review updates the progress of
research regarding the molecular pathogenesis and putative clinical management of USC.
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Precis: Uterine serous cancer, although rare, is the most lethal type of uterine cancer. It has distinct
molecular features and pathogenic pathways compared with other uterine cancer types

1. Introduction

Endometrial cancer (EC) is the fourth most commonly diagnosed malignancy and the seventh
most common cause of cancer death in women in the United States. Approximately 61,880 new cases
were diagnosed and 12,160 EC-related deaths occurred in 2019, marking increases in incidence and
mortality [1]. Worldwide, EC is the fourth most common tumor type and accounts for 5% of all cancer
cases and 2% of all cancer deaths. EC’s highest incidence occurs in North America and Northern
Europe, especially in the developed countries [1,2].

According to Bokhman’s 1983 model, EC is broadly classified based on histopathologic features
into two categories, type I and type II, which differ in incidence, prognosis, epidemiology, molecular
pathology, and clinical behavior (Table 1) [3]. Type I tumors, which account for 80% to 90% of all ECs,
display a well-differentiated endometrioid histological phenotype and, compared with type II tumors,
have a favorable prognosis, earlier onset, and higher 5-year survival rate [4]. Type I tumors are associated
with obesity and usually develop from the environment of endometrial hyperplasia resulting from
excess exposure to either endogenous or exogenous estrogen [4,5]. Type II tumors (nonendometrioid
carcinomas), such as serous carcinoma, clear cell carcinoma, carcinosarcoma/malignant-mixed Müllerian
tumor, and partial grade 3 endometrioid EC (EEC), are characterized by poorly differentiated histology
and deep migration/invasion. However, in clinical practice, the classification of EC remains problematic
due to inter-observer variability, particularly in high-grade carcinoma. Moreover, due to high
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heterogeneity, grade 3 EEC displays dissimilar features. Although a large number of grade 3 EEC cases
show a serous-like phenotype, others display unequivocally endometrioid morphology [6,7]. Type II
tumors are typically detected in women 70 years or older and carry a poor prognosis, high recurrence
frequency, and much lower 5-year survival rate compared with type I tumors. In addition, type II
tumors usually lack estrogen/progesterone receptors and do not respond to hormonal fluctuations [5].

Among the type II tumors, uterine serous carcinoma (USC) is the most common subtype. This
highly aggressive variant accounts for only 10% of all ECs but 80% of all EC-associated deaths [8,9]. The
5-year tumor-specific survival rate is 74% and 33% for early- and late-stage USC patients, respectively
(and 89% and 77% for low- and high-grade EEC) [10]. Unlike type I EC, the risk of metastasis and
recurrence of USC does not rely on primary tumor size or grade; this trait contributes to a low overall
survival rate of 18% to 27%. Complete surgical staging is performed, comprising total hysterectomy,
bilateral salpingo-oophorectomy, and lymph node dissection, followed by carboplatin and paclitaxel.
In light of poor patient survival and high recurrence rates, the development of targeted therapies
specific to USC pathway aberrations would aid in its management. However, conducting studies that
focus solely on this rare subtype has been a constant challenge, making it difficult to determine optimal
treatment strategies [9].

Table 1. Characteristics of endometrial cancer.

Feature Type I Type II References

Typical patient age, years 50–69 ≥70 [4,8,11]
Hormone sensitivity Yes No [4,8,11]

Precursor lesions Atypical endometrial hyperplasia Less defined [4,8,11]

Subtypes Endometrioid carcinoma
and its variants

Uterine serous carcinoma
and its variants [4]

Behavior Favorable/localized Aggressive/prone to metastasis [4]
Molecular alterations MSI with MMR defects (20%) TP53 mutation (90%) [1,8,11,12]

PTEN deletion (80%) HER2 overexpression (45%)
CTNNB1 (40%) HER2 amplification (70%)

PI3K alteration (39%)
Five-year survival 85% 43% [4]

Abbreviations: MMR, DNA mismatch repair; MSI, microsatellite instability.

To better improve outcomes for women with EC, a new classification system based on The Cancer
Genome Atlas (TCGA) EC dataset was recently developed. This classification system includes 4 distinct
EC subgroups with distinct genomic aberrations [13]. The first subgroup is DNA polymerase epsilon
(POLE)-mutant EC, which consists of copy number-stable, but ultra-mutated, ECs with recurrent
mutations in the exonuclease domain of POLE. The second subgroup is microsatellite instability
(MSI)-high EC, which consists of hyper-mutated ECs with MSI due to dysfunctional DNA mismatch
repair (MMR) proteins MLH1, MSH2, MSH6, and PMS2. The third subgroup consists ECs that
are MMR proficient and have mutations in genes associated with the PI3K/Akt and Wnt signaling
pathways. The fourth subgroup consists of ECs that are similar to high-grade serous ovarian cancer
and have high frequencies of somatic copy number alterations and TP53 mutations. This subgroup
includes both grade 3 EECs and USCs.

2. Histopathology of USC

Most type II ECs, especially USC, have a complex papillary or glandular architecture, which is
similar to serous papillary ovarian carcinomas. In general, densely fibrotic papillae fronds and slit-like
spaces are common. Huge, round, undifferentiated tumor cells with a high number of mitotic figures,
increased nuclear-to-cytoplasmic ratios, and prominent nuclear atypia are detached and present in the
blank spaces. Hobnail cells, clear cells, and polygonal cells are frequently observed. Classic psammoma
bodies and cilia are also observed in some cases, as in papillary serous ovarian carcinomas [14,15].
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USC is commonly considered to be derived from its putative precursor, endometrial intraepithelial
cancer, a lesion characterized by the malignant transformation of either endometrial surface epithelium
or underlying glands [16]. However, this concept has been challenged by many studies demonstrating
that endometrial intraepithelial cancer is also associated with extra-uterine serous carcinoma;
furthermore, endometrial glandular dysplasia has been proposed as a USC precursor [17,18].

3. Molecular Pathogenesis of USC

Thanks to various high-throughput techniques such as whole-exome sequencing, DNA microarray,
mRNA fingerprints, hierarchical cluster analysis, and proteomic characterization, the molecular profiles
associated with clinical-pathological performance of type I and type II tumors have been revealed [19–21].
In type I EC, unopposed estrogen is considered the predominant driver for tumor initiation, and
deregulated balance of pro-growth estrogens and anti-growth progestogens is the potent trigger of the
disease [22]. Type II EC is barely affected by the estrogen pathway due to the lack of estrogen receptor
(ER) expression [12]. The genetic factors that contribute to type I and type II EC are quite different [12].
Alterations of MMR genes MLH1 and MSH6 exist in about 33% of type I EC patients; these alterations
drive non-atypical hyperplasia to complex atypical hyperplasia [23,24]. PTEN mutation occurs in
approximately 40% to 60% of type I ECs, and both MLH1 and MSH6 alterations are considered to be
almost exclusively restricted to type I EC [25].

In type II EC, the predominant alteration is TP53, which accounts for up to 95% of cases and plays
essential roles in almost all the disease’s stages, especially the early stage [26]. TP53 alteration occurs
in less than 10% of type I ECs, suggesting distinctive effects of TP53 in these two types of EC [25,26] (
Figure 1). Among type II ECs, USC has been found to harbor a 60% TP53 mutation rate (Figure 2).
Although p53 immunohistochemistry, which is easy and inexpensive for pathologists to perform, has
evolved into a commonly used tool to aid the diagnosis of various cancers, due to the problems in
interpretation of staining results, the feasibility of using p53 staining in EC diagnosis needs to be
further evaluated [27]. Based on literature, diffuse strong nuclear accumulation involving more than
80% of EC tumor cells is the typical staining pattern for TP53 missense mutations and is more likely
to be observed in USC than in low-grade EC subtypes [28]. However, the presence of p53 nuclear
accumulation is not always linked to TP53 gene mutation [28].
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Schematic descriptions of the initiation and development of high-grade endometrioid (blue)
and uterine serous carcinoma (yellow) from benign endometrium and factors that potentially drive
these processes.

In addition to TP53, mutations in other tumorigenesis-relevant genes, including PPP2R1A, PIK3CA,
PIK3R, HER2, FBXW7, CHD4, and others have been identified in USC patients [15,29,30]. The mutation
frequencies of the top 20 genes in USC are summarized in Figure 2, and the mutational gene profiles of
206 USC patients are summarized in Figure 3.
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3.1. Metabolic Profile Alterations

Alterations of cancer cell metabolic features are frequently observed in various cancer types,
making metabolic reprogramming one of the key hallmarks of tumorigenesis [32]. With the explosion
of cancer metabolism studies in recent decades, clinically accessible inhibitors of energy metabolism in
cancer cells are increasingly emerging, and some have already received promising data from clinical
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trials [33]. There are two main categories: (1) small molecules against fundamental enzymes in
different metabolic pathways, such as glucose transporters (GLUTs) in glucose uptake, hexokinase 2
in glycolysis, and citrate dehydrogenase in the TCA cycle [34–36] and (2) competitive molecules of
essential metabolites such as 2-deoxy-D-glucose [37]. Studies focused on metabolic alterations are rare
in EC, let alone USC. The first study to reveal disturbed energy metabolism in EC can be traced back to
Benjamin and Romney in 1964 [38]. Since then, other metabolic features have been identified in EC.

3.1.1. Glycolysis

Byrne et al. examined metabolic vulnerabilities in EC [39]. They found that the glycolysis-
lipogenesis process was dramatically elevated in their pool of human EC cell lines compared with
non-tumorous endometrial tissue-derived immortalized cell lines. Altered protein expression involved
in glycolysis-lipogenesis was identified by a microarray using eight endometrial tissue samples (four
with and four without type I EC); in these, GLUT6 showed a highly increased expression pattern [39].
GLUTs are the entrance for glycose consumption and usually exhibits an elevated expression in
malignant cells [40].

In addition, GLUT1 is highly increased in EC [41]. Pathologists have explored GLUT1 expression
patterns in type I and II EC immunohistochemically. GLUT1 protein levels are much higher in tumor
tissues than in normal tissue and correlate with clinic-pathologic variables in different patient cohorts,
implying that GLUT1 is both a prognostic and diagnostic marker for EC patients [42]. Moreover,
upregulation of GLUT1 was found to coincide with increasing grade of EC. Another GLUTs family
member, GLUT8, had increased expression in all EC subtypes compared with atrophic endometrium.
GLUT1 and GLUT8 were shown to display a stepwise increased expression as EC histopathology
worsens [43]. However, no studies of GLUTs in USCs have been reported to date.

3.1.2. Mitochondrial Function

Using RNA sequencing profiles of 271 EEC patients obtained from the TCGA database, Liu et al.
performed consensus unsupervised clustering analysis on 2786 genes [44]. Four EEC clusters with
different transcriptome profiles were identified, among which cluster II (n = 61) contained young
patients with low-grade and early-stage EEC, high risk of recurrence, and poor survival outcomes.
Differential genes were identified in cluster II compared with other clusters. Ingenuity pathway
analysis (IPA) was used to identify metabolic pathway enrichment. Gene ontology enrichment and
gene set enrichment analysis were also performed. After an in-depth statistical analysis using the
Mann–Whitney test, suppression of the TCA cycle was found in cluster II and positively correlated
with PD-L1 gene expression, suggesting a role of mitochondrial function in immune resistance [44].
However, no similar study has been performed in USC, most likely due to the limited number of
USC cases.

The new application of metformin in EC treatment, especially in USC, reveals that the electron
transport chain complex I (NADH: ubiquinone oxidoreductase), located in the mitochondrial membrane,
is a viable pharmacological target [45]. Currently, it is widely accepted that metformin specifically
targets complex I, which catalyzes the first step of the mitochondrial electron transport chain and is
mainly responsible for oxidizing NADH to NAD+ and establishing the hydrogen ion gradient [45].
Multiple in vitro studies with USC cell lines demonstrated that metformin inhibited cell proliferation
and metastasis via inhibiting oxidative phosphorylation (OXPHOS) and ATP consumption, further
activating AMPK to suppress its downstream targets such as the mTOR and STAT3 pathways [46]. Other
important signaling pathways were also identified, such as PI3K/AKT/mTOR and MAPK/ERK [46,47].
Several clinical trials and case reports of metformin treatment as a single agent or combination with
other treatments have been established; for example, a phase II/III trial will add metformin or placebo
to paclitaxel/carboplatin as the first-line therapy for advanced EC (NCT02065687) [45,48]. Some studies
have produced promising data. For example, a multi-institutional retrospective cohort analysis of 1495
EC patients demonstrated that metformin exposure improved recurrence-free and overall survival [49].
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Diverse mitochondrial DNA mutations and increased mitochondrial biogenesis were well
identified in type I EC by a series of publications [50]. Mutations in complex I-associated genes
have been observed in 70% of type I ECs [50]. However, no such study has focused on USC to date.

3.2. Epigenetic Alterations

Epigenetic abnormalities of key factors associated with carcinogenesis are also commonly observed
in USC. These include EZH2, DNA methylation, and noncoding RNAs. Reversal of epigenetic alteration
is considered to be a promising strategy for cancer treatment [51]. Extensive efforts have been made to
identify the promoter methylation profile in USC. However, it has been demonstrated that promotor
methylation plays a much smaller role in USC progression than in EEC [52]. The methylation level is
much lower in USC than in EEC partially due to reduced expression of DNMT1 and DNMT3B [52,53].
In addition, although several noncoding RNAs (ncRNAs) have been implicated in EC progression, only
a few regulatory ncRNAs have been shown to play a role in USC [54]. For instance, NEAT1 contributes
to the aggressiveness and progression of ECs, including USC, by serving as an oncogenic sponge
of microRNA-361 [55], and MEG3 has been shown to modulate USC cell proliferation by directly
inhibiting PI3K [56].

3.3. Signaling Pathway Crosstalk in USC

The identification of genetic and epigenetic alterations allowed the discovery of crosstalk between
key signaling pathways in USC cells, which confers the malignant phenotype of USC (Figure 4).
Interactions between the two key signaling pathways, namely the PI3K/AKT/mTOR and p53 signaling
pathways, can be linked to the energy-related AMPK pathway and enzymes involved in glycolysis
and OXPHOS, which subsequently lead to enhanced ETC activity and increased ATP production.
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4. Clinical Management of USC

4.1. Diagnosis

Similar to the other subtypes of EC, the earliest symptom of USC typically is postmenopausal
vaginal bleeding [57]. Patients with potential USC undergo pelvic examination for abnormalities in
the uterus, vagina, ovaries, fallopian tubes, bladder, and rectum [15]. A series of microscopy-based
tests such as hysteroscopy, cystoscopy, proctoscopy, and dilation and curettage of the uterus are also
commonly used. Blood tests such as the CA-125 test are routinely used for USC diagnosis. Examining
the endometrial biopsy specimen is a sensitive and efficient diagnostic approach for USC, although in
some cases USC is mixed with other histologies [58]. The Pap SEEK test can screen for gene mutations
and chromosome alterations that frequently occur in USCs, such as TP53, FBXW7, PIK3CA, and PIK3R
mutations, by using a trace of DNA from uterine tissue acquired in a Papanicolaou test [59].

4.2. Treatment Approaches

4.2.1. Surgical Staging

Currently, the most common approach for USC treatment is surgery followed by chemotherapy
and radiotherapy [60]. Similar to ovarian cancer, the routine and comprehensive surgical treatment
and staging of USC includes total hysterectomy, bilateral salpingo-oophorectomy, bilateral pelvic
lymphadenectomy, systematic para-aortic lymphadenectomy, complete omentectomy, and peritoneal
cytology [61]. Minimally invasive surgeries are also regularly performed [62,63]. Due to the high
heterogeneity and high metastatic potential of USCs, surgical management needs to be optimized
according to the stage, histological subtype, tumor size, tumor location, severity of symptoms,
metastasis status, and patient’s health status [62,64].

4.2.2. Chemotherapy and Radiotherapy

After surgery, adjuvant chemotherapy is routinely recommended to USC patients, with the
purpose of killing the remaining cancer cells or preventing them from growing [65]. However, for
cases in which USC arises from a polyp without myoinvasion, adjuvant therapy or postoperative
observation is equally recommended on the basis of studies by Mandato et al. and Thomas et al. [66,67].
These studies suggest that adjuvant therapy can be avoided if no residual tumor is left in the uterus
after surgical staging [66,67].

Platinum/taxane-based adjuvant chemotherapy is the most commonly used regimen in both
early- and late-stage USC patients [68]. Clinical trials that treated USC with drug combinations
such as carboplatin-paclitaxel and doxorubicin-cisplatin-paclitaxel achieved promising results:
these combinations significantly extended survival and decreased recurrence rates (NCT00231868,
NCT00147680, NCT00052312, and NCT00052312) [57,69].

In most cases, radiotherapy is used together with chemotherapy to achieve a better outcome [70].
Two kinds of radiotherapy have been reported in USC: whole-abdomen radiotherapy with a pelvic
boost and vaginal cuff brachytherapy [71].

4.2.3. Targeted Therapies

The high rate of side effects (e.g., white blood cell toxicity, alopecia, fibrosis in the intestines,
hematuria, cystitis, bone marrow effects) of conventional therapies for USC should be noted [72].
Furthermore, recurrent USC is less responsive to chemotherapy compared with other EC subtypes. The
good news is that those problems are likely to be solved by molecular targeted drugs, and therapeutic
agents targeting the PI3K/AKT/mTOR signaling pathway, cell cycle regulation, and the programmed
cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) pathway have already been exploited in
USC (Figure 5) [73]. However, the study of targeted therapy for USC lags behind that of other cancer
types. Hormonal treatment, which is the only targeted therapy approved by the US Food and Drug
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Administration (FDA) for EC, is only applied for hormone-dependent EEC [74]. Multiple clinical trials
targeting advanced-stage ECs, including USC, have been launched (Table 2). However, due to the
rarity of USC, only two trials (NCT01367002 and NCT03285802) were designed specifically for USC
patient cohorts.
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p53 Signaling Pathway Inhibitors

As the most altered molecule in USC, p53 and the p53-associated signaling pathway are promising
clinical targets. Currently, therapies targeting the p53 pathway focus on either restoring wild-type
p53, “correcting” mutated p53 activities, or targeting the downstream effector of p53 [75]. For instance,
PRMA-1, a small molecule, has been demonstrated to restore wild-type p53 activity through changing
mutated p53 conformation [76]. Furthermore, p53-mutated USC cells are sensitive to combination
treatment with EGFR inhibitors gefitinib and paclitaxel and treatment with polo-like kinase 1 inhibitor
BI2536 [77]. Moreover, the combination of proteasome and histone deacetylase inhibitors can overcome
the effect of p53 mutations [78].

HER2/Neu Inhibitors

Although trastuzumab (anti-HER2/neu antibody) has been examined in USC, clinical trials
showed no significant effects in USC patients after treatment with trastuzumab alone [79]. Combination
therapies such as trastuzumab with chemotherapy showed much better clinical outcomes in a
series of case reports and clinical trials. In a randomized phase II trial of carboplatin-paclitaxel
vs carboplatin-paclitaxel-trastuzumab in 61 USC patients, chemotherapy plus trastuzumab was
well tolerated without unexpected toxicity and achieved a significant increase in progression-free
survival [69]. Ado-trastuzumab emtansine (T-DM1) is a pharmacological conjugate that contains
trastuzumab and an anticancer drug named DM1. T-DM1 demonstrated encouraging antitumor
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activity in USC cell lines and USC xenografts [80]. A phase II clinical trial evaluating the effect of
T-DM1 in solid tumors is ongoing (NCT02675829). An optimized antibody-drug conjugate, SYD985,
was also evaluated in USC and shows higher efficacy than T-DM1, especially in cells with low or
moderate HER2/neu expression [81].

Tyrosine kinase inhibitors are proven to have efficacy in USC. The most commonly used is
lapatinib, a reversible dual inhibitor of HER2 and EGFR [82]. Although some in vitro data showed
the suppressive effect of this drug in USC cell lines, several clinical trials have demonstrated limited
clinical activity of single-agent lapatinib treatment [83,84]. Combination treatment with lapatinib
and trastuzumab achieved strong synergistic antitumor activity in HER2/neu-overexpressing USC
xenograft tumors and USC patient-derived xenografts [83]. Furthermore, lapatinib showed promising
results in a cohort of EC patients with E690K mutation in EGFR [84].

Anti-HER2 vaccines have been well established in clinical investigations of various
HER2/neu-expressing tumors [85,86]. However, studies of anti-HER2 vaccines in USC are lacking.

PI3K/AKT/mTOR Signaling Pathway Inhibitors

According to the updated literature, there are four categories of inhibitors targeting
PI3K/AKT/mTOR signaling pathway: mTOR inhibitors, PI3K inhibitors, dual mTOR/PI3K inhibitors,
and AKT inhibitors. Among these, drugs that block mTOR activity are the most studied [87].

(1) mTOR Inhibitors

Rapamycin and its analogues (rapalogs, e.g., sirolimus, temsirolimus, everolimus), which inhibit
mTORC1 activity, are considered the first clinical PI3K signaling inhibitors [88]. Although temsirolimus
is FDA approved for treating advanced renal cell carcinoma and everolimus is approved for the
treatment of advanced breast cancer, nonfunctional gastrointestinal and lung neuroendocrine tumors,
and renal cell carcinoma, rapalogs are not yet approved for the treatment of EC and are under
development [89–91].

Currently, several phase II clinical trials of signal-agent rapalog treatment in mixed cohorts of
EC patients, including those with EEC, USC, and clear cell endometrial cancer, have been completed
(NCT00087685, NCT00072176, and NCT00122343). Taken together, these trials show that single-agent
rapalog treatment has modest, acceptable, and reproducible antitumor activity across EC subtypes.
Further trials are underway to determine optimal combined treatments. For instance, in an ongoing
phase I trial, γ-secretase/Notch signaling pathway inhibitor RO4929097 was tested together with
temsirolimus in 18 patients with advanced solid tumors, including USC (NCT01198184). Another
open-label treatment program for patients with recurrent USC combines everolimus and the hormonal
drug letrozole (NCT03285802).

To overcome the limitations of rapalogs, the so-called second generation of mTOR inhibitors
that dually inhibit kinase activities of mTORC1 and mTORC2—which include AZD8055, OSI027, and
INK128 (MLN0128)—have been studied extensively [92]. An in vitro study by English et al. illustrated
that AZD8055 strongly suppressed the proliferation of 22 primary USC cancer cell lines by arresting
cells in the G0/G1 phase [93]. Of note, a single-agent phase I clinical trial of INK128 in advanced
malignancies, including USC, was initiated in 2009 (NCT01058707). Another phase I clinical trial
led by Dana-Farber Cancer Institute used the combined intervention of MLN0128 and bevacizumab
(an anti-angiogenesis drug) to treat patients with solid carcinomas, including endometrial clear cell
adenocarcinoma and USC (NCT02142803). Other combination strategies in EC, such as MLN0128 plus
MLN1117 (a PI3K inhibitor) and MLN0128 plus paclitaxel, are under investigation in a phase II trial
(NCT02725268).

(2) PI3K Inhibitors

Another key therapeutic target is PI3K. Drugs targeting either a single isoform of PI3K
(isoform-specific inhibitors) or all four isoforms (pan-PI3K inhibitors) are available [94]. Pan-PI3K
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inhibitors were the first generation of PI3K inhibitors, comprising GDC-0941, BKM120, PX866, ZSTK474,
and BAY80-6946 (copanlisib) [94]. The first phase I clinical trial of BKM120 in patients with solid
tumors, including EC, demonstrated an encouraging clinical outcomes: preliminary antitumor activity,
acceptable toxicity, and favorable pharmacokinetic profile (NCT01068483) [95]. BKM120 treatment in
advanced or recurrent EC has entered into a phase II clinical trial (NCT01289041). Copanlisib also
showed favorable clinical outcomes in a phase I trial for patients with advanced solid tumors [96].
After that, phase II trials of copanlisib in patients with EC opened (NCT02728258, NCT03586661).

Isoform-specific PI3K inhibitors—especially those that target the PI3Kα subunit, which harbors
the majority of PI3K mutations in solid tumors—are another promising therapeutic option for USC [73].
For instance, preclinical and clinical studies of taselisib (GDC-002), a PIK3CA mutation-selective
inhibitor, indicated its antitumor functions in ECs (NCT01296555) [97,98].

(3) mTOR and PI3K Dual Inhibitors

mTOR and PI3K dual inhibitors are also applied for USC treatment and have the benefit of
blocking the whole signaling pathway without inducing complicated feedback loops, which are often
observed in certain malignancies treated with a single inhibitor [99]. The design of dual mTOR and
PI3K inhibitors is based on the high-sequence homology of the catalytic region sites in both mTOR and
PI3K [87]. The first-in-human phase I clinical trial of the mTOR and PI3K dual inhibitor LY3023414
in patients with advanced solid tumors, including EC (n = 15), was completed by Bendell et al. in
2017, and the drug demonstrated strong antitumor activity with favorable safety and pharmacokinetic
profiles [100]. In patients with PI3KR1- and PTEN-mutated EC, a durable response to LY3023414 was
observed [100]. A phase II clinical trial of LY3023414 for treatment of recurrent or persistent EC is
ongoing (NCT02549989). Other mTOR and PI3K dual inhibitors, such as apitolisib (GDC-0980) and
NVP-BEZ235, are also under clinical investigation (NCT01455493, NCT01195376).

(4) AKT Inhibitors

AKT mutation is rarely observed in USC, and fewer AKT inhibitors have been studied in these
tumors compared with PI3K and mTOR inhibitors. Currently, AKT inhibitors either compete for the ATP
binding subunit—as do isoquinoline-5-sulfonamides, azepane derivatives, and thiophenecarboxamide
derivatives—or inhibit AKT allosterically—as do 2,3-diphenylquinoxaline, alkyl-phospholipids, and
purine derivatives [101]. Some studies of AKT inhibitors have included USC [102]. For instance,
preclinical data for MK-2206, an allosteric inhibitor of AKT, demonstrated remarkable suppressive
effects in three distinct patient-derived xenografts: USC1 (uterine serous), EEC2 (endometrioid grade
2), and EEC4 (endometrioid grade 3) [103]. Clinical trials of MK-2206 in ECs, including USC, provided
valuable evidence for future clinical applications (NCT01312753, NCT01307631) [104].

In addition to single-agent treatment or combined therapies with drugs in the same category,
considerable efforts have been made to design new strategies of blocking the PI3K/AKT/mTOR pathway
to improve therapeutic efficacy and prevent adverse effects and stubborn resistance [105]. For example,
a phase I clinical trial studied the clinical outcomes of dually targeting the PI3K/AKT/mTOR and
RAF/MEK/ERK pathways in 236 patients with advanced solid tumors, including EC [106]. Dual
inhibition exhibited more favorable efficacy compared with single inhibition and may be important for
USC patients with mutations in the PI3K signaling pathway and KRAS or BRAF [106]. Dual inhibition
of HER2/PIK3CA was also shown to overcome single treatment-related drug resistance significantly in
HER2-amplified USC cells and xenografts [107].

4.2.4. Cyclin-Dependent Kinase Inhibitors

A high percentage of alterations in cell cycle-related genes has been observed in USC, and
mutations affecting the Fbxw7/Cyclin E pathway are the most frequent in USC [13]. Four generations
of cyclin-dependent kinase (CDK) inhibitors have been synthetized, and some are under clinical
investigation in patients with EC. For example, a phase I study of ribociclib (LEE011), a selective
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inhibitor of CDK4/6, demonstrated an acceptable safety profile and preliminary antitumor activity
in patients with advanced tumors including EC [108]. A trial of combined treatment with ribociclib,
everolimus, and letrozole in patients with advanced or recurrent EC is still recruiting (NCT03008408).
CYC065, an inhibitor of CDK2/9, alone or together with taselisib, shrank USC xenografts, which were
derived from a USC harboring CCNE1 amplification and PIK3CA mutation [109]. However, to date, no
clinical trial has evaluated the efficacy of CDK inhibitors specifically in patients with USC.

4.3. Immune Profiling and Immunotherapy

Studies of immunotherapy in EC focus on inhibiting immune checkpoints, which is currently
the most promising approach in immunotherapy [110]. The most studied immune checkpoint in EC
is the PD-1/PD-L1/2 pathway [111]. PD-1 (also known as CD274), a member of B7-CD28 family, is a
55 KD transmembrane protein and is induced in activated immune cells such as CD4+, CD8+, and
CD4-CD8-T cells as well as activated dendritic cells and macrophages [112]. PD-1 has 2 ligands, PD-L1
(CD279; B7-H1) and PD-L2 (CD273; B7-DC). PD-L1 is the predominate one and is expressed on the
surface of a large spectrum of immune cells and non-hematopoietic cells, such as vascular endothelial
cells, to protect those tissues [112].

Many studies have illustrated a high expression pattern of PD-L1/2 in various EC subtypes [113].
The high expression of PD-L1/2 has been shown to be correlated with poorly differential status of
EC subtypes, poor prognosis, poor diagnosis, and low survival rate [114]. Mo et al. evaluated PD-1,
PD-L1, and PD-L2 expression by immunohistochemistry in 35 human normal endometrium samples
and 75 human ECs (63 EEC, 11 USC, one clear cell). The results showed that the expression of
PD-L1 in tumor-infiltrating immune cells was associated with the histology of EC: the percentage of
PD-L1-positive cells in the tumor-infiltrating immune cells was much higher in non-endometrioid ECs
than endometrioid ones [114].

Pembrolizumab, an FDA-approved PD-1 inhibitor, has been applied to treat EC in several
preclinical studies and clinical trials [115]. In the phase I KEYNOTE-028 clinical trial, 23 EC patients
were enrolled, including 17 with EECs, three with other adenocarcinomas, two with USCs, and
one with carcinosarcoma (NCT02054806). A 13% overall response rate was achieved in this patient
population [116]. Due to the small number of USC patients recruited in this study, the response rate for
immune checkpoint inhibitor treatment in these patients remains unclear.
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Table 2. Summary of clinical trials of targeted therapies in uterine serous carcinoma.

Drug Function Treatment Regimen Phase Status Patient Cohort (EC
Including USC)

ClinicalTrials.Gov
Identifier References

Trastuzumab Anti-HER2/neu antibody IV over 30–90 min on days 1, 8, 15, 22.
Courses repeat every 28 days. II Completed

Stage III, IV, or recurrent EC
with HER2/neu

amplification (n = 34)
NCT00006089 N/A

Trastuzumab-IL-12

Trastuzumab: anti-HER2/neu
antibody
IL-I2: cytotoxic lymphocyte
maturation factor

Trastuzumab: IV on day1, with
maintenance dose on day 1 of each
subsequent week. IL-I2: IV on days 2,
5 from week 3.

I Completed Recurrent cancers with high
HER2/neu (n = 100) NCT00004047 [117]

Trastuzumab-paciliatxel
-IL-I2

Trastuzumab: anti-HER2/neu
antibody
IL-I2: cytotoxic lymphocyte
maturation factor

Course 1: Trastuzumab IV on days 1,
8, 15; paclitaxel IV on day 1. Course
2: course 1 plus IL-12 SQ on days 2, 5,
9, 12, 16,19. Courses to be repeated
q21 days.

I Completed Recurrent solid tumors
(n = 18) NCT00028535 N/A

Trastuzumab-carboplatin
-paclitaxel Anti-HER2/neu antibody

Paclitaxel: 175 mg/m2 for 21 days for
6 cycles. Carboplatin: AUC 5 for 21
days for 6 cycles. Trastuzumab: 6
mg/kg for 21 days for 6 cycles from
day 21.

II Active, not
recruiting

Stage III-IV or recurrent
USC with HER2/neu
amplification (n = 61)

NCT01367002 [69]

Lapatinib Dual tyrosine kinase inhibitor
of HER2/neu and EGFR

PO once daily on days 1–28. Courses
repeat every 28 days. II Completed; Has

Result Recurrent EC (n = 31) NCT00096447 [118]

Lapatinib-ixabepilone

Lapatinib: inhibitor of
HER2/neu and EGFR;
ixabepilone: antimicrotubule
agent

Lapatinib: 500–1250 mg PO once
daily. Cycle every 21 days for 6
cycles+ ixabepilone 32 mg/m2 every
week.

I Unknown Recurrent EC with high
HER2/neu NCT01454479 [26]

RAD001 mTOR inhibitor 10 mg PO daily. II Completed; Has
Result

Progressive or recurrent EC
(n = 35) NCT00087685 [119]

Temsirolimus mTOR inhibitor
Temsirolimus: IV over 30 min on
days 1, 8, 15, 22. Courses repeat
every 28 days.

II Completed; Has
Result

Metastatic or locally
advanced recurrent EC

(n = 62)
NCT00072176 [120]

Temsirolimus-RO4929097

Temsirolimus: mTOR
inhibitor; RO4929097:
γ-secretase/Notch signaling
pathway inhibitor

Temsirolimus: IV over 30 min on
day1- 6 (course 1 only). Temsirolimus
IV or PO on days 1, 8, 15 and
RO4929097 PO once daily on days
1–3, 8–10, and 15–17. Courses repeat
every 21 days.

I Completed Advanced solid tumors
(n = 18) NCT01198184 [121]
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Table 2. Cont.

Drug Function Treatment Regimen Phase Status Patient Cohort (EC
Including USC)

ClinicalTrials.Gov
Identifier References

Everolimus-letrozole
Everolimus: derivative of
rapamycin, mTOR inhibitor;
letrozole: aromatase inhibitor

Letrozole: 2.5 mg daily every 30 days.
Everolimus: 10 mg daily every 28
days.

II/III Active, not
recruiting

Recurrent USC with PIK3CA
gene mutation (n = 1) NCT03285802 N/A

MLN0128-bevacizumab TORC1/2 inhibitor
INK128: PO daily on days 1–28 and
bevacizumab IV on days 1 and 15.
Courses repeat every 28 days.

I Active, not
recruiting

Recurrent glioblastoma and
other solid tumors (n = 58) NCT02142803 [122]

MLN0128-MLN1117-
paclitaxel

MLN0128: dual TORC1/2
inhibitor; MLN1117: PI3Kα

inhibitor

Paclitaxel: 80 mg/m2 IV, weekly on
days 1, 8, and 15 of a 28-day cycle.
Paclitaxel 80 mg/m2 IV, weekly on
days 1, 8, and 15 of a 28-day cycle
along with MLN0128 4 mg capsule
PO on days 2–4, 9–11, 16–18, and
23–25 of a 28-day cycle. MLN0128 30
mg capsule PO once weekly on days
1, 8, 15, and 22 of a 28-day cycle.
MLN0128 4 mg capsule PO MLN1117
200 mg capsule PO on days 1–3, 8–10,
15–17, and 22–24 of a 28-day cycle.

II Active, not
recruiting

Advanced, recurrent or
persistent EC (n = 245) NCT02725268 [94,123]

BKM120 Pan-PI3K inhibitor 100 mg/day PO as a second-line
therapy. II Completed Advanced EC (n = 70) NCT01289041 [124]

LY3023414 mTOR and PI3K dual
inhibitor RP2D of 200 mg PO twice daily. II Active, not

recruiting
Recurrent or persistent EC

(n = 31) NCT02549989 N/A

GDC-0980 mTOR and PI3K dual
inhibitor PO daily. II Completed Recurrent or persistent EC

(n = 56) NCT01455493 [125]

NVP-BEZ235 mTOR and PI3K dual
inhibitor

BEZ235: dose escalation PO once
daily. I Completed

Adult Japanese patients
with advanced solid tumors

(n = 35)
NCT01195376 [126]

MK2206 AKT inhibitor II Completed Recurrent or persistent EC
(n = 37) NCT01312753 [127]

Ribociclib (LEE011)-
everolimus-letrozole

Ribociclib: CDK4/6 inhibitor;
everolimus: mTOR inhibitor;
letrozole: aromatase inhibitor

Ribociclib: 250 mg PO daily for a 28
day cycle. Everolimus: 2.5 mg PO
daily for a 28-day cycle. Letrozole:
2.5 mg PO daily for a 28-day cycle.

II Recruiting

Malignant neoplasms of
female genital organs;

endometrial carcinoma
(n = 76)

NCT03008408 [128]

Abbreviations: AUC, area under the curve; BID, twice a day; EC, endometrial cancer; IV, intravenously; PO, orally; RP2D, recommended phase II dose; USC, uterine serous carcinoma.
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5. Conclusions

Studies of USC were lacking for a long time due to its rare occurrence, its prevalence in women
over the age of 70 years, and the lack of animal models for the disease. Therefore, the development of
treatments for this cancer is far behind those for other cancers. However, USC’s aggressive features,
resistance to chemotherapy, poor prognosis, and extremely high recurrence rate (50% to 80%) contribute
to the increase in EC-related deaths every year. Currently, surgery together with chemotherapy and
radiotherapy remains the dominant treatment option for USC.

Clearly understanding the molecular alterations in different EC subtypes facilitates the generation
of accurate diagnosis and prognosis methods, as well as targeted therapeutic strategies. Current
studies of somatic genomic profiles in USC are mostly performed together with other EC subtypes,
and the number of USC patients is relatively small. In addition to treatments targeting single somatic
hotspot gene mutations, emerging advances in tumor metabolism and immunotherapy have opened
new doors for USC patients. In addition, systematic biochemical studies will help to synthesize novel
therapeutic inhibitors. A much larger number of USC cohorts with varying patient populations will
need to be recruited for clinical trials to evaluate the efficacy of new treatments.
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