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This Special Issue of Toxins, entitled “Cellular Entry of Binary and Pore-Forming Bacterial Toxins,”
gives a sense of the recent advances in characterizing the functional and structural aspects of this
broad scientific problem that goes beyond the classical field of toxinology and microbiology and spills
into the general areas of biochemistry, biophysics, and molecular and cell biology. The contributions
to this Special Issue include several experimental articles, employing sophisticated techniques to
gain important insights into the mechanism of cellular entry [1–6]; a thought-provoking perspective
comment [7]; and two conceptual reviews, one on apicomplexan pore-forming toxins [8] and one on
clostridial binary toxins [9]. What have we learned about the field from this collection? Despite the
limited selection, some general features can be identified.

Deciphering complex pathways requires integration of various approaches. Cellular entry of bacterial
toxins utilizes a complex mechanism [8,9] that involves multiple protein partners interacting with
each other [3,9] and with a lipid bilayer [1,2,6]. Key players often undergo profound conformational
changes, both in aqueous [5] and membranous environments [1,2]. Characterizing these functionally
important conformational changes is a prerequisite for deciphering the mechanisms of cellular entry
on a molecular level. One of the biggest challenges in establishing the structure–function relationships
for bacterial toxins lies in their environment-dependent conformational lability. Consequently, even if
a high-resolution structure of the soluble conformation is well-characterized, the mechanism might
remain elusive, due to conformational rearrangements triggered by environment acidification and
membrane insertion, common for the endosome-dependent pathways. These challenges could be
met, for example, by careful examination of site-directed mutagenesis with a variety of functional
assays (e.g., for diphtheria toxin [6]), complemented with molecular modeling (e.g., for perfringolysin
O [1]). In another example, a sophisticated combination of cryo-electron microscopy, performed on
elaborately prepared nanodisc samples, and computer simulations is used to resolve the structure
of the pore of the anthrax toxin protective antigen in a lipid environment and in a complex with the
toxin’s lethal factor [2].

Structured vs. unstructured passageways through the membrane. Bridging cellular membranes is a key
step in the pathogenic action of both binary and pore-forming toxins. The former use their translocation
domains, containing various structural motifs, to ensure efficient delivery of the toxic component into
the host cell, while the latter act on the cellular membrane itself. In either case, the integrity of the
membrane is compromised via targeted protein–lipid and protein–protein interactions triggered by
specific signals, such as proteolytic cleavage and/or endosomal acidification. Several studies presented
in this Special Issue either explicitly describe the formation of the water-filled protein structures that
span the lipid-bilayer or implicitly evoke such structures, as a required part of the cellular entry
mechanism. Specific structural examples that include both binary (e.g., anthrax [2]) and pore-forming
toxins (e.g., perfringolysin O [1]) involve the insertion of the β-strands from multiple protein subunits
to form a barrel-like structure that bridges the lipid bilayer in a permanent way. A similar concept
has been evoked for other toxins as well, the translocation domains of which form α-helices in the
lipid bilayer. Specifically, the translocation domain of diphtheria toxin was often assumed to use
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the so-called open-channel state (OCS), formed by three transmembrane helices, as a translocation
pathway. The examination of both in vivo and in vitro activity of the several OCS-blocking mutants,
presented in this issue [6], revealed that the OCS is formed after the translocation, which is likely to
utilize an unstructured and possibly transient passageway. Certainly, more studies with other toxins
are needed before any general conclusions can be reached on the possible differences between the
actions of toxins that utilize α-helical vs. β-structure motifs in their membrane-interacting domains.
More studies are also needed to fully characterize the structural and thermodynamic aspects of the
conformational switching and membrane interactions involved in the cellular entry of bacterial protein
toxins. Deciphering the physicochemical principles underlying these processes is also a prerequisite for
the use of protein engineering to develop toxin-based molecular vehicles capable of targeted delivery
of therapeutic agents to tumors and other diseased tissues.
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