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Université, Institut Curie, CNRS, Paris, France

* leah.rosin@nih.gov (LFR); leielissa@niddk.nih.gov (EPL)

Abstract

Accurate chromosome segregation during meiosis is essential for reproductive success.

Yet, many fundamental aspects of meiosis remain unclear, including the mechanisms regu-

lating homolog pairing across species. This gap is partially due to our inability to visualize

individual chromosomes during meiosis. Here, we employ Oligopaint FISH to investigate

homolog pairing and compaction of meiotic chromosomes and resurrect a classical model

system, the silkworm Bombyx mori. Our Oligopaint design combines multiplexed barcoding

with secondary oligo labeling for high flexibility and low cost. These studies illustrate that Oli-

gopaints are highly specific in whole-mount gonads and on meiotic squashes. We show that

meiotic pairing is robust in both males and females and that pairing can occur through

numerous partially paired intermediate structures. We also show that pairing in male meio-

sis occurs asynchronously and seemingly in a transcription-biased manner. Further, we

reveal that meiotic bivalent formation in B. mori males is highly similar to bivalent formation

in C. elegans, with both of these pathways ultimately resulting in the pairing of chromosome

ends with non-paired ends facing the spindle pole. Additionally, microtubule recruitment in

both C. elegans and B. mori is likely dependent on kinetochore proteins but independent of

the centromere-specifying histone CENP-A. Finally, using super-resolution microscopy in

the female germline, we show that homologous chromosomes remain associated at telo-

mere domains in the absence of chiasma and after breakdown and modification to the syn-

aptonemal complex in pachytene. These studies reveal novel insights into mechanisms of

meiotic homolog pairing both with or without recombination.

Author summary

Meiosis is the specialized cell division occurring exclusively in ovaries and testes to pro-

duce egg and sperm cells, respectively. The accurate distribution of chromosomes (the

genetic material) during this process is essential to prevent infertility/sterility and develop-

mental disorders in offspring. As researchers are specifically unable to study the
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mechanisms regulating meiosis in depth in humans, identifying broadly conserved aspects

of meiotic chromosome segregation is essential for making accurate inferences about

human biology. Here, we use a sophisticated chromosome painting approach called Oli-

gopaints to visualize and study chromosomes during meiosis in the silkworm, Bombyx
mori. Using this method, we show that chromosome ends (telomeres) play a central role

in regulating interactions between maternal and paternal chromosome copies during both

sperm and egg development.

Introduction

Precise homolog pairing and unpairing during meiosis is essential for genetic recombination

and accurate chromosome segregation. Errors in chromosome segregation during meiosis can

lead to reduced fertility, miscarriages, or chromosomal disorders in progeny, such as Down or

Turner Syndromes [1]. Decades of research have gone into characterizing the synaptonemal

complex (SC), a ubiquitous, proteinaceous structure that holds homologs together during mei-

otic prophase [2, 3]. Yet how homologs find each other and come together in three dimen-

sional (3D) space is still poorly understood. One of the main reasons that homolog pairing has

remained such an enigma is the lack of cytological tools available for assaying chromosome-

and locus-specific pairing dynamics during meiosis. Several recent studies have taken advan-

tage of advances in super-resolution microscopy techniques, such as Structure Illumination

Microscopy (SIM) and Stochastic Optical Reconstruction Microscopy (STORM), to visualize

meiotic pairing in more detail than ever before [4–9]. However, these approaches have been

limited to studying pairing genome-wide by fluorescently labeling elements of the SC [5, 7–12]

or to visualizing small genomic loci by FISH [13–16].

Recent technological innovations in the design and synthesis of specialized DNA FISH

probes called Oligopaints have made visualizing whole, individual chromosomes or complex

sub-chromosomal loci in meiotic cells feasible. Unlike traditional BAC-based FISH probes,

Oligopaints are computationally designed based on genome sequence data [17, 18]. This

approach allows for only unique, single copy sequences to be labeled, significantly increasing

the specificity and resolution of FISH. Here, we leverage the flexibility of the Oligopaint design

to add barcodes to label either whole chromosomes or different sub-chromosomal loci using

the same set of oligos, as previously described [19]. This multiplexed approach allows for dif-

ferent highly specific FISH probes to be generated at low cost and high throughput. Oligo-

paints and related oligo-based FISH approaches have previously been used for karyotype

analyses or characterization of interphase chromosome dynamics in Drosophila, C. elegans,
mammals, and plants [16, 19–31]. Recently, similar approaches have also been applied to the

study of small chromosomal loci during meiosis [32, 33], but Oligopaints have never before

been used to characterize compaction and pairing of multiple, whole chromosomes during

meiosis. Finally, this is the first study to use Oligopaints to visualize chromosomes in Lepidop-

tera (moths and butterflies).

Here, we combine Oligopaint DNA FISH with one of the first model systems used to study

meiotic chromosomes, the silkworm moth. Bombyx mori are holocentric insects, with

centromeres that form all along the chromosome during mitosis [34–37]. The holocentric

mitotic configuration is also seen in many plants and nematodes, including C. elegans [38–40].

However, the holocentric chromosome configuration prevents accurate biorientation of

bivalents formed after recombination and is therefore incompatible with canonical meiosis

[40, 41]. Instead, chromosomes in holocentric organisms often display “telokinetic” or
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“telokinetic-like” chromosomes during meiosis, where kinetochore activity is restricted toward

telomere domains [40, 42–47]. In C. elegans, crossover position dictates which telomere faces

poleward to connect to the spindle microtubules [42, 45, 48–50]. A similar telokinetic mecha-

nism for segregating meiotic chromosomes was also previously hypothesized to occur in B.

mori [51–53] but has never before been directly observed. Furthermore, meiotic segregation in

C. elegans occurs in the absence of the centromere-specifying factor Centromere Protein A

(CENP-A) [50]. Instead, microtubules either run parallel to chromosomes to facilitate segrega-

tion or connect directly to cup-shaped kinetochores that form at chromosome ends [46, 54].

Interestingly, CENP-A is entirely absent from the genomes of butterflies and moths [55]. How

moths and butterflies segregate chromosomes during meiosis in the absence of CENP-A

remains to be explored.

Unlike B. mori spermatogenesis, which has been reported to support crossovers and canon-

ical pairing, oogenesis in B. mori is unconventional. Chiasmata are not observed in female

meiosis in silkworms. Furthermore, the central elements of the SC break down just after

pachytene (one of the sub-stages of meiotic prophase I), and the lateral elements of the SC are

thought to be completely remodeled to form masses of protein (modified SC) between the two

homologs [53, 56–58]. This modified SC is reported to be greater than one micron in width by

the end of prophase I, thereby ultimately undoing tight end-to-end homolog pairing while still

holding homologs together until anaphase I [58]. Thus, pairing along the entire length of the

chromosomes is not expected after pachytene.

Our studies here illustrate that Oligopaints are robust and specific in germline cells and can

be used to visualize chromosomes even in unconventional model systems with draft genomes.

Using this FISH-based approach, we demonstrate that pairing in early meiotic prophase in the

B. mori male germline is initiated at chromosome ends, with gene-rich chromosome ends

more often initiating pairing. We further show that telomeric regions face poleward during

metaphase I and act as localized kinetochores during male meiosis, and both telomeres on any

given chromosome harbor the ability to act as local kinetochores. Additionally, using immu-

nofluorescence combined with FISH, we reveal that the DNA-binding kinetochore protein

Centromere Protein T (CENP-T) is present on meiotic chromosomes and likely facilitates

microtubule attachments at metaphase I. Finally, using super-resolution microscopy com-

bined with Oligopaints in the female germline, we show that homologs remain paired at telo-

mere regions throughout meiotic prophase I even after remodeling of the SC. Overall, we

provide the first extensive characterization of whole and sub-chromosome dynamics during

meiosis in any species, thereby pioneering the use of Oligopaints as a tool for studying meiotic

pairing and progression.

Results

B. mori Oligopaint design

To visualize chromosomes in the silkworm B. mori, we designed and generated Oligopaint

libraries targeting six of the 27 autosomes and the Z sex chromosome. We chose chromosomes

of varying size and gene density (Table 1) so we could explore whether these properties affect

the dynamics of meiotic chromosomes. We were also interested in examining the sex chromo-

somes to determine whether they behave differently than autosomes in meiosis. Our Oligo-

paint libraries were designed using the Oligominer pipeline [18, 59] based on the updated

2019 silkworm genome assembly [60]. Oligos were designed with 80 bp of homology and map

to the genome only once (therefore only labeling unique, single copy sequences). As the W sex

chromosome is largely composed of repetitive sequences, it was not suitable for the Oligopaint

design strategy utilized here, and therefore we focused on autosomes and the Z chromosome.
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This Oligopaint design approach yielded a maximum probe density of approximately 3 oli-

gos per kilobase (kb) of DNA. For most chromosomes in our analysis, we further reduced this

density to 1 or 1.5 probes per kb (Table 1), a probe density that has been shown previously to

be sufficient for whole chromosome paints [30]. The resulting oligos are fairly evenly distrib-

uted along each chromosome, with gaps in regions where repetitive sequences are more abun-

dant (Fig 1A–1C). These oligo libraries were then multiplexed as described previously [19]

with one or more barcode sequences to allow for the amplification of individual chromosomes,

sub-chromosomal stripes, and/or active and inactive chromatin domains (Tables 1–5 and Figs

1B, 1C, and S1). In total, the libraries consisted of 191,536 oligos (designated as “primary oli-

gos”) up to 160 bp in length, which includes the 80 bp of homology, up to two unique 20 bp

sub-chromosomal barcodes, and two 20 bp whole chromosome universal barcodes (Fig 1D).

During the PCR amplification steps, secondary oligo binding sites are added to the primary

oligos, to which fluorescently labeled secondary oligos anneal during the FISH protocol (Fig

1E; [21, 30]). This method allows for increased flexibility when combining probes for multi-

channel imaging. Together, this multiplexed probe design combined with secondary oligo

labeling both increases the efficiency of Oligopaint labeling and reduces the cost of Oligopaint

synthesis.

B. mori Oligopaints are highly specific

As the B. mori genome used to design the Oligopaints is in a semi-draft state (assembled into

chromosomes but with many unmapped contigs), we first tested the specificity of our B. mori
chromosome paints using karyotype analysis. Due to the small, holocentric nature of silkworm

chromosomes, mitotic chromosomes are highly compact, while chromosomes in meiotic pro-

phase I (pachytene sub-stage; Fig 2A; reviewed in [61]) are more linear due to synapsis (S2

Fig)[62]. Therefore, meiotic chromosomes are better suited for karyotype analyses. As silk-

moths have a very short adult lifespan (only 5–7 days), meiosis begins early in the larval stages

[63]. Hence, meiotic chromosomes from late 4th or early 5th instar larval testes and ovaries

were visualized using a squashing technique. This approach uses a hypotonic shock combined

with physical squashing to burst cells and disperse nuclei onto the slide, retaining only a mini-

mal amount of spatial and temporal information from the tissue. A detailed description of our

meiotic squash protocol can be found in the Materials and Methods. Since homologs are

paired during most sub-stages of meiotic prophase I (Fig 2A), we expected a single fluores-

cence signal per chromosome for a given probe.

Using our whole chromosome paints, three chromosomes at a time were labeled on meiotic

squashes from testes and ovaries. We were able to easily identify cells in the pachytene stage,

when homologs are tightly paired end-to-end, using a combination of DAPI structure and

chromosome morphology. Indeed, we observed singular and distinct fluorescence signals for

Table 1. Chromosome and chromosome paint information.

Chrom chromosome size (bp) size painted (bp) paint start paint stop density (probes/kb) total # of oligos gene density (genes per Mb)

4 18737234 18639239 282 18639521 1.5 26841 39.7

7 13944894 13868845 35931 13904776 3 42625 36.0

15 18440292 18354755 21089 18375844 1 17756 43.6

16 14337292 14275583 27737 14303320 1.5 20190 43.7

17 16840672 16806551 9415 16815966 1.5 23834 38.3

23 21465692 21339065 123188 21462253 1.5 30506 35.8

Z/1 20666287 20578020 37936 20615956 1.5 29784 32.2

https://doi.org/10.1371/journal.pgen.1009700.t001
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each tested chromosome at pachytene, where DNA is in a loose lampbrush configuration (Fig

2B–2E and 2G). In our larval testes squashes, we were also able to identify cells earlier in mei-

otic prophase I before pairing has completely occurred, in which the DAPI stain shows a dense

lampbrush structure (leptotene/zygotene; Fig 2F), as well as cells in late prophase (diplotene/

diakinesis; Fig 2H) in which chromosomes are more condensed, paired, and have diffuse

DAPI signal. Of cells in Prophase I in late 4th-early 5th instar larval testes, the majority are in

pachytene (Fig 2I). Moreover, we were able to identify cells in which chromosomal bivalents

are compacted and aligned at the metaphase plate (metaphase I, Fig 2J). Finally, in addition to

meiotic cells, we observed interphase and mitotic cells in our testes squashes harboring two

distinct, round fluorescence signals per chromosome, indicating that homologs are unpaired

in the majority of non-meiotic cells in B. mori (Figs 2K, S3, and S4).

In larval ovary squashes, we were also able to identify linear, paired pachytene chromo-

somes (Fig 2E). At this early pachytene stage, both oocyte- and nurse cell-destined germ cells

pair their homologs. Subsequently during differentiation, nurse cell chromosomes begin to

unpair. Post-pachytene nurse cells could be identified in our squashes by their unpaired but

proximal, condensed chromosomes (S5 Fig; [57]). Interestingly, when we attempted to use

these paints to characterize chromosome morphology in a B. mori ovary-derived cell line,

BmN4, we found that our probes partially labeled multiple chromosomes, suggesting that the

karyotype in these cells has undergone dramatic rearrangements and possible ploidy changes

compared to the genome-derived strain (S6 Fig). This observation further validated the speci-

ficity of our probes and their ability to detect translocations. Together, these data not only

illustrate that our Oligopaint libraries are specific but also validate the B. mori genome

assembly.

Fig 1. B. mori Oligopaint design. (A-C) Schematic of Oligopaints in B. mori. Whole chromosome Oligopaints are shown in A, stripe Oligopaints in B,

and active/inactive Oligopaints in C. White regions indicate the absence of oligos (A) or regions not labeled by the respective barcode indices (B, C). (D)

Schematic of primary probe design, showing whole chromosome barcodes and two unique barcodes (for stripes or active/inactive domains). (E)

Schematic for Oligopaint DNA FISH assay with labeled secondary oligos. First, ordered oligos are amplified with primers containing barcode of interest

and secondary oligo binding site, generating primary oligos. Primary oligos are then annealed to DNA and labeled with secondary oligos (shown in green).

https://doi.org/10.1371/journal.pgen.1009700.g001

Table 2. Stripe sub-library paint information.

Chrom. and stripe paint start paint stop Stripe size (Mb)

7 tel1 35931 2809682 2.77

7 mid 5587874 8357288 2.76

7 tel2 11131025 13904776 2.77

15 tel1 21089 3684775 3.66

15 mid 7380341 11061106 3.68

15 tel2 14748412 18375844 3.62

16 tel1 27737 2865990 2.84

16 mid 5732698 8598132 2.87

16 tel2 11464265 14303320 2.84

23 tel1 123188 1638259 1.51

23 mid 9909172 11556867 1.65

23 tel2 19815237 21462253 1.65

Z tel1 37936 1589202 1.55

Z mid 9538407 11119201 1.58

Z tel2 19078122 20615956 1.53

https://doi.org/10.1371/journal.pgen.1009700.t002
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Table 3. Ch7 Active and inactive chromatin domains paint information.

Domain Start Stop Size (bp)

inactive 35931 800000 764070

active 800001 900000 100000

inactive 1000001 1100000 100000

active 1100001 1250000 150000

inactive 1300001 1500000 200000

active 1500001 1600000 100000

inactive 1600001 1700000 100000

active 1700001 1850000 150000

inactive 1850001 1900000 50000

active 1950001 2000000 50000

inactive 2000001 2300000 300000

inactive 2400001 2600000 200000

active 2600001 2700000 100000

inactive 2700001 3350000 650000

active 3400001 3650000 250000

inactive 3650001 3900000 250000

active 3900001 4000000 100000

inactive 4000001 4550000 550000

active 4550001 4650000 100000

inactive 4650001 4950000 300000

active 4950001 5400000 450000

inactive 5450001 5800000 350000

active 5900001 6050000 150000

inactive 6050001 6250000 200000

inactive 6300001 6450000 150000

active 6450001 6550000 100000

inactive 6550001 6650000 100000

active 6700001 6800000 100000

active 6850001 7150000 300000

inactive 7150001 7400000 250000

active 7400001 7600000 200000

inactive 7600001 7900000 300000

active 7950001 8200000 250000

inactive 8250001 8750000 500000

inactive 8800001 9050000 250000

active 9050001 9300000 250000

inactive 9350001 9400000 50000

active 9400001 9550000 150000

inactive 9650001 10800000 1150000

active 10850001 11100000 250000

active 11150001 11400000 250000

inactive 11400001 11650000 250000

active 11650001 11950000 300000

inactive 11950001 12300000 350000

active 12300001 12600000 300000

inactive 12600001 12700000 100000

active 12700001 12750000 50000

(Continued)
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Table 3. (Continued)

Domain Start Stop Size (bp)

inactive 12800001 12950000 150000

active 12950001 13150000 200000

inactive 13150001 13250000 100000

active 13350001 13450000 100000

inactive 13500001 13650000 150000

active 13700001 13849955 149955

https://doi.org/10.1371/journal.pgen.1009700.t003

Table 4. Ch15 Active and inactive chromatin domains paint information.

Domain Start Stop Size (bp)

inactive 21089 200000 178912

active 250001 850000 600000

active 900001 1000000 100000

inactive 1000001 1400000 400000

active 1400001 1950000 550000

inactive 1950001 2250000 300000

active 2250001 2550000 300000

inactive 2550001 2800000 250000

active 2850001 3200000 350000

inactive 3200001 3500000 300000

active 3550001 3850000 300000

inactive 3850001 3900000 50000

active 3950001 4100000 150000

inactive 4100001 4250000 150000

active 4250001 4350000 100000

inactive 4350001 4650000 300000

active 4650001 4750000 100000

inactive 4750001 4950000 200000

inactive 5000001 5150000 150000

active 5150001 5250000 100000

inactive 5300001 5350000 50000

active 5350001 6100000 750000

inactive 6100001 6200000 100000

active 6250001 6500000 250000

inactive 6500001 6700000 200000

active 6700001 6850000 150000

inactive 6900001 7100000 200000

active 7100001 7300000 200000

inactive 7300001 7550000 250000

active 7550001 7800000 250000

inactive 7800001 8100000 300000

active 8100001 8300000 200000

inactive 8400001 8650000 250000

active 8650001 8750000 100000

inactive 8750001 8800000 50000

active 8850001 8900000 50000

(Continued)
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Detection of stripe and chromatin state sub-libraries

While the specificity of our whole chromosome paints indicated that the B. mori genome is

accurately assembled at the chromosome level, we needed to validate the intra-chromosomal

genome assembly and in turn, the specificity of our sub-chromosomal paints. For this, we

again turned to pachytene squashes in the male germline, where the linear nature of chromo-

somes allowed us to verify the linear order of our probes. We started with the stripe sub-librar-

ies, wherein selected chromosomes were sub-divided into 3 Mb or 1.5 Mb domains,

depending on the chromosome (Table 2 and Fig 1B). The first, middle, and last stripes were

labeled with secondary oligos to visualize three stripes along each chromosome (Figs 1B and

3A–3E; telomere 1 (tel1), middle (mid), and telomere 2 (tel2), respectively). FISH with these

Table 4. (Continued)

Domain Start Stop Size (bp)

inactive 8900001 9100000 200000

active 9100001 9500000 400000

inactive 9500001 9550000 50000

active 9600001 9750000 150000

active 9800001 9950000 150000

inactive 10000001 10500000 500000

active 10500001 11200000 700000

active 11350001 11400000 50000

inactive 11400001 11500000 100000

active 11500001 11950000 450000

inactive 11950001 12000000 50000

active 12050001 12200000 150000

inactive 12200001 12250000 50000

active 12300001 12500000 200000

inactive 12500001 12600000 100000

active 12600001 12850000 250000

inactive 12850001 12950000 100000

active 12950001 13400000 450000

inactive 13450001 13600000 150000

active 13650001 13750000 100000

inactive 13750001 14150000 400000

inactive 14200001 14850000 650000

active 14900001 15050000 150000

inactive 15100001 15250000 150000

active 15300001 15500000 200000

inactive 15550001 15600000 50000

active 15600001 15750000 150000

inactive 15750001 16000000 250000

inactive 16050001 16350000 300000

inactive 16400001 17850000 1450000

inactive 17900001 18100000 200000

active 18150001 18200000 50000

inactive 18200001 18250000 50000

active 18300001 18350000 50000

inactive 18350001 18375844 25844

https://doi.org/10.1371/journal.pgen.1009700.t004
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Table 5. Ch16 Active and inactive chromatin domains paint information.

Domain Start Stop Size (bp)

inactive 27737 50000 22264

active 50001 150000 100000

inactive 150001 250000 100000

active 250001 350000 100000

inactive 350001 650000 300000

active 700001 1350000 650000

inactive 1400001 1700000 300000

active 1700001 2300000 600000

inactive 2300001 2400000 100000

active 2400001 2700000 300000

inactive 2700001 3200000 500000

active 3200001 3600000 400000

inactive 3600001 4050000 450000

active 4050001 4200000 150000

inactive 4200001 4500000 300000

active 4500001 4600000 100000

active 4700001 4750000 50000

inactive 4750001 4800000 50000

active 4900001 4950000 50000

active 5000001 5250000 250000

inactive 5250001 5600000 350000

active 5600001 6000000 400000

inactive 6000001 6150000 150000

active 6200001 6250000 50000

active 6300001 6500000 200000

active 6550001 6650000 100000

inactive 6650001 6850000 200000

active 6850001 7000000 150000

inactive 7050001 7950000 900000

inactive 8000001 8500000 500000

active 8550001 8750000 200000

inactive 8800001 8900000 100000

active 8900001 9400000 500000

inactive 9400001 9450000 50000

active 9500001 10100000 600000

inactive 10100001 11450000 1350000

active 11450001 11550000 100000

inactive 11550001 11900000 350000

active 11950001 12250000 300000

inactive 12250001 12400000 150000

active 12400001 12500000 100000

inactive 12500001 12700000 200000

active 12750001 13200000 450000

inactive 13250001 13800000 550000

active 13800001 14100000 300000

inactive 14100001 14303320 203320

https://doi.org/10.1371/journal.pgen.1009700.t005
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stripe paints for ch15 in pachytene squashes from larval testes revealed a singular focus for

each stripe, with the tel1, mid, and tel2 domains positioned in the predicted order along the

linear chromosome (Fig 3A). This was also true for ch7, ch16, ch23, and chZ (Fig 3B–3E).

To test the specificity of our transcriptionally active and inactive chromatin domain paints,

we labeled all three chromosomes with this barcode index (ch7, 15, and 16) at the same time

on larval testes pachytene squashes. This analysis revealed three separate linear chromosomes

with distinct banding patterns corresponding to the respective paint schematic (Figs 1 and

3F). Together, these results indicate that the intra-chromosomal assembly for these chromo-

somes is highly accurate and our paints are specific for their target chromosomal domains.

Homolog pairing in early meiotic prophase is not synchronous

When examining the images of whole chromosome paints on meiotic squashes from testes, we

noticed a wide variety of partially paired chromosome configurations (Figs 2F and 4A). We

therefore attempted to quantify these configurations to determine the prevalence of each in

order to ascertain whether they may be biologically relevant. We broadly classified the most

common partially paired configurations as linear with loops, forked, circular, or lollipop (Fig

4A and 4B). Interestingly, the forked and circular configurations were observed most fre-

quently for all analyzed chromosomes (Fig 4B). Furthermore, not all chromosomes within a

single cell pair simultaneously, as many cells harbor some paired and some unpaired chromo-

somes (Fig 4C–4E). When analyzing three chromosomes at a time, less than 10% of cells show

no pairing between any three examined chromosomes, while more than 40% show pairing

between all three visualized homologous pairs (Fig 4D).

To determine if certain chromosomes more frequently initiate pairing earlier than others,

we quantified which chromosome initiated pairing in the cells in which only one of the three

labeled chromosome sets had begun to pair. This analysis revealed that large, gene-rich chro-

mosomes (ch15, 17, and 4; Fig 4E) more frequently initiate pairing before both small chromo-

somes (ch7 and ch16) and large, gene-poor chromosomes (ch23 and chZ). Notably, no cells

were observed with chZ pairing before any given autosomal chromosome, suggesting sex chro-

mosome pairing may be delayed compared to autosome pairing.

Next, we sought to use our stripe paints to better understand the circular and forked chro-

mosome configurations. In addition to identifying pachytene cells (Fig 3), we were able to

identify cells in all stages of meiosis I up to metaphase I as well as cells in interphase and mito-

sis using the stripe paints (Figs 5A and S7). By examining chromosome configurations in zygo-

tene nuclei, we found that chromosomes in the forked configuration pair at a single telomere

domain (Fig 5B), while chromosomes in the circular configuration harbor pairing at both

Fig 2. Whole chromosome Oligopaints in B. mori 5th instar germline squashes. (A) Schematic of early meiosis I (prophase I and metaphase I). One pair of

homologous chromosomes is shown (red = paternal; blue = maternal). Prophase I is typically subdivided into five distinct stages: leptotene, zygotene, pachytene,

diplotene, and diakinesis. Briefly: in leptotene, replicated chromosomes are reorganized and compacted into a linear scaffold structure. In zygotene, synapsis begins
between the homologous chromosomes. In pachytene, synapsis is complete (black dots represent the synaptonemal complex holding the homologs together). This stage is
also when crossing over can occur. In diplotene, the homologs repulse, condense further, and the SC breaks down. The homologs remain attached via chiasma
(crossovers). Finally, in diakinesis, chromosome condensation and cruciform bivalent formation is nearly complete as the cell prepares for metaphase I. Arrows in

metaphase I schematic indicate the assumed direction of spindle poles based on the direction of the metaphase plate. (B-E) Pachytene cells labeled with three whole

chromosome Oligopaints, as indicated. B-D, larval testes. E, larval ovary. Scale bars = 10 μm. DAPI is shown in gray. F-H) Meiotic prophase I cells from larval testes

squashes with whole chromosome paints for ch7 (magenta), ch15 (orange), and ch16 (green). Boxes indicate subsequent panels as indicated. DAPI is shown in gray.

(F) Leptotene/zygotene cells, with unpaired, decondensed chromosomes and a dense lampbrush DNA stain. (G) Pachytene cells, with paired, linear, and relatively

decondensed chromosomes and a loose lampbrush DNA stain. (H) Diplotene/diakinesis cells, with paired, less linear and more compact chromosomes and a diffuse

DNA stain. (I) Quantification of prophase cell staging from late 4th-early 5th instar larval testes. n = 3 testes were analyzed. Error bars show mean and standard

deviation between testes. (J) Metaphase I cells, with paired homologs condensed and aligned along the metaphase plate. Arrows indicate the direction of spindle

poles. (K) Mitotic cells from larval testes, with chromosomes condensed and aligned along the metaphase plate but with unpaired homologs. Arrows indicate the

direction of spindle poles.

https://doi.org/10.1371/journal.pgen.1009700.g002
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telomere domains but not the middle domain (Fig 5C and 5D). This telomere-telomere pair-

ing in circular configurations includes both head-to-head pairing (tel1 paired with tel1 and

tel2 paired with tel2, Fig 5C) as well as head-to-tail pairing (tel1 paired with tel2, Fig 5D), with

head-to-head pairing being significantly more prevalent (Fig 5E).

The finding that both forked and circular chromosome pairing structures include paired

telomere domains led us to predict that pairing may be initiated at chromosome ends. To test

this hypothesis, we quantified the fraction of zygotene cells exhibiting pairing in only a single

stripe domain (tel1, mid, or tel2) for four autosomes and chZ. In agreement with our predic-

tion, we found a significant majority of cells harboring pairing at only one of the two telomere

domains as opposed to pairing at only the middle domain (Fig 5F). Interestingly, some chro-

mosomes showed a significant bias for pairing at one telomere domain versus the other, with

ch15 pairing in the tel1 domain most often and ch23 pairing in the tel2 domain most fre-

quently (Fig 5F). We investigated differences between the two chromosome ends on these

chromosomes and found a significant bias in the distribution of genes along these chromo-

somes compared to the other chromosomes in our analyses, with gene-rich chromosome ends

correlating with increased pairing initiation (Figs 5G and S8). This result, combined with our

previous finding that large, gene rich chromosomes pair earlier, suggests that transcription

may play an important role in pairing initiation in Bombyx. Interestingly, chZ does not

follow this trend, as there is a slight bias in the distribution of genes toward the tel1 domain

but a slight increase in pairing frequency of the tel2 domain. In agreement with our

earlier finding that chZ pairs later than autosomes, this result suggests that sex chromosome

pairing may be governed by different mechanisms than autosomal pairing, which may be

transcription-based.

Telomeres face poleward at random and recruit CENP-T at metaphase I in

larval testes

When analyzing pairing initiation with our stripe paints, we also noted that traditional cruci-

form bivalents are formed at metaphase I. These bivalents are highly reminiscent of those seen

in meiosis in the nematode C. elegans, with one telomere remaining paired and the other telo-

mere facing poleward (Fig 5H, reviewed in [44]). While this “telokinetic” chromosome config-

uration was previously hypothesized to occur in B. mori meiosis [51–53], it has never before

been directly observed. In C. elegans, either telomere on any given chromosome can harbor

kinetochore activity, and both do so with equal probability, depending on where crossovers

form during meiotic prophase I [42, 48]. Additionally, this telokinetic kinetochore activity is

independent of the centromere-specifying histone CENP-A [46, 50, 54].

We first wanted to determine if both telomeres can also act as kinetochores at metaphase I

in B. mori. One possibility is that the pairing bias we observed for prophase I persists through

metaphase I such that gene-rich telomeres are more likely to remain paired and thus gene-

poor telomeres are more likely to be functional kinetochores. To test this hypothesis, we ana-

lyzed metaphase I bivalents in larval testes squashes using our stripe paints for ch7, 15, 16, 23,

and Z. Quantification of telomere orientation at the metaphase plate revealed that approxi-

mately half of metaphase I cells harbor pairing in the tel1 domain and half harboring pairing

Fig 3. Stripe and active/inactive chromosome paints in B. mori 5th instar testes squashes. (A) Left: Schematic of stripe paints for ch15, with tel1 in

cyan, mid in yellow, and tel2 in magenta. Right: Pachytene cells labeled with ch15 stripe paints. (B-E) Left: Schematic of stripe paints for ch7, ch16, ch23 or

chZ. Right: Representative pachytene nucleus labeled with stripe paints shown on left. (F) Left: Schematic of active/inactive paints for ch7, 15, and 16.

Active domains are shown in green, and inactive domains are shown in red. Right: Representative pachytene nucleus labeled with paints for all 3

chromosomes.

https://doi.org/10.1371/journal.pgen.1009700.g003
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Fig 4. Whole chromosome Oligopaints in zygotene-pachytene transition show a variety of folding and pairing configurations. (A)

Oligopaints for ch16 (green) or ch15 (orange) in representative zygotene nuclei showing the most prevalent partially paired

chromosome configurations during pairing initiation. Dashed line approximates the nuclear edge. (B) Frequency histogram showing the

fraction of cells harboring chromosomes in each partially paired configuration for the indicated chromosome. Statistics, Mann-Whitney

test with each chromosome as a replicate. (C) Oligopaints for ch16 (green) and ch15 (magenta) in representative zygotene nuclei

showing asynchronous pairing initiation. Top: Ch16 has begun pairing while ch15 remains entirely unpaired. Bottom: Ch15 is nearly
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in the tel2 domain for all tested chromosomes, including chZ (Fig 5I). The unpaired telomere

domain faces poleward, suggesting that like nematodes, B. mori telomere regions likely act as

localized kinetochores during meiosis. This result indicates that, while pairing initiation shows

a bias toward gene-rich telomeres, the orientation of chromosomes in the metaphase I bivalent

is not biased, with both telomeres having an equal probability of either remaining paired or

facing poleward.

Next, we repeated the experiment using ch7 stripe paints in whole mount late 5th instar lar-

val testes to look at metaphase I telomere orientation in the native cellular context. This less

invasive whole mount approach also allowed us to maintain critical spatial and temporal infor-

mation and to better visualize germline development as a whole. As predicted based on our

above and previous findings [53], in addition to meiotic cells, 5th instar larval testes also harbor

mitotic cells that have unpaired homologs that highly resemble those seen in whole-mount

embryos and testes squashes (Figs 6A–6C1, S7, and S9) and primary spermatocytes at all stages

of meiosis I (Fig 6A–6D). Interestingly, B. mori and other Lepidopteran insects utilize two dis-

tinct spermatogenic pathways, ultimately resulting in apyrene sperm (without nuclei, which

are thought to act as support cells for sperm migration [64]) and eupyrene sperm (with nuclei

[64–70]). In whole-mount testes, we were able to clearly identify eupyrene secondary sper-

matocyte bundles (Fig 6D3) and mature eupyrene sperm (S10 and S11 Figs). Additionally, we

identified secondary spermatocyte bundles apparently apyrene-destined, where some cells

have no DNA, and the FISH signal is instead diffuse in the cytoplasm. This observation sug-

gests that the cells in these bundles are beginning the process of nuclear degradation (Fig

6D4). Importantly, quantification of metaphase I bivalent formation in whole mount testes

was completely in agreement with our findings from squashes, showing ch7 tel1 paired in 47%

and ch7 tel2 paired in 53% of cells (Fig 6D2).

Finally, we wanted to interrogate how these bivalents attach to the meiotic spindle. While

CENP-A is absent from the B. mori genome [55], mitotic kinetochore recruitment instead

requires the DNA-binding protein CENP-T [34]. To determine if CENP-T is present on mei-

otic chromosomes or if microtubule attachment is independent of CENP-T, we performed co-

immunofluorescence/FISH with anti-CENP-T and anti-Tubulin antibodies plus ch23 Oligo-

paint on dissociated cell cytospreads from late 4th instar larval testes. This cytocentrifuge-

based approach allowed for clearer visualization of kinetochore/microtubule attachments, as

chromosomes become more spaced during the centrifugation process (S12A and S12B Fig).

FISH for a single chromosome enabled us to distinguish between meiotic and mitotic cells

(one versus two FISH signals). This experiment revealed that indeed, CENP-T is present on

meiotic chromosomes and therefore may facilitate attachment to microtubules. Interestingly,

using super-resolution microscopy, we found that these kinetochores are more canonical than

the cup-shaped kinetochores observed in C. elegans meiosis [50], with a single kinetochore

structure forming at the microtubule-proximal end of each chromatid (S12C Fig). Together,

these findings suggest that B. mori chromosomes form traditional bivalent structures at meta-

phase I with localized CENP-T-based kinetochore activity restricted to one telomeric region at

random.

completely paired while ch16 remains unpaired. Dashed line approximates the nuclear edge. (D) Quantification of pairing initiation for

three chromosomes at a time in cells with zygotene DAPI morphology and linear chromosome morphology. (E) Quantification of which

chromosome is initiating pairing in nuclei where only one of the three visualized chromosomes is partially paired (while the other two

chromosomes show no contact between homologs). Chromosomes are ordered smallest to largest. Gray outline indicates gene-poor

chromosomes, while black outline indicates gene-rich chromosome. Statistics, Fisher’s Exact Test comparing pairing initiated versus

uninitiated. For all quantification, ���p<0.0001, ��p<0.001, �p<0.01. All data were collected from n = 2–3 testes squashes per

chromosome.

https://doi.org/10.1371/journal.pgen.1009700.g004
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Homolog pairing at chromosome ends is persistent in B. mori female larval

ovaries

In contrast to what we and others have observed in B. mori males, homolog pairing in females

is reported to be unconventional, without chiasma formation and with the SC partially break-

ing down and transforming into a large proteinaceous mass greater than one micron in width

between the homologs before metaphase I [53, 56–58, 71]. Despite these previous observations,

we found a significant number of nuclei with homologs paired end-to-end in late 4th/early 5th

instar larval ovary squashes (Figs 2 and S4). This finding led us to wonder whether homolog

pairing is more stable in B. mori female meiosis than previously appreciated.

To better visualize homolog pairing and the linear progression of female meiosis, we per-

formed whole-mount DNA FISH with ch7 stripe paints in 5th instar larval ovaries and used

super-resolution microscopy to measure the distance between homologous copies. Like Dro-
sophila, the B. mori larval ovary is composed of polytrophic meroistic ovarioles (where the

oocyte is part of a group of inter-connected cells including supportive nurse cells). Each ovari-

ole contains a linear arrays of developing egg chambers, with the tip (germarium) harboring

germline stem cells that are mitotically dividing and the most mature chambers being the most

distal from the stem cell niche ([63, 72, 73], Figs 7A and S13). However, as moths have a much

shorter adult lifespan than flies (only 5–7 days for silkmoths versus 2–3 months for Drosoph-
ila), the majority of oogenesis occurs in the larval and pupal rather than adult stage [63].

Therefore, 5th instar larval ovaries harbor oocytes in all stages of pairing.

Interestingly, despite our diffraction-limited imaging of ovary squashes appearing to show

tight homolog pairing in early pachytene and late pachytene (Figs 2, 7, and S4), super-resolu-

tion imaging of homologs in the zone of pairing in the germarium (the early stages of pachy-

tene) revealed that homologous chromosome copies are approximately 0.15–0.20 μm apart at

this stage (Fig 7B and 7E). This configuration is a much looser pairing association than we

observed in larval testes, which harbor closely paired homologs with no detectable separation

even at super-resolution (S14 Fig). By late pachytene, when nurse cells and the developing

oocytes begin to differentiate, ch7 homologs are even further separated (0.25–0.30 μm, Fig 7C

and 7E). In the first egg chambers most proximal to the germarium, chromosomes are still

pachytene-like in structure, but homologs are approximately 0.30–0.35 μm apart (Fig 7E). The

majority of oocytes in the developing egg chambers outside the germarium in 5th instar larvae

are arrested in late diakinesis [56], which should be after transformation of the SC at the end of

Fig 5. Analysis of pairing and metaphase I bivalent formation in 5th instar larval testes squashes using stripe paints. (A) Left: Schematic of

stripe paints for ch15, with tel1 in cyan, mid in yellow, and tel2 in magenta. Right: representative nuclei at the designated stages labeled with ch15

stripe paints. When cells enter meiosis, chromosomes begin to decondense (leptotene) and homologs pair (zygotene). Pairing is complete by

pachytene, with complete synapsis for crossing over, and chromosomes are linear. Chromosomes begin to condense for segregation in diplotene

and diakinesis. DAPI is shown in gray. (B) Top: Representative zygotene nucleus labeled with ch15 stripe paints showing a forked chromosome

pairing configuration with tel1 paired. Bottom: Cartoon schematic of ch15 in above cell. (C) Top: Representative zygotene nucleus labeled with

ch15 stripe paints showing a circular chromosome with a head-to-head pairing configuration. Bottom: Cartoon schematic of ch15 in above cell.

(D) Top: Two representative zygotene nuclei labeled with ch15 stripe paints showing a circular chromosome with a head-to-tail pairing

configuration. Bottom: Cartoon schematics of ch15 in above cells. (B-D) Dashed line indicates nuclear edge. (E) Quantification of circular

chromosome pairing configurations in zygotene. Graph includes pooled data for ch15 and ch23, with n = 3 testes quantified for each. Error bars

show standard deviation between chromosomes. ��p = 0.0082, unpaired t-test. (F) Quantification of stripe domain pairing in cells with only one

stripe domain paired. n = 3 testes were quantified for each chromosome. For all chromosomes, pairing at both telomere domains is significantly

enriched compared to the middle domain (p<0.0001, Fisher’s exact test comparing tel1 vs mid and tel2 vs mid). Cyan asterisk = tel1 significantly

enriched compared to tel2, magenta asterisk = tel2 significantly enriched compared to tel1 (Fisher’s exact test, p<0.05). (G) Dot plot showing tel1:

tel2 pairing ratio (X-axis) versus tel1:tel2 gene density ratio (Y-axis). Line of best fit calculated for autosome data only. Z chromosome data (gray)

included for comparison. (H) Metaphase I bivalents labeled with ch15 stripe paints. Top: bivalent with pairing in tel1 domain. Bottom: bivalent

with pairing in tel2 domain. Schematics of bivalents shown on the right. (I) Quantification of metaphase I orientation for ch7, 15, 16, 23, and Z.

Ch7, n = 357 (48% tel 1 paired). Ch15, n = 182 (45% tel 1 paired). Ch16, n = 252 (50% tel1 paired). Ch23, n = 519 (47% tel1 paired). ChZ, n = 169

(48% tel1 paired). Each FISH assay was performed on n = 2–3 testes.

https://doi.org/10.1371/journal.pgen.1009700.g005
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pachytene. In agreement with this hypothesis, super-resolution imaging revealed that in

oocytes in the most mature egg chambers most distal from the germarium, homologs remain

linear but are approximately 0.45–0.55 μm apart, with the two homologous copies connected

only at telomere domains, forming a large chromosomal loop (Fig 7D–7E and S1 Movie). This

finding suggests that in the absence of chiasma and after the partial breakdown and transfor-

mation of the SC, contacts between homologous chromosomes persist throughout meiotic

prophase I in female B. mori. These contacts appear to be mediated by both telomeric pairing

mechanisms possibly in addition to any remaining modified SC, revealing that homologs are

indeed closer together than the predicted one micron separation.

Discussion

The silkworm, B. mori, was a model system for studying meiotic chromosomes for decades.

Like Drosophila, silkworms are readily reared in a laboratory setting and amenable to genetic

manipulation including RNAi and CRISPR. However, unlike fruit flies, silkworms are large in

size, combining the increased ease of dissection and structure visualization commonly associ-

ated with mammalian models with the short generation time of an insect system. The large

amount of tissue provided by B. mori increases the feasibility of genomics assays and other cell

population-based approaches, which generally require a large number of cells. Importantly,

the recent sequencing of the B. mori genome revealed that there is a high degree of sequence

homology between silkworm genes and mammalian disease genes [60, 74–76]. Furthermore,

B. mori harbor 28 chromosomes while humans have 23 (Drosophila have only 4), and our stud-

ies along with others have illustrated that, like in mammals, somatic homolog pairing is largely

absent in B. mori [77]. This observation is in stark contrast to the high levels of somatic homo-

log pairing seen in Drosophila [78, 79], making the study of B. mori genome dynamics more

directly relevant to human biology.

Our studies examine pairing initiation in great detail in larval testes. We found that pairing

is asynchronous in B. mori, with long, gene-rich chromosomes more frequently initiating pair-

ing before their shorter or gene-poor counterparts. Interestingly, in zygotene nuclei, we

observed a wide variety of partially paired chromosome configurations, many of which include

Fig 6. FISH with stripe chromosome paints in whole mount 5th instar larval testes. (A) Cartoon schematic of 5th instar larval

testis. Mature 5th instar larval testes are comprised of four testicular lobes, each of which harbors germline stem cells (1, mitotic

zone) and spermatocytes in all stages of meiosis up to mature sperm; progressing from right to left in the image as indicated: (2)

meiosis I/primary spermatocytes, (3) meiosis II/secondary spermatocytes. Additionally, each lobe is surrounded by somatic cells

in the sheath (4) and in the septae separating the lobes. (5–6) prophase I: (5) leptotene/zygotene, (6) pachytene/diplotene, (7)

metaphase/anaphase I, (8) prophase/metaphase II, (9) spermatids, (10) mature sperm bundles. (B) Confocal image of 5th instar

larval testis stained with DAPI. Boxes indicate subsequently zoomed panels as indicated. Inset: ch7 stripe paints used in C-E. (C)

Zoom of mitotic and pachytene region of larval testes as shown in A, labeled with ch7 stripe paints. Red boxes indicate zooms

shown to the right. (C1) mitotic cells–chromosomes condensed, homologs unpaired, and aligned at the metaphase plate. Note

how chromosomes are compacted perpendicular to the metaphase plate. (C2) leptotene cells, chromosomes are slightly

decondensed and homologs are unpaired. (C3) pachytene cells, chromosomes are paired head-to-tail and linear. (D) Zoom of late

prophase/metaphase I region of larval testis as shown in A, labeled with ch7 stripe paints. Red boxes indicate zooms shown to the

right and below. Please note that some FISH signal background is visible within the DNA in this image. This is an artifact of the

size of the larval gonad and the imaging depth. (D1) diplotene cells (diffuse stage), chromosomes are still paired and beginning to

condense. Left: merged with DAPI in gray. Right: ch7 tel1 in cyan, mid in yellow, and tel2 in magenta. (D2) metaphase I cells

labeled with ch7 stripe paints. White box indicates zoom shown in E. Left: merged with DAPI in gray. Right: tel1 (cyan) and tel2

(magenta) paints. Percent of cells with tel1 or tel2 paired indicated inside the panel. Cells from 1–2 bundles each from n = 3 testes

were quantified for a total of n = 196 cells (47% tel1 paired). (D3) eupyrene-destined secondary spermatocyte bundle. Left:

merged ch7 stripe paints with DAPI in gray. Right: ch7 stripe paints, tel1 (cyan) and tel2 (magenta). (D4) apyrene-destined

secondary spermatocyte bundle. Left: merged ch7 stripe paints with DAPI in gray. Right: DAPI. Yellow arrowheads indicate

spermatocytes that have already undergone nuclear degradation. Scale bar = 2 μm for all panels 1–4. (E) Zoom of metaphase I cell

indicated in C2. Top: merged with DAPI in gray. Bottom: ch7 tel1 (cyan), mid (yellow), and tel2 (magenta) paints. Bivalent

pairing is in tel2 domain in this cell. Note: zoomed fields for all panels may display a slightly different Z position than the larger

field views for better clarity.

https://doi.org/10.1371/journal.pgen.1009700.g006
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loop-like structures. We suspect that some of these loops (such as the “linear with loops” con-

figuration) represent interlocked chromosomes as previously observed in Bombyx [80, 81],

while others, like the highly abundant “circular” and “forked” configurations, represent pairing

intermediates. It is also worth noting that “pairing” as measured by Oligopaint signal colocali-

zation, even at approximately 140 nm x-y super-resolution, may not necessarily indicate SC

formation and true synapsis (and we currently do not have SC antibodies for B. mori). We

believe it is possible, and even likely, that there is a chromosome-wide “search” leading to tran-

sient colocalization of various chromosome regions (including the middle domain of chromo-

somes), but SC formation may always be initiated at telomeres, as in C. elegans [48, 82–84].

Importantly, we found that chromosome ends more frequently pair before the central

domain of both autosomes and chZ. Additionally, we observed a bias toward gene-rich chro-

mosome ends initiating pairing earlier than gene-poor chromosome ends of autosomes.

Together, these data support a model in which transcription, the transcription machinery, or

active histone modifications modulate pairing initiation in Bombyx. This study is not the first

report linking transcription with homolog pairing. In fact, somatic pairing in Drosophila is

largely influenced by transcription, and furthermore, transcription factories have been hypoth-

esized to facilitate meiotic pairing in other species [85–87]. Still, whether or not telomeric

genes are even transcribed in meiosis is unclear as meiotic transcriptome profiles for B. mori
have yet to be established, and thus, the exact mechanism behind pairing initiation in Bombyx
and beyond remains unclear.

Our FISH-based approach further reveals how chromosomes compact after prophase I and

partially unpair when aligned at metaphase I. While crossing over has been reported in male

meiosis in B. mori [52, 56], clear chiasmata were not apparent in post-pachytene spermatocytes

(Figs 2, 4, and 5). We suspect this inability to detect chiasmata is likely due to the small size

and compact nature of B. mori chromosomes in diplotene. We also show that mitotic chromo-

somes in B. mori, which are holocentric in structure, align parallel to the metaphase plate, with

both telomeres aligned with the plate and homologs remaining unpaired. Our studies further

illustrate that, like those in C. elegans, B. mori chromosomes do not retain the holocentric con-

figuration in meiosis. Instead, meiotic chromosomes at metaphase I in spermatogenesis align

perpendicular to the metaphase plate such that telomeric regions face the spindle poles, recruit

CENP-T, and act as localized kinetochores. Super-resolution imaging of meiotic chromosomes

at metaphase I revealed that these CENP-T-based kinetochores do not resemble the cup-

shaped kinetochores in C. elegans [50], but instead appear to be more canonical in structure,

with a single kinetochore forming at the telomere of each chromatid.

Moreover, we demonstrate that both telomeres are equally likely to face poleward and har-

bor kinetochore activity. A similar telokinetic mechanism for meiosis has also been observed

in the holocentric milkweed bug Oncopeltus fasciatus [88] and the kissing bug Triatoma infes-
tans [89]. Whether crossover position dictates bivalent structure in B. mori or other holo-

centric insects, as in C. elegans [42, 45, 48–50], remains to be explored. Interestingly, the

broadly conserved centromere-specific histone H3 variant CENP-A is absent from the genome

Fig 7. FISH with stripe chromosome paints in whole mount 5th instar larval ovary. (A) Schematic of ovariole from 5th instar B. mori larval ovary.

(B1-D1) Representative field of nuclei from larval ovary labeled with ch7 stripe paints imaged with diffraction-limited confocal microscopy. DAPI is

shown in gray. (B) germarium (zone of pairing, region 1), (C) region of differentiation (region 2), (D) mature larval oocytes (region 3b). (C1-D1)

yellow arrowheads indicate oocytes which were identified based on their unique chromosome morphology and weak DAPI stain. (B2-D5)

Representative nuclei labeled with ch7 stripe paints and DAPI imaged with super-resolution microscopy. (B4-D4) zoom of ch7 shown in B2-D2. (D5)

zoom of ch7 shown in D2, DAPI only. (D6) cartoon schematic of chromosomes in mature larval oocytes. (E) Measurement of distances between

homologs obtained from super-resolution images. n = 3 ovaries were imaged and quantified. Measurements were taken from 3–5 chromosomes in

5–10 cells per ovary, resulting in 50–75 data points per region. ���p<0.001, Mann-Whitney test.

https://doi.org/10.1371/journal.pgen.1009700.g007
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of Lepidopteran insects [55], suggesting that both mitotic and meiotic chromosome segrega-

tion in Bombyx occur independently of CENP-A.

We combined our Oligopaints with super-resolution microscopy to measure chromosome-

wide pairing in B. mori female meiotic prophase. We show that homologs are never paired as

tightly in female meiosis as they are in male meiosis, in agreement with lack of chiasma forma-

tion in ovaries [53, 56, 57]. Additionally, we find that after transformation of the SC at the end

of pachytene, homologs appear to remain linked through telomere regions. Previous studies

also suggest that modified SC remaining at this stage may play a role in keeping homologs

together until anaphase I [58]. Yet, the exact mechanism facilitating and maintaining pairing

in female meiosis in B. mori remains to be elucidated. Finally, the studies presented here illus-

trate that Oligopaints can be designed using, and act as validation for, draft genome assem-

blies, and demonstrate the feasibility of using Oligopaints to study meiotic chromosomes.

Using this approach, we reveal novel insights into pairing initiation and meiotic chromosome

segregation that may be conserved across species.

Materials and methods

B. mori strains and cell line

Embryos were obtained from Carolina Biological (Burlington, NC), Coastal Silkworms (Jack-

sonville, FL), Mulberry Farms (Fallbrook, CA), or were freshly laid in the lab by adults derived

from embryos from these sources. Some larvae were obtained from Rainbow Mealworms

(Compton, CA). Embryos were kept at 4˚C for less than 1 mo. For rearing, embryos were

transferred to 28˚C, and larvae were fed fresh mulberry leaves or powdered mulberry chow

(Carolina Biological or Rainbow Mealworms). BmN4 cells are commercially available from

ATCC (Manassas, VA).

Oligopaint design and synthesis

Oligopaint libraries were designed as described in the main text. Active and inactive domains

were determined primarily based on CENP-T depletion or enrichment. CENP-T ChIP-seq

profiles were obtained from BmN4 cells, and domains were called as previously described [37]

with the following modifications: CENP-T ChIP-seq signal originally in 10 kb windows was

averaged over 50 kb. Subsequently, negative CENP-T domains were subtracted from positive

CENP-T domains to obtain final CENP-T depleted domains. As previously observed, domains

enriched for CENP-T were shown to strongly correlate with enrichment for the repressive his-

tone mark H3K27me3, while domains depleted of CENP-T were shown to strongly correlate

with enrichment of the active chromatin marks H3K4me3 and H3K36me3. All information

regarding genomic coordinates for Oligopaints and probe density can be found in Tables 1–5.

Oligo pools were purchased from CustomArray/GenScript (Redmond, WA; ch 7, 15, 16) or

Twist Biosciences (San Francisco, CA; ch 4, 17, 23, Z). Oligopaints were synthesized as previ-

ously described by adding barcodes to each oligo for PCR-based amplification [17, 30, 90].

Preparation of meiotic squashes and DNA FISH

For meiotic squashes, late 4th instar or early 5th instar larvae (approximately 3 in long) were

sacrificed by decapitation. The caterpillars where then cut open anterior to posterior and

fileted on a silicone dissecting dish using standard sewing needles. Gonads were harvested

using forceps and placed into 1.5 mL tubes containing sf-900 (Gibco/ThermoFisher, Waltham,

MA) tissue culture media. Gonads were then rinsed thrice in 1X PBS, then incubated in 0.5%

sodium citrate for 8–10 min. Using forceps, gonads were then transferred to siliconized
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coverslips (1 gonad per coverslip) and covered with ~10 μL of 45% acetic acid/1% PFA/1X PBS

and fixed for 6 min. Using a poly-L-lysine coated glass slide, gonads were then physically

squashed and slide/coverslip were flash frozen in liquid nitrogen. After carefully removing

slides from liquid nitrogen, coverslips were removed with a razor blade, and slides were post-

fixed in cold (pre-chilled to -20˚C) 3:1 methanol:glacial acetic acid for 10 min. After fixation,

slides were washed thrice in 1X PBS and subjected to an ethanol row at -20˚C (70%, 90%,

100% ethanol, 5 min each) before drying completely at room temp. Slides were dried for 24–

72 h.

FISH on meiotic squashes was performed as previously described for mitotic spreads [31].

Briefly, after drying slides, slides were denatured at 72˚C for 2.5 min in 2xSSCT/70% formam-

ide before again drying with an ethanol row at -20˚C. Slides were then left to air dry for 10 min

at room temperature. Primary Oligopaint probes were resuspended in hybridization buffer

(10% dextran sulfate/2xSSCT/50% formamide/4% polyvinylsulfonic acid), placed on slides,

covered with a coverslip, and sealed with rubber cement. Slides were denatured on a heat

block in a water bath set to 92˚C for 2.5 min, after which slides were transferred to a humidi-

fied chamber and incubated at 37˚C overnight. The next day, coverslips were removed using a

razor blade, and slides were washed as follows: 2×SSCT at 60˚C for 15 min, 2×SSCT at RT for

15 min, and 0.2×SSC at RT for 5 min. Fluorescently labeled secondary probes were then added

to slides, again resuspended in hybridization buffer, covered with a coverslip, and sealed with

rubber cement. Slides were incubated at 37˚C for 2 h in a humidified chamber before repeating

the above washes. All slides were stained with DAPI and mounted in Prolong Diamond (Invi-

trogen/ThermoFisher, Waltham, MA). Slides were cured overnight before sealing with clear

nail polish and imaging.

FISH on whole-mount gonads and embryos

For whole-mount DNA FISH in gonads, ovaries and testes from late 5th instar larvae (after ces-

sation of eating) were dissected in sf-900 cell culture media, washed thrice briefly with 1X PBS,

and then fixed for 30 min in 4% PFA in PBS with 0.1% Triton-X-100 (0.1% PBS-T) at RT.

Gonads were then washed again thrice in 1X PBS and permeabilized with 0.5% PBS-T for 15

min at RT. Gonads were pre-denatured by washing as follows: 2xSSCT for 10 min at RT,

2xSSCT/20% formamide for 10 min at RT, 2xSSCT/50% formamide for 10 min at RT,

2xSSCT/50% formamide for 3 h at 37˚C, 2xSSCT/50% formamide for 3 min at 92˚C, 2xSSCT/

50% formamide for 20 min at 60˚C. To the 2xSSCT/50% formamide, 100 pmol of each probe

was directly added. Gonads were then denatured for 3 min at 92˚C and incubated overnight at

37˚C. The next day, gonads were washed: 3x 30 min each in 2xSSCT/50% formamide at 37˚C,

1x 15 min in 2xSSCT at RT. 20 pmol of each secondary oligo was added with 50% formamide

and incubated for 3 h at 37˚C. Final washes were performed (2x 30 min in 2xSSCT/50% form-

amide at 37˚C, 1x 10 min in 2xSSCT/50% formamide at RT, 1x 10 min in 2xSSCT/20% form-

amide at RT, 1x 10 min in 2xSSCT at RT), gonads were stained with DAPI, and mounted on

slides with Prolong Diamond (Invitrogen/ThermoFisher, Waltham, MA).

For whole-mount embryo FISH, diapausing embryos were removed from 4˚C and kept at

RT for 3–5 d. Chorions were weakened by soaking in 50% bleach for 15 min and then manu-

ally removed with forceps. Embryos were subsequently fixed for 30 min in 4% PFA in 0.1%

PBS-T at RT, and FISH was performed as described above for whole-mount gonads.

IF-FISH on cytocentrifuge testes spreads

Testes were dissected as described above in sf-900 tissue culture media, followed by three

quick washes in 1X PBS, then incubated in 500 μL 0.5% sodium citrate for 8–10 min in 1.5 mL
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tubes. Gonads were then gently crushed with a p1000 pipet tip, and cells were dissociated by

gently pipetting up and down. 250 μl of the dissociated cells were added to a cytofunnel con-

taining a poly-L lysine-coated slide. Cytocentrifugation (Shandon Cytospin 4, ThermoFisher,

Waltham, MA) was performed for 5 min at 500 rpm with high acceleration. Slides were then

fixed in 4% PFA for 10 min followed by three washes in 1X PBS. Cells were subsequently per-

meabilized in 100% methanol at -20˚C for 20 min, and then in 0.5% PBS-T for 15 min at RT.

IF was then performed by blocking slides in 5% milk for 1 h at RT followed by incubation with

primary antibodies diluted 1/500 in 5% milk overnight at 4˚C. Custom anti-CENP-T [34] and

commercial anti-Tubulin antibodies were used (MilliporeSigma T6074, Burlington, MA).

The next day, slides were washed thrice in 0.1% PBS-T followed by incubation with second-

ary antibodies diluted 1/500 in 5% milk (goat anti-mouse alexa 546 and goat anti-rabbit alexa

488, ThermoFisher). After antibody incubation, slides were washed 3X in 0.1% PBS-T and

post-fixed with 4% PFA for 10 min before proceeding with FISH as previously described [30].

Meiotic staging

Stages of meiosis were determined based largely on DAPI morphology, chromosome mor-

phology, and/or cell position in whole-mount gonads. Leptotene/zygotene chromatin (DAPI)

is a dense lampbrush structure, with chromosomes being linear but unpaired in leptotene and

linear but partially paired in zygotene. Pachytene chromatin is a loose lampbrush with chro-

mosomes being linear and completely paired from end to end. Diplotene/diakinesis chromatin

is diffuse with chromosomes being paired or partially paired, nonlinear, and condensing.

Metaphase I chromatin is highly condensed and aligned at the metaphase plate, with chromo-

somes being paired in a bivalent structure and highly condensed. Late 4th-early 5th instar male

larvae were used for squashes as they only possess primary spermatocytes in meiosis I. In

whole-mount testes, meiosis I and II were distinguished based on position in the gonad and

based on the number of cells per bundle (with meiosis I bundles harboring approximately 64

cells and meiosis II bundles harboring approximately 128 cells).

Mitotic spreads from BmN4 cells

To induce mitotic arrest, approximately 1 × 105 cells were treated with 0.5 μg/mL Colcemid

Solution (Gibco/ThermoFisher) for 2 h in a 28˚C heat block. Cells were then spun for 5 min at

600x g at RT to pellet and resuspended in hypotonic solution (500 mL of 0.5% sodium citrate).

Cells were incubated in hypotonic solution for 8 min at RT. 100 μL of the cell suspension was

then placed in a cytofunnel and spun at 1200 rpm for 5 min with high acceleration using a

cytocentrifuge (Shandon Cytospin 4; ThermoFisher). For FISH, slides were then fixed in cold

3:1 methanol: acetic acid for 10 min and washed 3X 5 min in PBS-T (PBS with 0.1% Triton

X-100). FISH was performed as described above for meiotic squashes.

Imaging, quantification, and data analysis

Widefield images of meiotic squashes and cytocentrifuge meiotic cells were acquired on a

Leica DMi6000 wide-field inverted fluorescence microscope using an HCX PL APO 63x/1.40–

0.60 Oil objective (Leica Biosystems, Buffalo Grove, IL), Leica DFC9000 sCMOS Monochrome

Camera, and LasX software. Whole mount images were acquired using a Zeiss LSM 780 point

scanning confocal (Zeiss Microscope Systems, Jena, Germany) with high sensitivity 32 anode

Hybrid-GaAsP detectors. BmN4 mitotic spreads were acquired on a Zeiss AxioObserver Z1

wide-field inverted fluorescence microscope with 100x/1.4 oil Plan-APO objective, a Hama-

matsu C13440 ORCA-Flash 4.0 V3 Digital CMOS camera, and ZEN blue software.
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Super-resolution imaging of cytospin meiotic spindles and CENP-T immunofluorescence

was performed using a Nikon CSU-W1 SoRa spinning disk confocal microscope (Nikon Instru-

ments, Inc, Melville, NY), controlled by Nikon Elements AR software ver 5.21.02. Images were

collected using z-stacks of multi-channel fluorescence. The image detectors used were dual

Hamamatsu Fusion BT (model C14440-20UP) cameras. SoRa super-resolution mode was used

with objective lens Nikon CFI Apo TIRF 60x/1.49 Oil DIC N2, and intermediate SoRa magnifi-

cation 4.0x, producing a pixel size of 27 nm. The main excitation/emission dichroic beamsplit-

ter used was a Semrock Di01-T405/488/568/647 (IDEX Health & Science, LLC, Rochester, NY),

and the image-splitter dichroic was ‘DM A561 LP’. All emission filters were made by Chroma

Technology Corporation (Bellows Falls, VT). Alexa Fluor 647 was excited by the 640 nm laser

and emission filtered by ET655lp. Alexa Fluor 546 was excited by the 561 nm laser and emission

filtered by ET605/52m. Alexa Fluor 488 was excited by the 488 nm laser and emission filtered

by ET520/40m. DAPI was excited by the 405 nm laser and emission filtered by Semrock FF02-

447/60. Post-processing of the images was performed in Nikon Elements AR software and

included denoising via Denoise.ai and 3D deconvolution in automatic mode. Super-resolution

imaging of Oligopaints in whole mount ovaries was performed using a Zeiss LSM 880 Airyscan

with 63x/1.4 oil Plan-APO objective. Airyscan images were acquired in SR mode using the Zeiss

32 channel Airyscan detector, and images were processed under auto strength setting with Zen

black software. Leica and Zeiss-acquired images were processed using Huygens deconvolution

software (SVI, Hilversum, Netherlands). For all images, tiffs were created in ImageJ. All quanti-

fication was performed manually. All data are reported in S1 File.

Supporting information

S1 Fig. ChIP-seq profiles used to design active and inactive chromosome paints. Screen-

shots of ChIP-seq data used to design active/inactive chromosome paints. Inactive:

H3K27me3 (orange), Centromere Protein T (CENP-T; dark red). Called inactive paint

domains shown in bright red. Active: H3K36me3 (teal), H3K4me3 (dark green). Called active

paint domains shown in bright green. ChIP-seq data were previously published (see Materials

and Methods). Chromosome 7 is shown in A, part of chromosome 15 is shown in B (coordi-

nates Chr15:3,900,000–12,891,000), and chromosome 16 is shown in C.

(TIF)

S2 Fig. Mitotic and meiotic nuclei in early 4th-5th instar larval testis squash. Representative

image showing a cluster of mitotic chromosomes (yellow arrow, left) and a cluster of meiotic

prophase I cells (green arrow, right) labeled with DAPI.

(TIF)

S3 Fig. Somatic cells with unpaired homologs from 4th-5th instar larval testis squash. Three

nuclei (DAPI in gray) labeled with Oligopaints for ch7 (magenta), ch15 (orange), and ch16

(green) in somatic cells from late 4th instar larval testes gonad squashes. Two signals per

nucleus indicate unpaired homologs.

(TIF)

S4 Fig. Mitotic cell labeled with whole chromosome paints from 4th-5th instar larval testis

squash. Representative mitotic cell labeled with whole chromosome paints for ch4 (blue), ch7

(magenta) and ch17 (red).

(TIF)

S5 Fig. Post-pachytene early differentiating oocytes and nurse cells from 4th-5th instar lar-

val ovary squash labeled with whole chromosome paints. Top: Representative field from
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early 5th instar larval ovary squash labeled with whole chromosome paints for ch17 (red), ch23

(cyan), and chZ (yellow). Left, merged with DAPI, right, paints alone. Yellow arrowheads indi-

cate early differentiating oocyte cells. Note: female B. mori are heterogametic and harbor a sin-

gle Z and a single W chromosome (compared to two copies of ch17 and ch23). Bottom: zoom

showing early differentiating oocyte and nurse cells, as indicated. As both oocytes and nurse

cells undergo homolog pairing in early meiotic prophase, homologs remain in close proximity

in all early differentiating nurse cells.

(TIF)

S6 Fig. Mitotic spreads from BmN4 cultured cells labeled with whole chromosome Oligo-

paints. Left: representative mitotic chromosome spread from BmN4 cultured cells labeled

with whole chromosome paints for ch7 (orange), ch15 (red), and ch16 (green). Gray dashed

box indicates zoom shown to the right. No entire chromosomes are labeled in the cell line, and

instead, several chromosomes are partially labeled with each paint, indicating a large number

of translocations in this cell line compared to animals.

(TIF)

S7 Fig. Mitotic cell from 4th-5th instar larval testis squash. Left: schematic of ch15 with stripe

paints. Middle two panels: Representative nucleus at metaphase of mitosis labeled with ch15

stripe paints. Arrows indicate the direction of the spindle poles. Right: Cartoon representation

of nucleus in middle panels.

(TIF)

S8 Fig. Gene density distribution across relevant chromosomes. Screenshots of genome

browser views of ch7, 15, 16, 23, and Z. Top: ChIP-seq profiles for active histone modifications

from BmN4 cells: H3K36me3 (green), H3K4me3 (blue). Middle: gene positions. Bottom: tel1,

mid, and tel2 Oligopaint domains. Note: ch15 tel2 is depleted of genes and active histone marks

compared to tel1, while ch23 tel2 is enriched for active marks and genes compared to tel1.

(TIF)

S9 Fig. Ch15 stripe paints in a post-diapause whole mount embryo. (A) Whole-mount

embryo stained with DAPI imaged at 10x. (B) 100x image of whole-mount embryo stained

with DAPI (top) and labeled with ch15 stripe paints (bottom) showing representative mitotic

and interphase somatic cells. Note: both 10x and 100x images show Z-projections of multiple

Z-stacks, with the 100x being a sub-stack of the 10x. (C) Zoom of B (top). Yellow arrow heads

indicate mitotic cells, green arrow heads indicate interphase cells. (D) Zoom of B (bottom),

showing two mitotic cells labeled with ch15 stripe paints and DAPI stain (top) or only stripe

paints (middle). White and gray arrows indicate direction of spindle poles. Bottom, cartoon

schematic, with the black outline representing the border of the DAPI stain. Black and gray

arrows indicate direction of spindle poles.

(TIF)

S10 Fig. Mature sperm in whole mount 5th instar larval testis. Left: 10x image of whole

mount larval testis stained with DAPI. White box indicates zoom shown to the right. Right:

zoom of mature eupyrene sperm bundle labeled with DAPI.

(TIF)

S11 Fig. Oligopaints in mature sperm from 5th instar larval testis squash. Oligopaints label-

ing chromosomes 17 (red), 23 (cyan) and Z (yellow) in mature sperm from a 5th instar larval

testis squash. DAPI is shown in gray.

(TIF)
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S12 Fig. CENP-T is present on meiotic chromosomes in larval testes. (A) Schematic of

intact metaphase I spindle and aligned chromosomes from larval testes and broken spindle

with spread chromosomes after cytocentrifugation. (B) Widefield images from dissociated tes-

tes cytospreads showing representative cells (two) with CENP-T localization on meiotic chro-

mosomes. Images show Z-projections of 5–10 Z stacks. Scale bars = 5 μm. (C) Left: Super-

resolution image images showing CENP-T binding to a metaphase I cell. Right: cartoon sche-

matic of a single chromosome (blue) with CENP-T kinetochores in green and microtubules

(anti-Tubulin staining) in magenta.

(TIF)

S13 Fig. Whole mount 5th instar larval ovary. DAPI staining on whole mount 5th instar larval

ovaries. Intact ovary is shown on top and below are loose ovarioles.

(TIF)

S14 Fig. Super-resolution imaging of pachytene nuclei from 5th instar larval gonads. (A)

Super-resolution image of a representative field of cells in the zone of pairing (region 1) in

whole mount larval ovaries labeled with ch7 stripe paints. (B) Super-resolution image of two

representative pachytene cells in larval testes squashes (to maximize the possibility of observ-

ing space between the homologs) labeled with ch7 stripe paints.

(TIF)

S1 Movie. Super-resolution image of mature 5th instar larval oocyte. Animated Z-stack of

super-resolution image of mature 5th instar larval oocyte (region 3b) stained with DAPI (gray).

(MOV)

S1 File. Master data sheet.

(XLSX)
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