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Abstract: The aim of this study was to develop an integrated system of non-contact sleep stage
detection and sleep disorder treatment for health monitoring. Hence, a method of brain activity
detection based on microwave scattering technology instead of scalp electroencephalogram was
developed to evaluate the sleep stage. First, microwaves at a specific frequency were used to penetrate
the functional sites of the brain in patients with sleep disorders to change the firing frequency of the
activated areas of the brain and analyze and evaluate statistically the effects on sleep improvement.
Then, a wavelet packet algorithm was used to decompose the microwave transmission signal,
the refined composite multiscale sample entropy, the refined composite multiscale fluctuation-based
dispersion entropy and multivariate multiscale weighted permutation entropy were obtained as
features from the wavelet packet coefficient. Finally, the mutual information-principal component
analysis feature selection method was used to optimize the feature set and random forest was used to
classify and evaluate the sleep stage. The results show that after four times of microwave modulation
treatment, sleep efficiency improved continuously, the overall maintenance was above 80%, and the
insomnia rate was reduced gradually. The overall classification accuracy of the four sleep stages was
86.4%. The results indicate that the microwaves with a certain frequency can treat sleep disorders and
detect abnormal brain activity. Therefore, the microwave scattering method is of great significance in
the development of a new brain disease treatment, diagnosis and clinical application system.

Keywords: sleep disorders; sleep stage; microwave scattering; entropy features; brain activity

1. Introduction

Over the years, sleep disorder has become one of the most serious public health problems
worldwide because it affects the physical health and mental state of individuals. Sleep is a very
common physiological phenomenon in the daily life of human beings and animals. Good sleep
quality can ensure a high-quality living state and spiritual vitality. Sleep disorders can be found
everywhere, for instance, in Japan, surveys show that 29% of people sleep less than six hours per
day, 23% report insufficient sleep, 6% take hypnotics, 21% have underlying symptoms of insomnia,
and 15% are excessively sleepy during the day [1]. During sleep, consciousness and brain activity
undergo unusual changes within a very short period, with sleep signals varying in strength and
intensity. Simultaneously, the fast, low-amplitude desynchronized electroencephalographic activity of
wake is replaced by high-amplitude slow waves and spindles during sleep [2]. Animals in the process
of sleep undergo mainly anabolism to restore physical strength and energy [3]. Similarly to eating,
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breathing, and walking, sleep plays an important role in regulating function and physical recovery,
such as reorganizing the cortex associated with learning and memory, and processing information to
consolidate memories [4]. Sleep also helps the body and brain repair cells and maintain the functional
integrity of the immune system [5]. A good night’s sleep can also boost immunity and help prevent
contraction of the currently prevalent novel coronavirus pneumonia (COVID-19).

Sleep is important to people and thus, the treatment of sleep disorders remains a research focus.
Most people with sleep disorders are treated with drugs such as 5-hydroxytryptamine and acetylcholine,
which could cause potential harm to the body over time and can have a rebound effect [6]. The effect
of treatment is obvious initially, then, after a time, the drug gradually appears to "fail" [7]. Many new
forms of physical therapy, such as using sound, light, electricity, and magnetism to act on certain parts
of the body [6–9], have been used to induce sleep. Electricity and magnetism can also stimulate neurons
in the functional areas of the brain; a special frequency of weak electricity and weak magnetic field
causes the resonance phenomena to affect the discharge frequency of brain functional areas, which, in
turn, induces sleep [10]. However, the equipment used is relatively expensive and bulky and currently
exists in laboratories and rarely used in daily life. A considerable amount of experimental data have
proven that the brain’s sleep can be improved through external conditions. For example, neural drugs
can be used to stimulate the brains of insomniacs and suppress neuronal activity to achieve the effect
of sleep [11]. Intense exercise is also believed to improve the quality of sleep [12]. However, despite
previous efforts, the growing number of people suffering from insomnia indicates the solutions are
flawed. Drugs can damage people’s health and exercise is not suitable for people with disabilities.

Sleep stage detection and recognition is an important basis for measuring and evaluating
sleep quality. Sleep stage detection and recognition is usually conducted with polysomnography
(PSG), including electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG),
electrocardiogram (ECG), chest and abdomen movements, pulse oxygenation, and snoring [13,14].
These technologies involve the use of a considerable number electrodes, which is very inconvenient
for the measurement and treatment of sleep disorders and may bring physical and psychological
interference to patients, and even affect the quality of sleep [15]. The microwave scattering technique
is a new method for testing brain activity. Microwaves can be used to detect brain activity such as
sleep, pain perception, epilepsy, depression, and motor imagery [16–18], and it has been shown to
be capable of treating insomnia and other brain diseases [19]. This technique is a non-contact test
method to avoid the inconvenience and anxiety caused by electrode attachment to the scalp and to
control the contamination of brain activity by physiological signal artifacts (i.e., EMG, EOG) [17,18].
Depending on its ability to record brain activity, it can also be used in the study of sleep stage [19].
Compared to existing techniques, the EEG is divided into invasive and non-invasive types. Invasive
EEG causes irreversible damage to the brain, whereas non-invasive EEG (scalp EEG) has very low
spatial resolution [5]. The use of EMG and EOG in detecting the sleep has undergone considerable
progress but these methods rely on too many physiological traits and physiological response in the
time dimension tends to be delayed by 5–6 s, which limits the time dynamics of the brain’s stimulus
response; the low temporal and spatial resolution may also ignore some important information in the
signal [13,14].

In terms of brain function detection, microwave has attracted extensive attention because of
its low cost, high contrast imaging, its non-destructive and non-invasive advantages, as well as the
fact that it is not limited by temporal resolution and spatial resolution [19]. The early application of
microwave scattering technology has mainly been for the detection of cerebral strokes and brain tumors.
Mobashsher et al. [20,21] successfully improved a simple microwave detection system, designed a
realistic human head model, imaged the status of intracranial hemorrhage, and developed a method
for locating and analyzing the bleeding target according to the frequency scattering characteristics
of the bleeding site. Kandadai et al. [22] developed a microwave frequency scanning monitoring
device and used the microwave transmission method to analyze the changes in the strength of the
signal of pig brain edema. Zamani and colleagues [23] estimated the scattering power intensity in
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the imaging region in real-time from measured multi-static microwave scattering signals outside the
brain functional imaging region. These results indicate that the scattering of microwave in the brain
functional sites leads to the polarization and depolarization of the brain tissue cell fluid, resulting in the
change in dielectric constant and conductivity, which in turn changes the characteristics of microwave
scattering to achieve the purpose of imaging [19]. Some recent reports have addressed the fact that
microwave scattering has a significant effect on resting state EEG, particularly on the fact that the
power of the EEG increases in the alpha band [24,25]. Exposure to electromagnetic fields can cause
changes in the sleep EEG power [26], thereby suggesting that electromagnetic waves may affect brain
function and the recovery process involved in sleep.

Sleep states need to be classified effectively and automatically to measure sleep quality more
efficiently. For the classification of sleep stages, one of the most persistent problems is identifying and
distinguishing the features, called feature extraction [27]. However, determining which algorithms can
identify the valid features of a given problem is a very complex activity. Traditional insomnia stages
use PSG to extract power, energy spectra, autoregressive models, and multiscale entropy using EEG,
EMG, and EOG signals [28,29]. Then, the classifier is combined with the linear discriminant method,
random forest (RF), support vector machine (SVM), Naive Bayes (NB), Sleep Stage Transformation
(SST) model, and Time-Varying Sleep Stage Transformation (TSST) model [30,31]. However, these
methods are computationally complex, with some requiring 41 features to be extracted from EEG
and physiological signals. These models are also accurate enough to meet clinical needs [32–34]. The
microwave modulation and detection technology proposed in this paper can avoid the physiological
artifact of patients and can improve successfully the recognition accuracy of sleep stages by combining
with the multiscale entropy features that can better distinguish different types of information. Some
reports indicate that low-frequency microwave modulation frequency can alter the variations of EEG
power in the resting state [35]. Other reports have shown that microwave frequency modulation can
affect sleep and that changing the frequency modulation can prolong or shorten sleep time [36]. Li
et al. [19] determined that microwaves can affect sleep and wakefulness in anesthetized rats using
30 GHz radiofrequency electromagnetic radiation and confirmed that microwaves have a higher
spatial resolution than EEG. Using the principle of microwave scattering, Wang et al., [16] proved that
microwave transmission signals could represent the dynamic characteristics of the brain in motion
imagination by adjusting the transmission position of the antenna. Compared with EEG, fMRI,
and other imaging methods, the microwave method can obtain purer brain activity signals. Some
physiological artifacts are also avoided because the antenna is not in contact with human skin. Geng et
al. successfully realized the recognition and classification of different pain categories by analyzing the
microwave transmission signals. Their classification accuracy reached more than 90%, higher than that
of most existing methods for pain classification [17,18].

Quantifying the dynamic irregularity of time series is an important challenge in signal processing.
Entropy is an effective and extensive method for measuring the irregularity and uncertainty of time
series [32]. The complexity of the time series characterized by entropy value shows different trends with
the increase of the time scale. The greater the entropy, the greater the uncertainty; the higher entropy
means higher uncertainty and lower entropy means lower irregularity or uncertainty [37,38]. Time
series recorded by dynamic physiological systems usually show long-term correlation on multiple time
scales; hence, time series related to brain activity have multiple and synchronous activity mechanisms
that usually span multiple time scales [39–44]. Therefore, because entropy cannot describe brain
dynamics fully on a single time scale, multiscale entropy is introduced to quantify the complexity of
the system [42,45,46]. The entropy estimation result of the sample entropy (SampEn) algorithm is not
always related to the complexity. Costa et al. introduced the multiscale (sample) entropy (MSE) to
express the complexity of time series [40,41]. MSE algorithm solves the contradiction of low entropy
and high complexity between 1/f noise and white noise. However, MSE may not be able to obtain
accurate sampEn in large-scale coarse-grained time series [30]. Wu and his colleagues [39] sought to
counter the problem of MSE algorithm accuracy by proposing a better overall performance of refined
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composite multi-scale sample entropy (RCMSE). Multiscale fluctuation-based dispersion entropy
(MFDE) is based on the dispersion entropy (DispEn); it introduced one type of measured approach to
the time series of entropy uncertainty [42] and is the quantitative multiple time scales of new methods
of physical dynamics. MFDE avoids the problem of undefined MSE value and makes the entropy of
white noise and 1/f noise to become more stable than the scale factor. However, MFDE ignores the
relative frequency of each fluctuation-based dispersion pattern of shifted series [40,41]. Multiscale
fluctuation-based dispersion entropy (RCMFDE), which is defined as the shift sequences based on
the fluctuation of the average rate of dispersion pattern of Shannon entropy, has been introduced to
overcome the abovementioned problem and distinguish between the different neural data status in
the fastest and most consistent manner [42]. Multivariate multiscale weighted permutation entropy
(MMSWPE) is also a method for measuring the dynamic complexity of brain activity. Quantifying
the regularity of time series on a single time scale based on the traditional permutation entropy
(PE) may lead to false results of nonlinear time series [38]. Hence, MMSWPE combines weighted
permutation entropy and multivariate multiscale method to quantify the characteristics of different
brain regions and multi-time scales as well as the amplitude information contained in multi-channel
EEG signals [37]. While using multiscale entropy to measure the complexity of time series, focus
should also be given to the choice of the appropriate scale for entropy calculation. For example, a
too small-scale selection is likely to result in insignificant features. When the scale is too large, the
calculation is complicated and distinguishing the complexity index of different time series is easy.
In addition, entropy is usually used to characterize biomedical signals and cause an improvement
in the classification accuracy and recognition efficiency. Geng et al. used the multi-scale entropy
feature combined with SVM-RF classifiers to classify and evaluate different pain types with an accuracy
of more than 93% [18]. Rahman et al. [47] used statistical features, such as spectral entropy and
refined composite multiscale dispersion entropy (RCMDE) in the discrete wavelet transform (DWT)
domain analysis of single-channel EOG signals and used RUSBoost classifier for automatic sleep stage
classification with an average accuracy of 84.70%. Liang et al. [48] used the multiscale entropy method
to process EEG signals and linear discriminant analysis to conduct automatic sleep staging with an
average accuracy of 76.91%. Tian et al. [49] combined multi-scale entropy characteristics with the
proportion information of sleep structure and proposed a hierarchical sleep automatic scoring method.
The multi-scale entropy (MSE) was extracted from EEG to characterize the signal characteristics at
multiple time scales while the SVM was used to achieve an accuracy of 85.60%. Therefore, the use of
entropy as a signal feature to characterize the sleep-related time series may improve the classification
accuracy of sleep stages.

We improved the sleep experiment scheme based on previous research experience to improve the
observability and controllability of sleep experiments. Based on the principle of microwave scattering
and using microwave modulation and detection technology, the satisfaction score of sleep quality
and frequency band energy statistics of patients with sleep disorders were analyzed to evaluate the
improvement in their sleep quality. The effects of microwave modulation on the treatment of sleep
disorders and the accuracy of sleep staging were also tested. The detailed operation process is as
follows. First, the specific frequency of microwave was used to penetrate the functional sites of the
brain in patients with sleep disorders and the firing frequency of the sleeping brain activity was
changed to realize the detection and treatment of sleep stages. Secondly, the wavelet packet algorithm
was used to extract fine composite samples of RCMSE, RCMFDE, and MMSWPE as a feature data.
Thirdly, the feature selection method based on mutual information-principal component analysis
(MIPCA) was used to optimize the feature data set and the feature selection algorithm was used to
identify the features providing the highest effect. Finally, the RF classifier was used to organize and
evaluate sleep stages.
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2. Experimental Design and Methods

2.1. Experimental Design and Data Collection

The twenty-four male volunteers with sleep disorders were all from Guilin University of Electronic
Technology (GUET), right-handed with an average age of 22.65 years (age range of 21 to 25 years).
All the volunteers had no neurological or physical problems other than sleep disorders, no long-term
use of other psychiatric drugs or brain damage, and no alcohol, tea or coffee consumption during the
sleep experiment. Before the experiment began, all volunteers were labeled as S1–S24. This study was
approved by the ethics committee of the Guilin University of Electronic Technology and complies with
the relevant laws of China and conducted in conformity with the Helsinki declaration.

The test was conducted in two rooms with good sound insulation, dim light, and no strong
magnetic and electric interference. The indoor temperature was controlled at about 25 ◦C. The layout
of the two rooms is exactly the same, with each room having a bed of the same arrangement (complete
bedding). The brain functional site that regulate sleep is the ventrolateral preoptic nucleus (VLPO),
which is about 1 cm in size. Hence, the wavelength of 6 GHz electromagnetic wave in vacuum was
6 cm to ensure that the near-field of the antenna can cover the functional sites of the brain to achieve
higher detection and modulation efficiency. The near-field of the electromagnetic wave is formed
through the antenna. ζ refers to the distance from the antenna to be tested to the boundary of the
near field, D is the maximum size of the antenna’s physical diameter, and λ is the wavelength of an
electromagnetic wave in a vacuum. The three conditions should be satisfied as follows:

0 < ζ < 0.62×

√
D3

λ
. (1)

Therefore, for the regulation and treatment of sleep disorders, the distance of a microwave antenna

from VLPO’s brain functional sites is 0 < ζ < 0.62×
√

123

6 ≈ 10.5.
This study is composed of two procedures, namely, sleep treatment detection and classification of

sleep stages. The experiment used the recording of PSG combined with the microwave transmission
signal, in which PSG recorded the sleep stage activities and microwave transmission signals were used to
replace EEG or EOG for the classification of sleep stages. The PSG recordings were obtained by utilizing
the Jaeger-Toennies system (the sample rate was 256 Hz). The PSG recordings for each subject included
six EEG channels (F3–A2, F4–A1, C3–A2, C4–A1, P3–A2, and P4–A1, according to the international
10–20 standard system), two EOG channels, and one EMG channel. The microwave transmission signal
record is a column of microwave phase-changing data. Ag/AgCl alloy electrodes were used to collect
physiological signals and the electrode impedance is less than 5000 Ω. The electromagnetic wave
receiving equipment is a pair of wideband horn antenna (ChengDu Ainfo Inc., Chengdu, China), with
a frequency of 2.0–18.0 GHz, transmission gain of 12 dB, and standing wave of 2.0:1. The equipment is
also capable of withstanding the maximum continuous wave power of 50 W. The electromagnetic wave
generation and signal processing equipment is an Agilent two-port vector network analyzer (Agilent
Technologies N5230A; Agilent Technologies, Inc. USA) with a receiver measurement sensitivity of
−120 dB, measurement frequency range of 300 K–20 GHz, and trace noise of 0.005 dB (when the
intermediate frequency width is 10 kHz). For microwave modulation and detection, the sampling
frequency is 250 Hz, the microwave transmission frequency is set to 6 GHz, and the microwave
modulation frequency is set to 20 Hz. The transmission coefficient was S21 (S-parameters). Each
night, two subjects were placed in one of the beds as they normally sleep. The test with microwave
propagation is called a true machine test while the test without microwave propagation is called a
false machine test. The microwave test process is shown in Figure 1. After the experiment began,
none of the participants were allowed to use their phones or do anything other than sleep. Each test
lasted 480 minutes and each person was subjected to eight tests, including four true machine tests
and four false machine tests. The experiment began at 0:00 p.m. and ended at 8:00 a.m. After each
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experiment, data from the detector tested by the true machine was transmitted to the computer through
the Bluetooth device for later data processing, and then the zeroing detection device carried out the
next test. At the end of each test, each participant filled out a survey rating form that measure their
rate of satisfaction with sleep improvement. In this table, Numbers from 0 to 10 are used to represent
different satisfaction scores. The scoring criteria are as follows: 0 = very dissatisfied, 1–3 = dissatisfied,
3–5= slightly dissatisfied, 6–7 = slightly satisfied, 8–9 = relatively satisfied, 10 = very satisfied.
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Figure 1. Schematic diagram of experimental paradigm: (a) sleep disorder treatment and sleep staging
detection system; (b) schematic diagram of microwave emission and recording.

2.2. Data Preprocessing

In this study, only microwave transmission signals were analyzed, and the EMG and EOG were
used only as references to determine sleep stages. Prior to data analysis, the acquisition of microwave
transmission signal was digitally bandpass filtered using a fourth-order Butterworth filter between 0.5
and 150 Hz. The forward and backward filtering is used to reduce phase distortion. Finally, the time
series was digitally filtered using the hamming window FIR bandpass filters of order 200, with cutoff

frequencies of 0.5 Hz and 40 Hz, which are usually used to analyze brain activity. Brain activity signals
within the range of 0.5–30 Hz are generally a focus of concern for clinical medical research because of
the wide frequency span of microwave transmission signals. The results of microwave transmission
signals and denoising before and after are shown in Figure 2. According to the R&K sleep staging
criteria, sleep is divided mainly into wake (W), non-rapid eye movement (NREM), and REM. The
NREM stage is divided into NREM stage I (S1), NREM stage II (S2), NREM stage III (S3), and NREM
stage IV (S4). According to the standards of the American Academy of Sleep Medicine in 2007, S1 and
S2 are combined into light sleep (LS), while S3 and S4 are combined into slow-wave sleep (SWS). Here,
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the rhythm information contained in different sleep stages is as follows: the alpha wave (8–13 Hz) and
the beta wave (13–30 Hz) in stage W; the theta wave (4–8 Hz) is the main manifestation in the stage LS,
K-complex (0.5–1.5 Hz), and sleep spindle (12–14 Hz) are also observed; delta wave (0.5–4 Hz) is the
main manifestation in the stage SWS; in stage REM, it is represented mainly by alpha, beta and theta
waves, as well as some sawtooth waves (2–6 Hz).Entropy 2020, 22, 347 7 of 24 
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Figure 2. Comparison of pre-denoising and post-denoising of a microwave transmission signals in the
first 5000 s sleep test. The signal was digitally bandpass filtered using a fourth-order Butterworth filter
between 0.5 and 150 Hz. The forward and backward filtering is used to reduce the phase distortion.
Then, the time series was digitally filtered using the hamming window FIR bandpass filters of order
200, with cutoff frequencies of 0.5 Hz and 40 Hz, which are usually used to analyze brain activity.

2.3. Sleep Quality Measurement and Statistics

We verify whether the 6 GHz microwave can detect and treat the abnormal brain activity of
patients with sleep disorders and compare the energy changes of the output data of different stages.
The significance level p ≤ 0.05 has statistical significance. Data calculation was performed in MATLAB
(2014b)® (The Math Works Inc., Natick, MA, USA). Data statistics and analysis were implemented
using SPSS 22.0® (IBM Corp., Armonk, NY, USA). The sleep quality evaluation was based on the sleep
standard of normal adults. Sleep onset latency (SOL) refers to the time between the patient’s waking
state and stage S1, which is generally short, accounting for about 5% of the total sleep time in normal
people. The number and duration of sleep awakenings are the total number of periods of W that occur
during sleep. Total sleep time (TST) is the total amount of sleep. The proportion of sleep time (also
known as sleep efficiency) refers to the ratio of TST to time in bed (TIB), that is, sleep efficiency =

TST/TIB, which is generally more than 80% is considered normal sleep. The sleep maintenance rate
(SMR) is the ratio of the TST to the time the person falls asleep to the time they wake up in the morning;
generally, a score of more than 90% is normal. In addition, it is normal for NREM to account for more
than 75%–80% of sleep time, in which S1 accounts for 2%–5%, S2 for 45%–55%, S3 for 3%–8%, and
S4 for 10%–15%. REM sleep accounts for 20%–25% of TIB. The paired t-test was used to analyze the
hypnotic effect of sleep disorder patients in a specific microwave frequency band.

2.4. Sleep Stage Recognition and Feature Extraction

After statistical analysis, we verify the accuracy of microwave detection of sleep stages by
extracting features of microwave transmission signals for classification and recognition. Forty groups
(each 10 s length) of data were selected randomly from each stage without repeating for feature research
because of the very large experimental data sampling frequency (250 Hz), long sampling time (28,800
s), and long signal length of each trial (7.2 million data points). We used the time window function,
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taking 10 s data length as the basic unit of the time series. Wavelet packet transform was used to
decompose each time series by five levels. The mother wave was Daubechies-4, and 32 wavelet packet
coefficients (that is, 32 frequency bands) were obtained and reconstructed. The frequency bandwidth
of each coefficient is 125/32 ≈ 3.9 Hz. A(5,0), D(5,1), D(5,3), and D(5,2)+D(3,1) were selected from the
32 wavelet packet reconstruction coefficients. The corresponding frequency bands were 0–3.9 Hz,
3.9–7.8 Hz, 7.8–11.7 Hz, 11.7–15.6 Hz, and 15.6–31.25 Hz, corresponding to delta wave, theta wave,
alpha wave, and beta wave, respectively. The entropy coefficients of RCMSE, RCMFDE, and MMSWPE
were extracted from these nodes as features [37,38]. The detailed solution methods for the three entropy
features are as follows.

2.4.1. RCMSE Extraction

In this study, the calculated entropy is the RCMSE based on the mean value. For a univariate
signal of length L: x = {x1, x2, · · · , xL}. Hence, to compute RCMSE, we have to solve for MSE. Solving
MSE involves two steps [39]: (a) the coarse-grained process is used to obtain the representations of the
original time series on different time scales and (b) Sample entropy (SampEn) is used to quantify the
regularity of coarse-grained time series. For a given sampling power n and tolerance r, let nm represent
the total number of m-dimensional matching vector pairs, and get nm+1 to represent the total number
of (m + 1)-dimensional matching vector pairs. SampEn is defined as the logarithm of the ratio of nm+1

to nm, as follows:

SampEn(x, m, r, τ) = − ln
nm+1

nm , (2)

where m is the embedded dimension, r is tolerance, and τ is the scale factor.
The length of the original time series is divided into a non-overlapping window for τ and for

an average of data points in each window to obtain the scale factor for τ coarse-grained time series.

The k-th coarse-grained time series y(τ)k =
{

y(τ)k,1 , y(τ)k,2 , · · · , y(τ)k,L

}
of x is defined as follows [40]:

y(τ)k, j =
1
τ

jτ+k−1∑
i=( j−1)τ+k

xi, (3)

where 1 ≤ j ≤
⌊

L
τ

⌋
= N, 1 ≤ k ≤ τ, which means the coarse-grained series are calculated as the mean of

a continuous sample [41]. τ, the scale factor of the MSE, is defined as the first coarse-grained SampEn
time sequence, as follows:

MSE(x, m, r, d, τ) = SampEn(y(τ)1 , m, r). (4)

In the case of the scaling factor for τ, calculate all the coarse-grained sequence matching vector
of nm+1

k,τ and nm
k,τ. Let nm+1

k,τ or nm
k,τ represent the average value of nm+1

k,τ or nm
k,τ in the range 1 ≤ k ≤ τ.

The RCMSE value of the scale factor τ is defined as the logarithm of the ratio of nm+1
k,τ to nm

k,τ. That is:

RCMSE(x, m, r, d, τ) = − ln
nm+1

k,τ

nm
k,τ

, (5)

where nm+1
k,τ = 1

τ

τ∑
k=1

nm+1
k,τ , nm

k,τ =
1
τ

τ∑
k=1

nm
k,τ, d is the delay time. Therefore, Equation (5) can be simplified

as:

RCMSE(x, m, r, d, τ) = − ln
nm+1

k,τ

nm
k,τ
− ln

1
τ

τ∑
k=1

nm+1
k,τ

1
τ

τ∑
k=1

nm
k,τ

= − ln

τ∑
k=1

nm+1
k,τ

τ∑
k=1

nm
k,τ

. (6)
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Therefore, it can be concluded that RCMSE values are undefinable only when both nm+1
k,τ and nm

k,τ
are zero and should be avoided when calculating RCMSE.

2.4.2. RCMFDE Extraction

Given a time series of length L: x = {x1, x2, · · · , xL}, solving RCMFDE to calculate fluctuation-based
dispersion entropy (FDispEn) and MFDE. The signal is mapped to c classes with integer indices from 1
to c. The original signal is divided into non-overlapping segments of length, known as scale factors τ.
The average value of each segment to get a coarse-grained time series can be calcultated as shown
below [42–44]:

y(τ)j =
1
τ

jτ∑
b=( j−1)τ+1

xb, 1 ≤ j ≤
⌊L
τ

⌋
= N, (7)

where 1 ≤ b ≤ L and the FDispEn of each coarse-grained signal y(τ)j is calculated. The coarse-grained
approximation signal y is mapped into u =

{
y1, y2, · · · , yN

}
from 0 to 1 as follows:

u(τ)
j =

1

σ
√

2π

∫ aτj

−∞

e
−(t−µ)2

2σ2 dt, (8)

where µ and σ are the mean and standard deviation (±SD) of coarse-grained time series y, respectively.
Then, each yi is assigned an integer from 1 to c as zc

j = round(c ∗ yi + 0.5), where zc
j denotes the j-th

member of the time series [45,46].
For an embedding dimension m and a time delay d, the time series zm,c

i can be defined as zm,c
i ={

zc
i , zc

i+d, · · · , zc
i+(m−1)d , where i={1,2,···,N-(m-1)d}. Each time series zm,c

i is mapped to a fluctuation-based

dispersion pattern πv0v1···vm−1 , where zc
i = v0, zc

i+d = v1, . . . , zc
i+(m−1)d = vm−1. The number of possible

dispersion patterns that can be assigned to zm,c
i is equal to (2c− 1)(m−1).

For each cm potential dispersion pattern πv0v1···vm−1 , relative frequency is obtained as follows:

p(πv0···vm−1) =
#
{
i
∣∣∣i ≤ N − (m− 1)d, zm,c

i has type πv0···vm−1

}
N − (m− 1)d

, (9)

where # refers to a cardinality. Therefore, the MFDE value is calculated by using Shannon’s definition
of entropy as given below:

MFDE(y, m, c, d, τ) = −
(2c−1)m−1∑
π=1

p(πv0v1···vm−1) lnp(πv0v1···vm−1). (10)

RCMFDE is the basis of MFDE calculation, which in turn is based on each time scale. The scale
factor of the coarse-grained series τ is considered, with each τ corresponding to a different starting
point in the process of coarse-grained. Then, from the screened series, the relative frequency of
each fluctuation-based dispersion pattern is calculated. Finally, the RCMFDE value is defined as the
Shannon entropy value of the average occurrence rate of the fluctuation-based dispersion pattern of
those screened series. That is

RCMFDE(x, m, c, d, τ) = −
(2c−1)m−1∑
π=1

p(πv0v1···vm−1) ln p(πv0v1···vm−1), (11)

where p(πv0v1···vm−1) =
1
τ

τ∑
k=1

p(τ)k is the dispersion model in time series x(τ)k (1 ≤ k ≤ τ) of the relative

frequency, c is mapped class, and d is the delay time.



Entropy 2020, 22, 347 10 of 25

2.4.3. MMSWPE Extraction

For a signal x = {x1, x2, · · · , xL} with length L, a set of m-dimensional vectors formed as V ={
xt+( ji−1)l, xt+( j2−1)l, · · · , xt+( jd−1−1)l, xt+( jd−1)l

}
of length o is given by sample x j, with i and ranged from

1 to G, where G = N − (o− 1)τ. Different samples have d! potential ordinal patterns, π, also known as
“motifs”. The relative frequency is obtained as follows [50]:

p(πk) =

G∑
i=1

lv:type(v)=πk
(V(τ)

k )

G∑
i=1

lv:type(v)=Π(V(τ)
k )

, (12)

where Π= {π j}
m!
j=1, lv denotes the indicator function of set A = {d!}, which defined as lv = 0 if v < A

and lv = 1 if v ∈ A, V(τ)
k stands for k-dimensional vectors in a specified length of time.

Therefore, PE is calculated by using Shannon’s definition of entropy as follows [51]:

PE(o, d, τ) = −
πk=d!∑
πk=1

p(πk) ln p(πk). (13)

For WPE, transformation Equation (12), the probability distribution of each “motif” is defined as
follows:

pw(πk) =

G∑
i=1

lv:type(v)=πk
(V(τ)

k )wi

G∑
i=1

lv:type(v)=Π(V(τ)
k )wi

, (14)

where wi is the weighted value for vector V and is calculated by the variance of each adjacent vector V,

and the mean of the vector V is V, thus, wi =
1
m

m∑
q=1

[xi+(q−1)τ −V]2. WPE is the extension of PE, and it

saves useful amplitude information included in the signal, which is computed as

WPE(o, d, τ) = −
πk=d!∑
πk=1

pw(πk) ln pw(πk). (15)

The MMSWPE method, which combines WPE with the multivariate multiscale method was
proposed to extract the complexity of different signals more effectively. Therefore, MMSWPE, which
represents microwave transmission signal complexity, is calculated as

MMSWPE(o, d, τ) = −
πk=d!∑
πk=1

pw(πk) ln pw(πk). (16)

Therefore, we calculate RCMSE, RCMFDE, and MMSWPE by setting six parameters, namely, the
embedding dimension m, mapping class c, delay time d, scale factor τ, tolerance r, and permutation
entropy order number o. In this study, c and d are known to be 6 and 1, respectively and m is determined
according to cm < L, L = 2500, hence it is set as m = 4. τ = 6 can guarantee a satisfactory performance
and will not have too many features that could influence the classification effect. r = 0.15σ(x), σ(x)
represents the standard deviation of the original time series x, and r is too large to cause information
loss. As suggested by reports [51,52], when σ(x) is 1, the signal is most stable; thus r is set to 0.15. On
the basis of numerous experiments and experience, the performance is the best when o is set to 3 in this
paper [50].
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2.5. Feature Selection and Classification

2.5.1. Feature Selection

Each time series was calculated to obtain 5 × (6 + 6 + 6) = 5 × 18 features, and each subject
obtained a 40 × 4 × 4 × 5 × 18 five-dimensional feature matrix. Then, 24 combinations of subjects
obtained a 24 × 40 × 4 × 4 × 5 × 18 six-dimensional feature matrix, adjusting the dimension to a
15,360 × 90 feature matrix. A six-dimensional feature matrix with a combination of 24 × 40 × 4 ×
4 × 5 × 18 was obtained by 24 subjects and we adjusted the dimensions to a 15,360 × 90 feature
matrix. The number and dimensions of these features are large and the feature dataset has too
many dimensions or redundant features, which not only poses challenges to the classifier design and
training but also worsens the classification effect and considerably increases computational complexity
because of the possible “dimension disaster” [53]. Therefore, it is necessary to select the feature matrix.
In the feature selection process, principal component analysis (PCA) can only measure the linear
relationship between variables but not the nonlinear relationship between features [54]. The purpose
of the minimal-redundancy-maximal-relevance (mRMR) criterion based on mutual information is
to maximize the dependence between variables, which includes the calculation of multivariate joint
probability. The process is complicated and very difficult [55]. If the mutual information method is
combined with the PCA algorithm, the estimation of multivariate density, which is difficult to achieve
in the process of dependency maximization, can be avoided in feature selection. Therefore, this paper
proposes a mutual information-principal component analysis (MIPCA) feature selection method based
on mutual information. The method preserves the probability distribution of features in PCA, the
self-information between features, and the mutual information between features.

For a feature dataset FR×D, where feature Fi
∣∣∣ f M

i , M = 1, 2, · · · , R and feature F j

∣∣∣∣ f N
j , N = 1, 2, · · · , R .

If their probability density functions and joint probability density functions are p( fi), p( f j), and p( fi, f j),
respectively, their mutual information can be expressed as [55]:

I(Fi, F j) =
∑
M

∑
N

p( fi, f j) log
p( fi, f j)

p( fi)p( f j)
. (17)

Then, the principal component matrix based on mutual information can be calculated using the
following formula:

B
′

∑
I(Fi,F j)

B = Λ, (18)

where B is the matrix composed of the feature matrix
{
β1, β2, · · · , βκ

}
, and the corresponding feature

vectors are orthogonal in pairs and are orthogonal matrices, Λ is a matrix composed of the feature
vector

{
γ1,γ2, · · · ,γκ

}
, which is a diagonal matrix, and

∑
I(Fi,F j)

is the mutual information matrix,
which is a symmetric matrix of non-negative real numbers.

The principal component information based on mutual information can be expressed as follows:

Pκ = B
′

fκ′ , (19)

where the variables are orthogonal to each other. Dimension Dκ of the principal component is
determined next. The contribution rate of the principal component of MIPCA is defined as Cκ, which
is the ratio of the single principal component to total principal component information, that is,

Cκ = µκ/
N∑
κ=1

µκ, (20)

where µκ is the characteristic value of the κ-th largest mutual information matrix
∑

I(Fi,F j)
, which

represents the information amount of the principal component κ.
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The contribution rate of the principal component in dimension dκ is the sum of the contribution
rates of the previous dκ, that is,

δκ =
κ∑

i=1

Ci. (21)

The first Dκ principal components with a contribution rate of 85–95% were selected as the
new feature.

2.5.2. Classification and Performance Evaluation

MIPCA was used for feature selection and dimensionality reduction of feature dataset. The
features of the first 20 with a contribution rate of ≥ 85% were selected as feature subsets for training and
classification. Leave-one-out Cross Validation (LOOCV) was used to capture the optimal classification
model, leaving all data of one subject at a time as the test dataset and the rest as the training dataset.
Finally, a generalized classifier of non-specific individuals was generated. The RF classifier was then
used to complete multi-class task recognition. For RF, the random selection of training datasets and
feature subsets depends on LOOCV to construct, test, and validate the decision tree. The C4.5 decision
tree was selected and the leaf node containing the minimum sample number minleaf was 36 to generate
the optimal decision tree. The test results were evaluated, and the optimal classification selected by
voting to generate the optimal RF classifier. Then, the optimal classifier was used to categorize the
classification performance of the test dataset. The evaluation indicators are true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). The performance of the RF classifier is
evaluated using accuracy and precision. The calculation method is as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
× 100%, (22)

Precision =
TP

TP + FP
× 100%. (23)

3. Results

3.1. Evaluation of Improvement of Brain Function Sites and Sleep Quality by Microwave

The microwave modulation frequency (20 Hz) acts on the active area of the brain, changes the
firing frequency of its functional sites, inhibits the firing activity of the awakening nerve cells, increases
the tendency of brain activity to calm down, and improves sleep quality. To test the effect of microwaves
on sleep, patients filled out a survey rating form when they woke up after each true machine test, and
their sleep quality was rated on a scale of 0 to 10. The higher the score, the more satisfied with the
sleep improvement. Figure 3 shows the statistics of the sleep quality satisfaction rating scale of the
subjects under the condition of a true machine. It shows that the subjects’ satisfaction with the effect of
microwave treatment is above eight points, representing "relatively satisfied", indicating that the effect
of microwave on the functional sites of the brain really improves the sleep effect of the patients with
sleep disorders.
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To objectively evaluate the improvement of sleep quality, we used PSG records to identify each
subject’s sleep condition throughout the night. Figure 4 shows that in the first test, the neuralgia
subjects who did not receive microwave treatment (false machine) had less than 15% sleep time. After
microwave treatment (true machine), the patients’ proportion of sleep time continued to improve,
maintaining above 80% overall, and the insomnia rate decreased gradually. After four tests, the
average sleep time was also more than 70% without the assistance of microwave, indicating that a
significantly better improvement of sleep quality due to the microwave. A comparison of the paired
t-test results of the true and false machine in four tests, we find that as the number of treatments
increased, the difference between the true and the false machine tests became increasingly smaller.
Hence, we can conclude that microwaves can achieve good results within a short time and taper off

the use of microwaves to help people to sleep, which is a safer and more reliable option than the
long-term use of drug therapy. Figure 5 shows the average SOL of patients receiving treatment on the
true machine and the false machine. After the addition of electromagnetic wave therapy, the sleep time
of patients were improved significantly and thus, the SOL could be advanced and SMR increased. As
the number of times microwaves aid sleep increases, SOL continues to decline as shown in Figure 5.
The paired t-test of the true and the false machines showed that the p-value was less than 0.05 or 0.01,
indicating that the true machine improved sleep quality significantly better than the false machine.
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Figure 6 shows that when the subjects were in the true machine environment, in a EOG channel,
the power spectral density variation of brain activity was significantly lower than that in the false
machine environment. The explanation for this finding is that the microwave does change the firing
frequency of brain function sites, causes the degree of activity of the cerebrum to decrease, thereby
facilitating a person to fall asleep.
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machine and a true machine.

Under microwave regulation, the frequency band energy percentage of each sleep stage was
compared, as shown in Table 1. In each sleep phase, the highest frequency band energy percentage
was in the delta band, while the variations in other frequency bands were not consistent. Delta had
the highest proportion in the SWS phase, and lowest when it was in REM. As sleep progresses, the
insomnia rate gradually decreases, and the energy ratio in the theta, alpha, and beta bands becomes
lower and lower.

Table 1. Frequency band energy percentage of different sleep stages in the case with
microwave regulation.

Sleep Stage Delta Theta Alpha Beta

W 69.23 ± 9.32 10.17 ± 2.34 3.35 ± 1.78 17.25 ± 3.78
REM 64.41 ± 8.73 20.19 ± 4.31 6.43 ± 1.87 8.97 ± 2.74

LS 79.54 ± 6.27 12.37 ± 1.58 4.62 ± 1.03 3.47 ± 1.23
SWS 91.12 ± 2.18 5.26 ± 0.68 2.26 ± 0.27 1.36 ± 0.19

Table 2 shows the proportion of each sleep stage in TIB and the p-value of the paired t-test for
the true and the false machine tests. As can be seen from Table 2, there was a significant statistical
difference between the true and false machine tests in the W and LS stages, indicating that microwave
treatment could significantly reduce W and increase LS. However, the improvement of SWS stage by
microwave treatment was not significant, and there was no improvement in REM stage. In the false
machine test, the highest proportion of W stage was 58.72%, and the TST was only 41.28%, indicating
that the patient was in a state of severe insomnia. In the true machine test, the W stage dropped to
18.44%, and the TST accounted for 81.56%. In general, microwaves significantly improved sleep quality
in people with sleep disorders.
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Table 2. Proportion of each sleep stage in TIB with and without microwave regulation.

Sleep Stage True Machine (%) False Machine (%) Improve? p

W 18.44 ± 1.37 58.72 ± 2.53 Yes <0.01
REM 23.79 ± 1.78 23.22 ± 1.46 No 0.54

LS 46.25 ± 2.83 11.17 ± 1.83 Yes <0.01
SWS 11.52± 1.57 6.89 ± 1.64 Yes <0.05

Note: p < 0.05 (0.01) means the difference is statistically significant.

3.2. Multiscale Entropy Extraction

RCMSE, RCMFDE, and MMSWPE were extracted from the wavelet packet coefficients
corresponding to the frequency band of each sleep stage: A(5,0), D(5,1), D(5,3), D(5,2) and D(3,1),
respectively. The calculated mean entropy value is shown in Figure 7. By comparing the entropy at
different stages, the following results are obtained; for coefficient of A(5,0), the entropy of LS period is
the largest, indicating that LS in A(5,0) had the largest complexity. However, in D(5,1), D(5,3), and
D(5,2), no uniform distinction between the corresponding entropy values in each stage was observed,
thereby indicating that different entropy values in the wavelet packet coefficients will have different
complexities. For D(3,1), its frequency band only appears in stage W and entropy is higher in stage
W, indicating that the brain shows strong activity at this time. In general, for the coefficient of the
low-frequency band, the shallower the sleep, the higher the entropy and the higher the complexity.
Conversely, the higher the wavelet packet coefficient in the high-frequency band, the higher the entropy
of deeper sleep. Figure 7 shows the significant differences in the entropy of different sleep stages. Each
stage can be distinguished from other stages.

Figure 8 shows the average results calculated for RCMSE, RCMFDE, and MMSWPE in each sleep
stage. The results show that the entropy value of stage W is the largest whereas that of LS and SWS
decreased successively and SWS reached the lowest. REM increased and was close to LS, indicating
that brain activity was the most active during the W stage, accompanied by complex thinking activities.
W also had the largest corresponding complexity. With the deepening of sleep, the activity of the
cerebral cortex is weakened gradually and brain firing activity is reduced, leading to the reduction of
system complexity, that is, the complexity of the deep sleep stage is the lowest. During REM, however,
because of the uncertainty as to brain activity, the degree of activity and complexity fluctuates but the
entropy value hovers around LS or is slightly higher than LS.
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3.3. Classified Evaluation

The entropy features were obtained from data of each stage through WPT decomposition and
in the selected wavelet packet coefficients. The features selected by MIPCA were combined into a
new feature dataset and the RF classifier was constructed according to the LOOCV method, that is,
the data of one person were selected randomly as the test dataset and the rest as the training dataset.
The test dataset is classified, and the results obtained are shown in Table 3. The average classification
accuracy is 86.41%, among which LS and SWS had the highest recognition rate and REM had the
lowest, possibly because REM tends to alias with LS, which affects the detection precision.

Table 3. Classification results of test set by random forest algorithm.

W REM LS SWS

W 804 58 13 11
REM 86 782 58 27

LS 22 106 862 56
SWS 48 14 27 866

Accuracy 83.72% 81.45% 89.76% 90.17%
Overall Accuracy 86.41%

The four types of sleep stages of the 24 subjects were classified and compared separately to verify
the feasibility of microwave recognition of sleep stages and treatment of sleep disorders. Figure 9
shows the accuracy and precision of 24 subjects being classified. Figure 9 shows the detection accuracy
of all subjects is more than 70% and the average accuracy is more than 80%. Similarly, the precision
of each subject was maintained between 70% and 90%, with an average of over 85%. This finding
suggests that microwaves have the same function as EEG and can be used to detect various types
of brain activity. It also provides further evidence that microwaves can detect brain activity, such as
pain, sleep, epilepsy, and depression, and can be used to treat and alleviate brain diseases caused by
these factors.
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The performance of the proposed method is compared with several existing method-based
techniques in Table 4 in terms of overall accuracy. Although these methods use different databases,
such as EEG or EOG signals, they all use entropy features for classification. The proposed method
has the best overall performance with an accuracy of 86.41%. The detection accuracy achieved by the
proposed method is significantly higher than those of other techniques. Table 5 is a comparison of the
overall accuracy performance of the proposed method with existing methods of other feature types.
The proposed scheme outperforms the others in most of the cases. Thus, microwave detection could
be a viable alternative to EEG in sleep stage classification.

Table 4. Comparison of the proposed scheme with existing methods under different entropy features.

Authors Features (Database) Methods Overall Accuracy
(%)

Rodríguez-Sotelo et al. [56] Entropy metrics (EEG) J-means approach 81.00

Liang et al. [48] Multiscale entropy
(EOG)

Linear discriminant
analysis 76.91

Rahman et al. [47]
Refined composite

multiscale dispersion
entropy (EOG)

Random under-sampling
boosting 84.70

Tian et al. [49] Multiscale entropy (EEG) Support vector machine 85.60

Proposed Multiple multiscale
entropy (microwave) Random forest 86.41
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Table 5. Comparison of the proposed scheme with existing methods for other feature types.

Authors Features (Database) Methods Overall Accuracy (%)

Zoubek et al. [57] Relative powers (EEG,
EMG, and EOG)

Bayes rule-based
classifiers 71.00

Tagluk et al. [58] Hybrid features (EEG,
EMG, and EOG)

Artificial neural
networks 74.70

Ronzhina et al. [59] Hybrid features (EEG) Artificial neural
networks 81.55

Fraiwan et al. [60] Power spectrum (EEG) Random forest 84.00

Proposed Multiple multiscale
entropy (microwave) Random forest 86.41

4. Discussion

The current research aims to develop an integrated system of non-contact sleep stage detection
and sleep disorder treatment for health monitoring. Based on the principle of microwave scattering,
the system uses a microwave transceiver instead of scalp EEG contact to evaluate sleep staging. After
four microwave modulation treatments, sleep efficiency, SMR, and SOL were improved considerably.
The quality of sleep has also improved markedly. The classification of microwave transmission signals
for testing sleep shows that the average detection accuracy of sleep stages exceeds 80%, indicating that
microwaves can replace EEG in detecting brain activity. However, different from EEG, microwave can
not only analyze and identify the spectrum of the signal quickly based on the detected brain activity
signal through the calculation module but also send the modulation frequency to act on the brain
functional sites, changing and adjusting the firing frequency of the brain functional sites to achieve
the purpose of the treatment [16–19]. In view of the small amplitude of EEG, which is difficult to
measure and because non-invasive and low-damage detection is a trend, the high frequency and
strong penetration characteristics of the microwave makes it an important method for non-invasive
detection [61].

In the sleep quality test, Figures 3–6 shows the subjects’ sleep satisfaction scores, sleep efficiency,
SMR, and SOL, which were calculated without considering the number of awakenings between sleep.
All subjects experienced significant improvements in sleep quality after four microwave treatments. In
particular, the efficiency of sleep increased to 80%, reaching the level of normal people. The SOL is
reached much earlier, which means the rate of insomnia decreased gradually. The paired t-test (95%
confidence level) with and without microwave therapy showed the differences in sleep efficiency and
SOL decreased over time. By the fourth treatment, the difference was so close that some patients may
have completed the treatment.

This paper also improved the traditional PSG technology using microwave detection without
touching the scalp instead of EEG as a tool to obtain brain activity signals. The power spectral density
variation with microwave regulation is lower than that without microwave regulation, indicating
that brain activity decreased under microwave regulation. The direct reason may be because the
subjects were drowsy or fell asleep during this process. Tables 1 and 2 show the energy possession
ratio and the relative TIB possession ratio for each sleep stage. The energy of slow waves during
sleep is significantly lower than when they are awake. Based on the experimental results, as sleep
deepened, the energy carried by the high-frequency component of the microwave signal decreased
gradually [62]. In contrast, the energy of the low-frequency component increased gradually [63].
In terms of the proportion of energy of brain rhythm corresponding to each sleep stage, the proportion
of the delta energy was the highest. However, the proportion of delta energy was higher 90% because
of the decrease in brain activity. In general, neuronal activity in the brain decreases during sleep but
does not disappear completely, with the beta wave energy percentage decreasing and the delta ratio
increasing [64]. However, our results and the results of Sichari et al. [65] may also be explained by
a common mechanism that leads to an increase in power spectral activity across the upper portion
of the EEG spectrum including the slow waves and alpha frequency bands. The proportion of theta
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waves increased during REM and the proportion of delta waves was the smallest, indicating that
during REM, brain activity was in a state of wakefulness and that the energy of theta and alpha waves
began to increase [66]. When LS and SWS were in light and deep sleep, alpha and beta activities were
the weakest, but the energy ratio of delta and theta waves increased significantly [67]. In addition,
according to the paired t-test results with or without microwave modulation, significant differences
in the proportion of TIB can be observed at each stage. Among them, W decreased by 49%, LS and
SWS increased by 39% and 16%, respectively, which means that with the help of a microwave, sleep
efficiency was improved, and sleep disturbance was alleviated.

In terms of extracting features, wavelet packets are more precise in extracting rhythm wave
frequency bands, which can decompose high-frequency signals further such that each coefficient
corresponds to a frequency band of brain rhythm, which is more conducive to feature extraction [68].
Figures 7 and 8 show the RCMSE, RCMFDE, and MMSWPE extracted in each sleep stage. Among the
features, those with the highest frequency of use are the ones in the time domain and frequency domain.
However, because these features are linear signals that deal with non-stationary, nonlinear signals,
such as microwave propagation, some information can be easily lost [69]. Therefore, the nonlinear
feature may be a choice for identifying signal information [70,71]. In this paper, three nonlinear
features of RCMSE, RCMFDE, and MMSWPE were extracted, which were effective in the sleep stage.
Different entropies differ significantly in different wavelet packet coefficients, which can reflect fully
the different stages of sleep [37–40]. Multiscale entropy can represent system dynamics features on
multiple time scales and may reveal specific characteristics in different sleep stages, which is beneficial
to the recognition of sleep types [72,73]. In general, neurons in the brain exhibit reduced activity
during sleep but follow a specific pattern [74]. In fact, neither sleep nor wakefulness can determine
whether a neuron system is inactive during sleep. Certain oscillatory behaviors and sometimes even
some neurons are more active during sleep than during wakefulness [75]. Figures 7–9 confirm this
view, and the changes in different entropies in each rhythm are not necessarily consistent. However,
in different sleep periods, the entropy value appears at a certain regularity because of the different
degrees of nerve activity [76]. The higher the nerve activity, the higher the complexity of the signal,
and the higher the value [45,46].

Before the recognition and classification of sleep stages, some feature dimensionality reduction
or feature selection algorithms may be used to process the data to handle the large dimension of the
extracted feature dataset, which affects the classification effect of the classifier [53]. For example, PCA
and independent component analysis (ICA) can only measure the linear relationship between variables
and may ignore important information [54]. The modified MIPCA retains the probability distribution
of features in the PCA method and has self-information and mutual information between features
to be expressed in mutual information, which is more favorable for retaining useful sleep staging
data [55]. Table 3 and Figure 9 show that the recognition rate of all sleep stages was over 80%, the
overall accuracy was 86.41, and the average recognition accuracy of each subject was over 70% when
RF classification is used.

The proposed method uses only microwave recordings as the input signals. Compared to the
conventional sleep scoring methods that require multiple physiological signals (EEG, EOG, and EMG),
the microwave-based method has the advantage of reducing sleep disturbance caused by recording
wires. It is especially helpful for home environments and clinical care. Although some methods based
on EEG or EOG have been developed recently, Tables 4 and 5 show that our method is superior to
other methods, whether using similar entropy as a feature or other forms of the feature. Another
advantage of our method is that the accuracy of each stage is more balanced and the classification
accuracy reaches 86.41%, indicating that our method has higher reliability.

In summary, using microwaves instead of EEG tests could both eliminate the hassle of too many
electrodes sticking to the skin and allow brain activity to be detected and identified in the same way
as an EEG. In addition, certain microwave frequency modulation can improve the sleep quality of
patients with sleep disorders. This effect may be due to microwaves changing the concentration of ions
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in the extracellular fluid of neurons in the functional sites of the brain during sleep, thereby altering
the permittivity of neurons in the functional sites of the brain, resulting in a loss of energy in the
brain’s electromagnetic field and the brain’s desire for drowsiness [16–19]. Therefore, the principle of
microwave scattering can be used to design portable and inexpensive integrated microwave devices to
detect and treat sleep disorders. For a variety of insomnia patients, including the elderly, children,
women, microwaves can be used safely to improve their sleep without the dependence on neurological
drugs. Moreover, it can obtain higher classification accuracy. Notably, the method is also is superior to
other methods in the detection accuracy of sleep stages.

Our study has the following limitations: (1) We chose 6 GHz electromagnetic wave emission
frequency and 20 Hz modulation frequency for the detection of sleep stages and the treatment of sleep
disorders. However, we did not consider the comparison and validation of other frequencies because
more reliable information on microwave detection and treatment of brain diseases is not available.
(2) The comparison of multiple microwave frequencies to determine which microwave frequency is
more favorable for detecting sleep activity is not considered. It is also not possible to identify which
modulation band range is more favorable for regulating the firing behavior of the functional sites of
sleep activity. Individual brains have certain differences in firing behavior of sleep and thus, a large
error could occur in the detection and regulation using the same frequency standard. (3) For the sleep
stage, wavelet packet technology with better robustness and multiscale entropy features are used to
distinguish between the features of different sleep stages. Excessive consideration of a single type of
nonlinear feature may affect the accuracy of the sleep stage. In view of these defects, our next research
focus will be to consider and solve the problem.

5. Conclusions

In this paper, the principles of microwave scattering are used for the first time in the design of a
microwave detection and treatment system. Following the problem of a popular sleep disorder, the
microwave is used to modulate the brain functional sites and change the abnormal firing behavior of
the activated area to improve and treat insomnia. This paper is also the first time that a microwave has
been used to detect sleep brain activity. The proposed system is found to be capable of improving on
the shortcomings of traditional PSG technology, replacing the inconvenient EEG contact connection
and enabling non-contact microwave antenna to monitor sleep brain activity. After extracting the
multiscale entropy features of microwave transmission signals and evaluating the performance of RF
classifier, the average classification accuracy was 86.41%. Hence, the proposed system is proven to be
successful despite many shortcomings. In the future, we will focus on the defects in the current research
and improve the research methods further to achieve higher classification accuracy and treatment
effect. Finally, we designed a more effective and convenient integrated microwave system that can be
used widely in the daily detection and treatment of insomnia and could offer more effective treatments
for other brain disorders, such as epilepsy, depression, and consciousness disorders.
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