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Abstract
Enzymes are proteins that accelerate intracellular chemical reactions often by factors of

105−1012s−1. We propose the structure and function of enzymes represent the thermody-

namic expression of heritable information encoded in DNA with post-translational modifica-

tions that reflect intra- and extra-cellular environmental inputs. The 3 dimensional shape of

the protein, determined by the genetically-specified amino acid sequence and post transla-

tional modifications, permits geometric interactions with substrate molecules traditionally

described by the key-lock best fit model. Here we apply Kullback-Leibler (K-L) divergence

as metric of this geometric “fit” and the information content of the interactions. When the K-L

‘distance’ between interspersed substrate pn and enzyme rn positions isminimized, the
information state, reaction probability, and reaction rate aremaximized. The latter obeys the

Arrhenius equation, which we show can be derived from the geometrical principle of mini-

mum K-L distance. The derivation is first limited to optimum substrate positions for fixed

sets of enzyme positions. However, maximally improving the key/lock fit, called ‘induced fit,’

requires both sets of positions to be varied optimally. We demonstrate this permits and is

maximally efficient if the key and lock particles pn, rn are quantum entangled because the

level of entanglement obeys the sameminimized value of the Kullback-Leibler distance that

occurs when all pn� rn. This implies interchanges pn⇄ brn randomly taking place during a

reaction successively improves key/lock fits, reducing the activation energy Ea and increas-

ing the reaction rate k. Our results demonstrate the summation of heritable and environmen-

tal information that determines the enzyme spatial configuration, by decreasing the K-L

divergence, is converted to thermodynamic work by reducing Ea and increasing k of intracel-
lular reactions. Macroscopically, enzyme information increases the order in living systems,

similar to the Maxwell demon gedanken, by selectively accelerating specific reaction thus

generating both spatial and temporal concentration gradients.
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Introduction
Living organisms, uniquely in nature, encode, propagate, and use information [1] to produce
stable, highly-ordered structures that are also complex, dynamical, semi-open systems far from
thermodynamic equilibrium. But, what is biological information and how is information used
to maintain the ordered structure and function of a living system [2–5]? While it is apparent
that information storage and process are fundamental characteristics of living systems, the
principles governing information dynamics in biology remain unclear.

Enzymes are central to the function of living systems and facilitate the work necessary to
maintain order [6]. Once synthesized as a string of amino acids specified by the nucleotide trip-
lets in the gene, a protein is typically subjected to post-translational modification such as phos-
phorylation. Importantly, post translational modifications reflect temporally variations in the
status of the cell (e.g. ATP concentrations [7]). Thus the 3 dimensional shape of the enzyme
represents a summation of both heritable and current information within the cell. This com-
posite information produces a 3 dimensional structure that is the low free-energy state for the
amino acid sequence plus post-translational modifications. It will be seen that this minimum
state represents, as well, one of minimum Kullback-Leibler divergence, i.e. maximal order,
between substrate and enzyme codons. These effects result from a doubly-optimized lock and
key interaction between substrate and enzyme codons.

By this effect, the enzymes are catalysts that do not alter the fundamental thermodynamics
of the reaction, in the sense that the initial thermodynamic state of substrate and the final ther-
modynamic state of the products are not changed [8]. Because it acts as a catalyst, the enzyme
is not consumed in the reaction so that its information content is applied repeatedly provided
substrate is available and no additional post-translation modifications occur. Typically
enzymes accelerate reactions, often by many orders of magnitude (Fig 1). Without them, many
reactions—e.g., reactions to extract energy from substrate or synthesize cell components—
would be too slow to permit orderly function of living systems. We propose that this character-
istic of enzymes permits investigation of the relation of information to thermodynamics and
order through the concept of “activation energy.” Finally, we note recent studies [8,9] have
emphasized the dynamic nature of enzyme structure and the critical role of structural motion
of the protein during catalysis. By integrating these dynamics into our model, we note that
quantum effects may be observed.

Modeling Methods and Results

Key-Lock dynamics
Enzymes are typically highly specific, decreasing the activation energy (Ea) (Figs 1 and 2) and
increasing the reaction rate (k) only for a small number of substrate molecules [9]. This link
between Ea and k is typically described by the empirically derived Arrhenius equation (see
below). The specific activity of the enzyme is often described as a “lock and key” [10] process in
which some region of the folded protein provides a complementary geometric shape to that of
the substrate [11,12] thus reducing the entropy of the interactions. We note that enthalpic
interactions such as Coulomb interactions are also maximized as the distance between sub-
strate and enzyme is decreased where, as noted in [12], “interactive enthalpy is estimated from
the sum of electrostatic and van-der-Waals interactions.” This permits binding that facilitates
the reaction often through complex intermediate transitory steps.

Here we will focus on the spatial interactions between enzyme and substrate. We will view
the catalyzed reaction as a single step of substrate! products (Figs 1 and 2) omitting for sim-
plicity the transient intermediate steps. We initially assume an enzyme density law rn = r(xn),
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n = 1,. . .,N with the proteins fixed at molecular positions xn = nΔx, n = 1,. . .,N. For simplicity,
a one dimensional case is temporarily assumed, and with constant position spacings Δx. These
constraints will be relaxed in subsequent sections.

Let the substrate pathway positions obey an unknown density law p(xn), n = 1,. . .,N on the
pairs of substrate particles that ordinarily constitute reactant molecules. Let these reactant mol-
ecules interact, or ‘bind,’ with the enzyme molecules. This defines an enzyme-substrate
complex.

It is shown (see Appendix) that this complex lowers the activation energy of the reaction.
One of the most important ways that an enzyme catalyzes any given reaction is through
entropy reduction: by bringing order to a disordered system. Thus, since entropy is a compo-
nent of Gibbs free energy, this free energy is lowered as well. This in turn is a component of the
activation energy Ea which, as mentioned above, is likewise lowered. These factors work to
increase the reaction rate. They also accelerate the reaction by providing a spatially specific
charge distribution that form bonds with substrate to accelerate the reaction process. Enzymes
also promote chemical reactions by bringing substrates together in an optimal orientation, lin-
ing up the atoms and bonds of one molecule with the atoms and bonds of the other molecule.

Fig 1. A simplified model of a reaction with and without an enzyme. Substrate B is yields products C and D with a release of free energy ER. Although
the overall reaction is thermodynamically favorable, there is an energy barrier (the activation energy [Ea]) that decreases the rate of the reaction (k). The
enzyme, through a key-lock geometric binding with the substrate, has a net effect of reducing the Ea and accelerating the reaction. As described in the
text, the information content of the enzyme is expressed geometrically by the formation of a shape within the protein that is precisely complementary to
the shape of the substrate. The information is, thus, converted to energy by reducing Ea (ΔEa).

doi:10.1371/journal.pone.0154867.g001
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This constitutes a lowering of local entropy, in particular the Kullback-Leibler or ‘cross’
entropy (as will be seen).

The initial interaction between enzyme and substrate is relatively weak, but these weak
interactions rapidly induce conformational changes in the enzyme that strengthen binding
[13]. These conformational changes are augmented by a ‘key and lock’ effect whereby the sub-
strate ‘key’molecule fits optimally close to the complementary 3 dimensional structure within
the enzyme ‘lock’ particle. This ‘key/lock’ effect tends to maximize the reaction rate.

Initially assuming a well-mixed distribution of enzymes and substrate of equal concentration,
we view the “lock” as constantly-spaced enzyme molecules of density profile rn = r(xn + Δx/2), xn
= nΔx, Δx small. These molecules are located at positions (n + 1/2)Δx with density values rn. And
by comparison, the substrate (or “key”) molecules are particle pairs having a local density profile
pn = p(xn) at positions xn = nΔx. These are thereby located halfway between corresponding lock
molecules rn. Each enzyme-substrate ‘complex’ locally lowers the activation energy of the

Fig 2. Information in living systemsmanifest through “temporal gradients”. Here the system contains initially two substrates and one enzyme. In
the absence of the enzyme, reaction C!G + H will proceed more rapidly because it has both lower final free energy and lower activation energy.
However, the enzyme lowers the Ea for reaction B! E + F. The information in the enzyme produces an observable gradient over time as the
concentrations of E and F are increased and B is decreased when compared to an uncatalyzed system. In contrast, because of its specificity, the enzyme
has no effect on the temporal evolution of the substrate and product concentrations of reaction C!G + H.

doi:10.1371/journal.pone.0154867.g002
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reaction so that overall activation energy is maximally lowered when all key particles are ‘closest’
geometrically to the corresponding lock particles.

This is exemplified in Figs 1 and 2.
Then, given a fixed enzyme path rn, the problem of minimizing activation energy becomes

one of geometry.What substrate reactant path pn obeys minimal distance from the fixed enzyme
path r(xn)?

Kullback-Leibler measure. We now need to choose a measure of the distance between the
two density paths. From the preceding, this distance is to be a minimum. One useful measure
is their Kullback-Leibler [14,15] ‘divergence,’ defined as

HKLðpjjrÞ ¼ SN
n¼1 pn ln

pn
rn

� �
: ð1aÞ

Although HKL is not formally a ‘distance’ (since it is not symmetric in p and r) it has many
properties of one and, for our purposes, is convenient to be regarded as such. It also obviously
has the form of an ‘entropy,’ and so can be termed ‘KL entropy’.

The KL distance between all enzymes of density rn = r(xn + Δx/2) and their corresponding
substrate molecules of density pn = p(xn) is to be minimized, obeying

HKLðpjjrÞ ¼ min: ð1bÞ

We are here analyzing a one-dimensional problem, i.e. where each xn and Δx is a scalar
value. But this ignores the vital question of relative orientation of key and lock molecules. That
is taken up at the end, and is an easy generalization of the one-dimensional approach.

This geometrical interleaving of the two types of molecule does represent a one-dimensional
form of a key-lock geometry. However, specifically what density function p(xn) should govern
the reactant pathway?

Derivation of optimum reactant pathway pn. Regarding all enzyme and reactant mole-
cules, this is assumed to obey principle (Eq 1a and Eq 1b). The reactant is also the substrate,
so we are seeking the substrate density function pn that has minimum KL distance from the
given enzyme pathway rn, n = 1,. . .,N. This is assumed to occur in the presence of the interlac-
ing (xn, xn + Δx/2) of coordinate positions defined above, and also the known physical con-
straints of the problem. The main one is that of known mean energy.

We seek the pathway position law pn that obeysHKL(p||r) =min., in the presence of the arbi-
trary, but fixed, enzyme pathway rn. (Note: This temporarily ignores the more recently
observed effect of “induced fit [16,17],” whereby the enzyme pathway changes as well to further
improve the fit. This is addressed below. The two laws pn, rn of course obey normalization

Snpn ¼ 1; Snrn ¼ 1; rn ¼ const:; n ¼ 1; . . . ;N: ð2Þ

(All sums are over the entire pathways.). Assume, as well, a fixed,meanmolecular bond
energy

SnPðEnÞEn ¼ SnpnEn ¼ kT;with PðEnÞ ¼ pn ð3Þ

by definition, κ Boltzmann’s constant and T a fixed energy. Energies En could, e.g., be due to
hydrogen bonds. Also, Eq (3) assumes ergodicity to hold. That is, the true statistical average
energy—the left-hand sum—equals the average energy along any one path—the second sum.
We will use this ergodic property below.

Net Optimization Problem. We therefore seek the reaction (or substrate) rate pn satisfy-
ing KL requirement Eq (1b) subject to four constraints Eqs (2) and (3) obeyed by pn and rn. By
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the method of undetermined multipliers, these satisfy the variational principle

Snpn ln
pn
rn

� �
þ ^1½S pn � 1� þ ^2½S rn � 1� þ þ ^3½S pnEn � kT� ¼ min: ð4Þ

Differentiating this @/@pn and equating it to zero gives as the condition for the constrained
minimum

1þ lnpn � lnrn þ ^1 þ ^3En ¼ 0: ð5Þ

Solving Eq (5)

pn ¼ rn exp½�1� ^1 � ^3En� ð6Þ

On this basis, for a given point n, the maximum probable local reaction rate pn � p(xn) is
proportional to the neighboring (at positions xn ± Δx/2) densities rn of the enzyme. This makes
sense since each enzyme is assumed to locally enhance the reaction, e.g. by strong hydrogen
bonding, and this enhancement becomes stronger the geometrically closer the reactant is to the
enzyme.

The rate pn of reaction in Eq (6) also falls off with the local molecular bonding energy En.
This also makes sense since the stronger the bond is the less probable it is that the molecule
breaks up and contributes to the desired reactant.

Derivation for Multi-dimensional Geometry. For optimum key-lock fit, the two mole-
cules must not only be optimally close but also each have a correct orientation. The approach
to this problem requires a generalization to the use three-dimensional variables xn � (x,y,z)n.
Here pn = p(x,y,z)n, etc. for rn and with Δx!Δx = (Δx,Δy,Δz)n. Also, the Kullback-Leibler dis-
tance is of the same form Eq (1a) as before,

SN
n¼1pðxnÞln

pðxnÞ
pðxn þ Dx=2Þ

� �
¼ min: ð7Þ

The identical algebra Eqs (3)–(6) follow as before, with boldface quantities replacing scalars,
but with the scalar En remaining in Eq (6) since energy is always a scalar quantity. However, an
important new interpretation arises for the effect Δx! 0. Acknowledging this to occur in
three dimensions requires the key and lock to now approach one another while in the same ori-
entation. This describes a true key-lock bond. Also, now the change of reactant path so as to
reduce activation energy Ea occurs in full three-dimensional space.

Note that principle Eq (7) is much more than simply a 3D version of principle (Eq 1a and
Eq 1b). Consider the 3D tissue produced by multiply-folding a long string of nucleotides. From
the form of Eq (7), the more regular the folding is, i.e. the more often p a given codon occurs at
neighboring points xn, the closer to 1 will be the ratios in the logarithm ln operation in Eq (7).
Therefore the smaller will be their contributions to Eq (7) after the ln is taken. Hence the
smaller will be the minimum value of HKL. Tissue with such low cross-entropy has low free
energy and a high state of order. This might account for the vital role played by protein folding
in augmenting living systems [6]. In turn, this emphasizes that HKL has direct biological signifi-
cance as a measure of cellular growth, despite being merely a geometrical measure.

Deriving the Arrhenius equation. The Arrhenius equation describes the dependence of
reaction rates upon temperature and is empirically-derived. No enzymes are presumed present.
Or equivalently, they are equally present at all reaction path positions [18]. Hence, we now
repeat use of the minimum Kullback-Leibler principle in the special case where all enzyme
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densities obey

rn ¼ r ¼ const: ð8Þ

Also, for simplicity we return to the one dimensional case of scalar coordinates xn. Recall
that we used the ‘ergodic hypothesis,’ that the statistics of E at any position xn equals that of E
over any one path xn, n = 1,. . .,N. On this basis, and using the last identity Eq (3), result Eq (6)
is, in the special case Eq (8)

PðEnÞ ¼ Kexp½�^3En�; K ¼ rexp½�1� ^1�: ð9Þ

We also found, at Eq (3), that the average< E> = kT. Using this in Eq (9) gives = ^3 =
K = 1/kT. Then

PðEnÞ ¼ ðkTÞ�1exp½�En=kT�; ð10Þ
the Boltzmann energy distribution law.

At this point it is assumed that if the energy En � Ea, a so-called ‘activation’ level of the
energy, the reaction occurs at the position xn. But we also assumed ergodicity to hold. There-
fore, the reaction occurs as often as event En � Ea occurs for any one n. This shows that for any
fixed energy density function p(En) the smaller Ea is the more energy events En occur or, equiv-
alently, the higher is the reaction rate.

Also, ergodicity allows us to now drop subscript n in Eq (10). Then using Eq (10) for p(E)
gives

PðE � EaÞ ¼
Z 1

Ea

dE PðEÞ ¼ ðkTÞ�1

Z 1

Ea

dE expð�E=kTÞ ¼ exp � Ea

kT

� �
: ð11Þ

Since each energy value E satisfying Eq (11) gives rise to a reaction product, this shows that
the reaction rate grows as the activation energy Ea decreases.

But the analysis has ignored the fact that the molecules of the reacting medium may have a
known prior probability A of being in the proper orientation to react. This probability should
multiply result Eq (11).

The result is that the net probability density, or reaction rate, obeys

k ¼ APðE � EaÞ ¼ A exp � Ea

kT

� �
; ð12Þ

The Arrhenius equation.
As we discussed, the optimum choice of enzyme path rn for accomplishing the desired reac-

tion can occur along an altered reaction path xn requiring a lower activation energy Ea. This is
shown by Eq (12) in two ways:, First, the required energy values E can be smaller; and second,
the resulting reaction rate k is higher. That Ea is, in fact, a minimum is shown in the Appendix
to follow from theHKL principle (Eq 1a and Eq 1b). Thus, theHKL principle derives both the
well-known rate effect Eq (12) and the fact that activation energy Ea tends to be a minimum
value.

Optimization of reactant path by quantum entanglement
In the preceding, only densities pn were optimized for a fixed enzyme density path rn. However,
further optimization can be made whereby the rn themselves are allowed to change so as to fur-
ther improve the key/lock fit. This is called “conformer selection” or “induced fit.”[18]. We
propose two effects that potentially accomplishing this.
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As noted above, enzyme function requires a tight geometric fit in which the atoms of the
amino acids in to protein and the substrate molecules are separated by distances that are mini-
mized. Suppose, as we found, their spacings Δx/2 are on the order of angstroms. At such molec-
ular distances, quantum effects can enter in, e.g. in the form of quantum entanglement. This is
even for semiclassical quantum effects [19]

Other authors [20], in fact, define the degree of global entanglement between two systems
pn, rn as the very value ofHKL(p||r) for the pn, rn obeying KL principle (Eq 1a and Eq 1b). That
is: The level of entanglement is defined by the minimized value of the Kullback-Leibler entropy,
which was our very criterion (Eq 1a and Eq 1b) for the choice of the pn.

This also makes intuitive sense: By Eq (1a) ‘distance’measure HKL(p||r) is mathematically at
its absolute minimum value, of zero, when all pn = rn. This describes perfect entanglement
between the the two systems pn, rn, so that interchanges

pn ⇆ rn ð13Þ
of the roles played by enzymes and reactants repeatedly take place. By the same token, finite
values, instead, ofHKL(p||r) allow only certain pairs of the pn, rn to effectively interchange roles.
It results, then, that over a number of such reactions the initial molecular reactant paths p(xn),
r(xn), n = 1,. . .,N can progressively wander off to totally different ones which further upgrade
the key/lock fit. These are also, in fact, energetically preferred since, by Eq (12), the progressively
lowered threshold energy Ea is more readily provided at each such entanglement.

Discussion
Here we investigate a mechanism by which living systems use information to maintain a low
entropy state far from thermodynamic equilibrium. We propose that the information encoded
in the inherited sequence of nucleotides in DNA is manifested geometrically in the 3 dimen-
sional shape of an enzyme determined by the lowest free energy state of the amino acid
sequence specified by the corresponding gene. However, we note that the 3 dimensional shape
of the enzyme can be extensively altered by post-translation modified. Thus, the geometry of
the enzyme represents a summation of heritable information represented by its amino acid
sequence and temporally variable information regarding the state of the cell and its environ-
ment which govern post translation modification.

Most simply, the information within the 3 geometry of the protein is manifested thermody-
namically by the reduction in the activation energy (Ea) of the reaction catalyzed by the
enzyme.

The mechanism by which information reduces the activation energy is geometric as, like a
“lock and key”, the shape of the enzyme precisely fits the shape of a substrate. We investigate
these spatial interactions using the Kullback-Leibler distance, Eq (1a), which is a generalization
of the Shannon mutual information. In fact in many textbooks the latter is derived as a special
case of the former. We demonstrate that the information of the enzyme “lock” vis a vis the
shape of the substrate “key” is the equivalent of the K-L distance. Maximum information corre-
sponds to a minimal K-L distance and, thus, the largest possible decrease in the Ea.

The observable effect of the enzyme-induced decrease in Ea is an increase in the reaction
rate k, often by several orders of magnitude. This is quantified by the empirically-derived
Arrhenius equation. Here we demonstrate that the Arrhenius equation can be derived from a
first principle that requires minimum Kullback-Leibler divergence, (Eq 1a and Eq 1b), between
a fixed enzyme density function and an unknown reactant function.

Here we also investigate the more recently proposed “induced fit”model in which the
enzyme geometry changes in response to the substrate thus further improving the geometric
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match. Interestingly, we find that the induced fit dynamic will occur over very small molecular
distances Δx, which will potentially permit quantum entanglement effects. In particular, we
find for small Δx the minimized KL entropy becomes proportional to the degree of quantum
entanglement of path functions pn, rn. This extends prior studies suggesting quantum effects in
proteins including enzymes [21–23].

Our investigation also provides general insights into the dynamics of biological information.
Although it is clear that information must play a central role in the growth of living systems,
the general principles that govern translation of information into biological order and function
are not well defined [24]. We note that an enzyme can alter the living system in ways similar to
the classic Maxwell’s demon gedanken [25,26]. For example, a protein within a membrane can
use its information (expressed as its 3 dimensional shape) to select and bind a substrate on one
side of the membrane and move it into the adjacent cellular compartment [27] thus creating a
spatial concentration gradient similar to the classic thought experiment [28]. However, unlike
the iconic demon, enzymes can also generate a gradient over time [29]. That is, by greatly accel-
erating the rate of reaction, the concentration of substrate and products over time will be larger
and smaller respectively when an enzyme is present compared to a system in which the infor-
mation content of the enzyme is absent.

Finally, we note that biological information in our study is highly contextual. This is appar-
ent, in Figs 1 and 2, as an enzyme-dependent quantitative change in activation energy Ea is
dependent on both the properties of the enzyme and the properties of the substrate. Thus, in
Fig 2, addition of an enzyme that is specific to the AB reaction, but not the AC reaction, lowers
Ea for the AB reaction relative to that for the AC. As a result the energy E of system AB will
much more often obey E� Ea and, hence, occur much more often than the reaction AC. The
information in the enzyme can, thus, be viewed as “kinetic” in reaction AB and only “poten-
tial” in the absence of the substrate. Restating this quantitatively, the information of an
enzyme is defined by the KL divergence between the enzyme and a potential reactant. Further,
the level of this information in each biological enzyme is converted to a thermodynamic prop-
erty by the change in Ea that it evokes. Thus, the information may be either ‘potential’ or
‘kinetic,’ depending on context. The kinetic information represents the increased probability
of a reaction and decreased Ea, when substrate to which it can bind is presence according to
principle (Eq 1a and Eq 1b). By contrast, the same enzyme but in the presence of substrate
with which it cannot react (or in the absence of substrate) carries only potential information.
It is interesting that such contextual dependence is lacking in, e.g., the pure Shannon entropy
[30] measure HS = −

R
p(x)lnp(x). The algebraic difference is that the KL information is of p in

the presence of context r whereas the Shannon HS is in p by itself, in the absence of any context
r. In summary, it is the contextual dependence of the KL information that provides its biologi-
cal significance and gives rise to its function.

Appendix

The HKL principle implies as well that activation energy Ea =minimum
Enzymes perform the critical task of lowering the activation energies Ea of chemical reactions
inside the cell. For example, it is obvious from the form of the rate Eq (12) that the reaction
rate k is maximized when energy Ea is a minimum value. But specifically what effect lowers Ea?
Could it, e.g., be our working principle Eq (1b) HKL(p||r) =minimum? If so, the principle
would now have doubled value. This is verified next.

It is convenient to work with the continuous version ofHKL Eq (1a), where the general coor-
dinates xn go over into continuous energy values En = E. Also use the route (setting rn = r =
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const.) Eq (8) to the Arrhenius equation. Then the principle Eq (1b) becomes

HKL ¼
Z

dEPðEÞln PðEÞ
r

� �
¼ min: ðA1Þ

where by Eq (10)

PðEÞ ¼ ðkTÞ�1 exp � E
kT

� �
: ðA2Þ

Expanding the ln in principle Eq (A1) gives directly

HKL ¼
Z

dEPðEÞlnPðEÞ � lnðrÞ
Z

dEPðEÞ ¼ min: ðA3Þ

Using expression Eq (A2) for P(E) in Eq (A3), and the normalization of P(E), give

HKL ¼
Z 1

Ea

dE exp � E
kT

� �
½� E

kT

� �
� lnðkTÞ� � ðkTÞlnðrÞ ¼ min: ðA4Þ

Why is Ea the lower integration limit? Since our aim centers on the value of rate k we only
integrate over those values of E that can contribute to k, and by Eq (12) this is the value Ea.

Dividing through Eq (A4) by kT and doing the integrations gives a condition

HKL

kT
� y ¼ exp � Ea

kT

� �
Ea

kT
þ 1

� �
� lnðkTÞ � lnðrÞ � min: ðA5Þ

To attain the required minimum inHKL through choice of Ea requires setting
@y
@Ea

¼ 0: Dif-

ferentiating Eq (A5) in this way gives a requirement

Ea

kT
exp � Ea

kT

� �
¼ 0: ðA6Þ

This is accomplished by either Ea = 0 or Ea =1. From the result Eq (12) for the reaction
rate k it is obvious that these activation energy values respectively maximize, or minimize, the
rate k. Of course the case Ea = 0 is preferred on the basis of maximum reaction rate. However,
our aim here is to show that this activation energy also follows from our overall principle (Eq
1a and Eq 1b) thatHKL =min. Since Eq (A5) gives HKL (proportional to y) we can use it to
judge if the usual requirement for attaining a minimum is satisfied, namely that the second
derivative @2y=@Ea

2 > 0: Taking this second derivative gives the anticipated result

@2y
@Ea

2
¼ 1

ðkTÞ2 > 0: ðA7Þ

Hence the case Ea = 0 both maximizes the reaction rate k and minimizes HKL as required.
By Eq (A5) zero activation energy gives a minimumHKL of value

HKL ¼ kTð1� lnðkrTÞÞ: ðA8Þ

Of course attaining activation energy Ea = 0 is not a usual case, but the analysis shows that
the closer the system gets to achieving it the higher the reaction rate is, and the smaller the KL
distance is between enzyme and substrate, i.e. the better does the key fit into the lock.
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