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Abstract
We have previously shown that in the developing trunk of zebrafish embryos, two-pore channel type 2 (TPC2)-mediated Ca2+

release from endolysosomes plays a role in the formation of the skeletal slow muscle. In addition, TPC2-mediated Ca2+ sig-

naling is required for axon extension and the establishment of synchronized activity in the primary motor neurons. Here, we

report that TPC2 might also play a role in the development of the notochord of zebrafish embryos. For example, when tpcn2
was knocked down or out, increased numbers of small vacuoles were formed in the inner notochord cells, compared with the

single large vacuole in the notochord of control embryos. This abnormal vacuolation was associated with embryos displaying

attenuated body axis straightening. We also showed that TPC2 has a distinct pattern of localization in the notochord in

embryos at ∼24 hpf. Finally, we conducted RNAseq to identify differentially expressed genes in tpcn2 mutants compared

to wild-type controls, and found that those involved in actin filament severing, cellular component morphogenesis, Ca2+ bind-

ing, and structural constituent of cytoskeleton were downregulated in the mutants. Together, our data suggest that TPC2

activity plays a key role in notochord biogenesis in zebrafish embryos.
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Introduction
The notochord is a defining feature of members of the
Chordata phylum. It lies ventral to the neural tube and is
regarded as a form of primitive cartilage, acting initially as
the main structural support of the body for most vertebrates
(Stemple, 2005). In mammals and bony fish, the notochord
is a transient structure, existing only in the embryonic and
larval stages before being replaced by cartilage and bone in
the adult (Hejnol and Lowe, 2014). However, some noto-
chordal cells persist as they contribute to the nucleus pulpo-
sus, which lies between the intervertebral discs of the spinal
cord (McCann et al., 2012; McCann and Séguin, 2016). In
addition to its supportive role, the notochord also helps to
coordinate development via the secretion of morphogens
(Corallo et al., 2015), which diffuse into and specify the
cells that form the adjacent tissues, such as the dorsal aorta,
floor plate, and slow-twitch skeletal muscle (Baressi et al.,
2000; Cleaver et al., 2000; Stemple, 2005).

In zebrafish, the notochord arises from the embryonic
shield. At ∼16.5 h post fertilization (hpf), chordamesoderm
cells differentiate via a Notch-dependent mechanism into
two cell types. These are outer epithelial sheath cells,

which secrete a thick perinotochordal extracellular matrix
(ECM) and inner vacuolated cells, which contain large vacuoles
and smaller pre-vacuolar compartments. Indeed, when mature,
the inner vacuolated cells are characterized by large (∼40 µm
in diameter) fluid-filled vacuoles that occupy ∼80% of the
cell volume (Hunter et al., 2007; Yamamoto et al., 2010), and
have a “stack of coins” appearance along the length of the
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notochord (Glickman et al., 2003; Ellis et al., 2013a). These
notochord features mediate trunk straightening and axis elong-
ation by acting as a hydrostatic skeleton for the developing
embryonic trunk before the bony skeleton forms (Bagnat and
Gray, 2020; Bagwell et al., 2020).

During notochord development in zebrafish, relatively
small intracellular pre-vacuoles become fused to form a single
main vacuole in each internal notochord cell (Bagwell et al.,
2020). Vacuolar inflation is driven by osmolyte transport into
the vacuole lumen, creating turgor within the mechanically
restrictive boundaries of the surrounding sheath cells.
Notochord vacuoles are proposed to be lysosome-related orga-
nelles, and their formation requires the Golgi apparatus as well
as endolysosomal trafficking and targeting machinery (Ellis
et al., 2013a). It has been suggested that the pre-vacuoles bear
a resemblance to “vacuolinos,” a recently discovered type of
organelle in plants, which fuse to the tonoplast, a semiperme-
able membrane surrounding the main plant cell vacuole (Li
et al., 2021). The fusion of the notochord pre-vacuoles therefore
represents a key membrane contact event during notochord bio-
genesis (Vassileva et al., 2020).

In some zebrafish mutants (e.g., dstyk), the notochord is
malformed. Disrupting dstyk expression was shown to prevent
vesicle membrane fusion to (and thus the formation of) the
main vacuoles, and this was associated with the notochord abnor-
malities observed (Bagwell et al., 2020). A separate study
showed that there is an accumulation of Rab7a-puncta in the
notochord of dytsk mutant embryos, indicating defects in the
late-endosome trafficking pathway (Sun et al., 2020). The same
group provided evidence that Dstyk might exert transcriptional
regulation on late endosomal trafficking and notochord vacuole
biogenesis via the mTORC1/TFEB pathway (Sun et al., 2020).
Early studies also highlighted a role for intracellular
trafficking-related proteins in the formation of the perinotochordal
basement membrane of the notochord. For example, Coutinho
et al. (2004) showed that the sneezy, happy, and dopey zebrafish
mutants fail to form inflated notochord vacuoles.

Accumulating evidence also suggests that an array of lyso-
somal ion channels (including TPCs and members of the
Transient Receptor Potential cation channel, MucoLipin sub-
family; TRPML) and transporters regulate membrane contact
events. They achieve this by sensing trafficking and osmotic
cues, which result in ion, solute, and water influx, as well as
localized secretory events (Dong et al., 2010; Kilpatrick et al.,
2013; Vassileva et al., 2020; Hu et al., 2022), all of which
might be required for notochord biogenesis (Coutinho et al.,
2004). Furthermore, various recent studies suggest that many
trafficking associated genes are required to develop and main-
tain the characteristic stiffness and architecture of the notochord
(Bagnat and Gray, 2020; Yasuoka, 2020).

As endolysosomal trafficking has been increasingly impli-
cated in the formation of the notochord (Coutinho et al.,
2004), we investigated the possible role of two-pore
channel type 2 (TPC2) in this process. TPCs are pleiotropic
cation-permeable channels found in endolysosomal

membranes, which are integral to intracellular Ca2+ signaling
(Kilpatrick et al., 2017; Jin et al., 2020; Vassileva et al., 2020)
and other transmembrane ion fluxes including Na+, which
might contribute to osmotically driven vacuole inflation
(Wang et al., 2012; Cang et al., 2013; Vassileva et al., 2020).
TPCs have been implicated in multiple cellular processes
such as cell growth, differentiation, and development (Webb
et al., 2020), cardiac dysfunction (Capel et al., 2015;
Davidson et al., 2015), autophagy (Lin et al., 2015), and viral
infection (Sakurai et al., 2015; Gunaratne et al., 2018). TPC2
is one of the three TPC isoforms present in most vertebrates,
and it is expressed primarily in the membranes of lysosomes
and late endosomes (Ruas et al., 2014). Numerous recent
reports suggest that the genetic ablation or pharmacological
inhibition of TPC2 results in distinctly abnormal developmental
phenotypes, which include the disruption of skeletal muscle
myogenesis (Kelu et al., 2015, 2017); inhibition of primary
motor neuron extension (Guo et al., 2020), and abnormal pig-
mentation (Ambrosio et al., 2016). Such abnormal phenotypes
likely arise via the disruption of key cellular processes including
endolysosomal vesicle trafficking (Grimm et al., 2017); autop-
hagy (Lin et al., 2015; García-Rúa et al., 2016; Vassileva
et al., 2020) and/or key membrane contact events that include
endocytosis and exocytosis (Davis et al., 2012, 2020), in a
variety of cell types, tissues, and organs.

Here, we used a combinatorial approach, by applying
genetic, molecular, pharmacological, and various live and
fixed-imaging techniques, to explore the possible Ca2+-related
role of TPC2 in the formation of the notochord in zebrafish
embryos. In addition, immunohistochemistry was used to deter-
mine the localization of TPC2 in the notochord of embryos at
∼24 hpf. We also conducted RNAseq to identify genes that
were upregulated or downregulated in tpcn2 mutants compared
with wild-type controls. Here, we propose that TPC2 functions
to regulate key membrane contact events resulting in vacuole
inflation in the inner notochord cells. Thus, our new data add
notochord biogenesis as another key developmental event by
which TPC2 plays an important regulatory role. This supports
the growing recognition that one function of TPCs might be to
act as master orchestrators of intracellular vesicle trafficking via
Ca2+-mediated regulation of membrane contact events. Indeed,
their location in the membranes of highly motile Ca2+ stores pro-
vides the potential for highly localized signaling activity within
differentiating cells (Marchant and Patel, 2015; Grimm et al.,
2017; Kilpatrick et al., 2017; Vassileva et al., 2020).

Results

Genetic Attenuation of tpcn2 has Distinct Effects on
the Notochord at ∼24 hpf
We previously demonstrated that the genetic attenuation of
tpcn2 has distinct effects on the development of the slow
muscle cells in the trunk of zebrafish embryos (Kelu et al.,
2015, 2017). Here, we observed that tpcn2 knockout or
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knockdown also had distinct effects on the development of
the notochord. As shown in the low magnification images
in Figure 1A–F and the bar chart in Figure 1G, embryos
injected with tpcn2-T-MO (plus p53-MO) and tpcn2 hetero-
zygous (tpcn2+/-) and homozygous (tpcn2-/-) mutants, all
exhibited significantly delayed body axis straightening
when compared with the controls (i.e., the untreated, standard
control (SC)-MO or p53-MO injected embryos) at ∼24 hpf.
The tpcn2-T-MO was co-injected with a p53-MO to
prevent possible off-target effects of the former on p53 activ-
ity (Robu et al., 2007).

The gross morphology of the notochord vacuoles of the
inner notochord cells was observed at higher magnification
(Figure 2). Figure 2Aa shows a low magnification view of
a wild-type embryo and the location on the trunk (black rect-
angle) where the notochord was imaged at higher magnifica-
tion, whereas Figure 2B shows a schematic of the basic
structures of the notochord and surrounding tissues. The
bright-field images acquired at higher magnification
(Figure 2Ca-d) show that in wild-type (ABTU strain)
embryos (Figure 2Ca), the notochord cells could be identified
by their large, fluid-filled vacuoles, whereas tpcn2-/- mutant
embryos contained a larger number of smaller notochord
vacuoles (Figure 2Cb). In addition, wild-type embryos that
were injected with the p53-MO displayed a comparable
phenotype to that of the ABTU embryos (compare
Figure 2Cc with Figure 2Ca), whereas embryos that were
injected with the tpcn2-T-MO (plus p53-MO) exhibited a
notochord vacuole phenotype similar to the tpcn2-/-
mutants (compare Figure 2Ad with Figure 2Cb).

The number and shape (i.e., circularity) of the notochord
vacuoles were quantified for all the treatment groups
(Figure 2D). Regarding the former, the number of vacuoles
within a notochord region of interest (ROI) adjacent to
somites 8–11 was quantified (Figure 2Da). The data show
that the tpcn2-/- mutants and morphants had significantly more
vacuoles in this region than their respective controls (i.e., the
ABTU and p53-MO-injected embryos). Regarding the shape
(Figure 2Db), the data show that the tpcn2 mutants and mor-
phants possessed significantly more circular notochord vacuoles
when compared with their respective controls.

To further quantify the notochord vacuole phenotype,
embryos were labeled with BODIPY FL C5-ceramide
(Figure 3A). As this dye labels the Golgi apparatus within
the cell cytoplasm (Chazotte, 2008), it was used to facilitate
the identification (and quantification of the size) of the noto-
chord vacuoles in the different wild-type and mutant lines, as
well as in the various MO knockdown and pharmacological
treatment groups. Quantification of BODIPY FL
C5-ceramide-labeled images in each of the treatment
groups showed that injection of the tpcn2-T-MO (plus
p53-MO) led to a significantly reduced vacuole area, when
compared with the p53-MO controls (compare Figure 3Ad
with Figure 3Ac, and Figure 3B). In addition, the area of
the vacuoles in the tpcn2-/- mutant was also significantly

smaller than those of wild-type (ABTU) embryos (compare
Figure 3Af with Figure 3Ae, and Figure 3B). Embryos
were also pharmacologically treated with trans-Ned-19, a
selective inhibitor of NAADP-induced Ca2+ release (Pitt
et al., 2010; Ruas et al., 2010), to investigate the possible
involvement of Ca2+-mediated regulation of notochord
development. Our data show that even though the
DMSO solvent control had an effect on notochord vacuole
size when compared with the untreated controls, embryos
treated with trans-Ned-19 (and DMSO) had significantly
smaller notochord vacuoles when compared with the
DMSO-treated control embryos (compare Figure 3Ah with
Figure 3Ag and see Figure 3B).

TPC2 is Localized to Distinct Regions in the Zebrafish
Notochord at ∼24 hpf
To study the localization of TPC2 in the zebrafish notochord
at ∼24 hpf, intact embryos were immunolabeled with an
anti-TPC2 antibody and then counterstained with phalloidin
and Hoechst 33258 to label the F-actin and nuclei, respectively
(Figure 4). Confocal single optical sections were acquired
through the notochord along the anterior–posterior axis of the
zebrafish trunk adjacent to the location of somites 8
(Figure 4A), 16 (Figure 4B), and 22 (Figure 4C). Our data
showed that the anti-TPC2 antibody displayed some nuclear
labeling in the notochord cells in the anterior part of the noto-
chord (yellow arrowheads in Figure 4Aa-Ac). TPC2 was also
localized in distinct puncta, which were associated with the
vacuolated notochord cell boundaries in the anterior, middle,
and posterior regions of the notochord (white arrowheads in
Figure 4Ab,Ac,Bb,Bc,Cb,Cc). Together, these data suggest
that TPC2 is expressed in distinct regions of the zebrafish noto-
chord at ∼24 hpf.

RNA-seq Analysis of tpcn2 Homozygous Mutants and
Wild-Type (ABTU) Embryos
To explore the genetic landscape of tpcn2 mutants and iden-
tify candidate genes implicated in notochord development,
a whole-transcriptome RNA-seq analysis was performed on
samples collected from the trunk of tpcn2 homozygous
embryos or wild-type (ABTU) embryos at ∼17 hpf, by
which time the anterior chordamesoderm cells have differen-
tiated into notochord vacuolated cells and are beginning to
inflate (Ellis et al., 2013a).

A principal components analysis showed that the tpcn2
homozygotes formed a distinct cluster that was separate
from the wild-type controls (Figure 5A). Principal compo-
nent 1 (PC1) explains 83% of the total variance and separates
the mutants from the wild-type samples, whereas PC2
explains 7% of the total variance. This indicates that most
of the variation in the transcriptomes was caused by the dif-
ferent genetic backgrounds of the samples.

Rice et al. 3



Figure 1. Effect of genetic attenuation of tpcn2 on body axis straightening in embryos at ∼24 hpf. Representative bright-field images

showing the body axis straightening morphology in embryos at ∼24–25 hpf. Embryos were (A) untreated (control) or injected with (B)
standard control (SC)-MO, (C) p53-MO, or (D) tpcn2-MO-T+ p53-MO. In addition, representative bright-field images of a (E) tpcn2
heterozygous (tpcn2+/−) and (F) tpcn2 homozygous (tpcn2−/−) mutant are shown. The body axis straightening angle (indicated by the pink

dashed lines) was measured. Ant and Pos are anterior and posterior, respectively. Scale bar, 500 µm. (G) Quantification of the body

straightening angle. The bar chart shows the mean± SEM body straightening angle on to which is superimposed the individual data points.

The number (n) of embryos in each condition is shown. Statistical analysis was carried out using the Mann–Whitney U-test and data that

were significantly different are represented by ∗p< .05, ∗∗p< .01, and ∗∗∗p< .001.
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Figure 2. Effect of genetic attenuation of tpcn2 on the number and shape of notochord vacuoles in embryos at ∼24 hpf. (A) Bright-field
image of an intact wild-type zebrafish embryo at ∼24 hpf and (B) schematic showing the basic structure of the notochord from a lateral

view. In (A), the black rectangle indicates the location of the notochord (adjacent to somites 8–11), where higher magnification images were

acquired. (Ca-d) Representative bright-field images showing lateral views of the notochord at higher magnification in a (Ca) wild-type
(ABTU; n= 5) embryo, (Cb) tpcn2 homozygous mutant (tpcn2−/−; n= 7), (Cc) p53-MO-injected embryo (n= 6) and (Cd) tpcn2-T-MO+
p53-MO-injected embryo (n= 6). In these images the black dashed lines indicate the dorsal and ventral boundaries of the notochord. Scale

bars, 200 µm (A) and 20 µm (C). (D) Violin-plots (indicating the mean± SEM) onto which are superimposed individual data points showing

the (Da) number and (Db) circularity of vacuoles in the control, morphant, and mutant embryos shown in (C). An explanation of what

these parameters refer to is provided in the Experimental Procedures. The data were compared using one-way ANOVA and Fisher’s least
significant difference (LSD). Significance is indicated as ∗p< .05, and ∗∗∗p< .001.
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Differential expression (DE) gene analysis was per-
formed to better compare the transcriptomic landscape
of the tpcn2 mutants with respect to the wild-type con-
trols. The efficacy of tpcn2 knockout in the tpcn2
mutant line was previously demonstrated by RT-PCR

(Kelu et al., 2017) and RT-qPCR (Guo et al., 2020).
These results were mirrored by the RNA-seq results,
where the tpcn2 transcripts were significantly downregu-
lated in the tpcn2 homozygous embryos compared to the
wild-type controls (Figure 5B).

Figure 3. Effect of genetic attenuation of tpcn2 or pharmacological inhibition of TPC2 on the size of the inner notochord cell main vacuole

area in embryos at ∼24 hpf (A) Representative confocal images showing lateral views of notochord vacuoles of (Aa) an uninjected

wild-type (AB) embryo (n= 6), and embryos injected with (Ab) standard control (SC)-MO (n= 6); (Ac) p53-MO (n= 6); or (Ad)
tpcn2-T-MO+ p53-MO (n= 6). The notochord cell vacuoles of (Ae) wild-type (ABTU) embryos (n= 5) and (Af) tpcn2 homozygous

mutants (tpcn2-/-; n= 7); as well as embryos treated with (Ag) DMSO (n= 4) or (Ah) trans-Ned-19 (n= 8) are also shown. Scale bar, 20 µm.

(B) Violin-plot (indicating mean± SEM) onto which individual data points are superimposed, showing the vacuole area (an explanation of

what this parameter refers to is provided in the Experimental Procedures) in the control, morphant, mutant and pharmacological treated

embryos shown in (A). The data were compared using one-way ANOVA and Fisher’s least significant difference (LSD). Significance is

indicated as ∗∗∗p< 0.001.
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Among the 14,005 genes identified by RNA-seq, 858
(6.1%) genes were downregulated, and 785 (5.6%) genes
were upregulated (with a cut-off of p< .05 and |fold-
change|>1.5). The top five genes with the most significantly
altered expression include: actin-depolymerizing factor/gel-
solin (gsnb), which is a key regulator of actin filament assem-
bly and disassembly (Sun et al., 1999); annexin A1b
(anxa1b), which is a Ca2+-dependent phospholipid binding
protein (Raynal and Pollard, 1994); phosphatidylinositol
glycan anchor biosynthesis class P (pigp), which is involved
in glycosylphosphatidylinositol (GPI)-anchor biosynthesis
(Kinoshita and Fujita, 2016); thymocyte nuclear protein 1
(thyn1), which is a poorly characterized nuclear protein
believed to be involved in apoptosis (Miyaji et al., 2002),
and methylthioribulose-1-phosphate dehydratase (apip),
which is an enzyme involved in the methionine salvage
pathway (Mary et al., 2012). The top 10 most significantly
changed genes are highlighted in Figure 5C and the full list
of differentially expressed genes (DEGs) have been depos-
ited in NCBI’s Gene Expression Omnibus (Edgar et al.,

2002) and are accessible through GEO Series accession
number GSE229162 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE229162).

The top 50 DEGs that passed the statistical cut-off in the
tpcn2−/− mutants compared to the wild-type embryos were
visualized in a heatmap (Figure 5D). Notably, two
members of the solute carrier (SLC) protein encoding
genes, slc7a2 and slc16a8, were among the top 50 most
significantly downregulated genes (black arrowheads in
Figure 5D). Other genes of interest include the β-tubulin
gene, tubb5 (Baraban et al., 2013); a member of the bio-
genesis of lysosomal organelles complex 1 subunit 3,
bloc1s3 (Pennamen et al., 2021); and a member of the
mitochondrial anion carrier protein, ucp2 (Donadelli
et al., 2014; pink arrowheads in Figure 5D). There were
also a few DEGs that were mapped to uncharacterized
genes, including zgc:113278, zgc: 92791, and zgc:
86896. The latter (i.e., zgc: 86896) is predicted to partici-
pate in actin filament binding activity (ZFIN ID: ZDB-
GENE-040625-80, 2022).

Figure 4. Localization of TPC2 in the notochord of intact embryos at ∼24 hpf. Representative confocal images of the notochord in

embryos (n= 5) immunolabeled with an anti-TPC2 antibody (green), and then counterstained with phalloidin (red) and Hoechst 33258

(blue), to visualize F-actin and the nuclei, respectively. These are single optical sections taken at the position of somite (S) (A) 8, (B) 16 and

(C) 22. In (Aa,Ac,Ba,Bc,Ca,Cc), the green, red and blue channels are merged, whereas in (Ab,Bb,Cb), only the green channel (TPC2) is
shown. (Ac,Bc,Cc) High magnification images of the regions bounded by the yellow square and rectangles in (Aa,Ba,Ca). TPC2 puncta

associated with the vacuolated notochord cells and nuclei are indicated by white and yellow arrowheads, respectively. Scale bars, 20 µm

(Aa,Ab,Ba,Bb,Ca,Cb), 10 µm (Ac,Bc,Cc).
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Figure 5. Principal components analysis (PCA) and differentially expressed genes (DEGs) in tpcn2−/− mutants compared to wild-type

(ABTU) controls. (A) PCA plot of the RNA-seq data from wild-type controls (blue; n= 5) and tpcn2−/− mutants (green; n= 5). Each point

represents one sample. (B) Normalized expression of tpcn2 in the mutants compared to the wild-type embryos. The data were compared

using one-way ANOVA followed by Tukey’s test. (C) Volcano plot showing the DEGs. Those that passed the threshold for false discovery

rate (FDR) and log2 fold change are indicated by a blue circle. The 10 most DEGs are labeled by their gene name. (D) Heatmap showing the

top 50 significantly DEGs in the mutant embryos compared with ABTU wild-type embryos. The relative expression is indicated using a

graded color-scale, where each gene is assigned a z-score depending on the respective amount of down- (shades of blue) or up- (shades of

red) regulation between the samples. The gene names are shown on the right, and tpcn2 is highlighted in green. The slc genes are indicated
with black arrowheads, whereas bloc1s3, ucp2, and tubb5 are indicated with pink arrowheads.
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Disparate Biological Processes in tpcn2−/− Mutants
Compared to Wild-Type Controls
The significant DEGs were matched to the D. rerio genome
in the Gene Ontology (GO) Consortium database to identify
biological processes that were affected in the tpcn2−/−

mutants compared to the wild-type controls. The top 20
ranking GO terms that were enriched in the tpcn2 mutants
are summarized in Figure 6. Upregulated processes in the
tpcn2−/− mutants were mainly related to the response to
extracellular signals (e.g., hormones; GO:0009725 and
abiotic stimulus; GO:0009628), and biochemical processes
involved in metabolism (e.g., the organic hydroxy compound
metabolic process; GO:1901615 and organic acid metabolic
process; GO:0006082). However, interestingly, the “negative
regulation of secretion by cell” was also upregulated
(GO:1903531), examples of which include anxa1a and asip2b.
On the other hand, the downregulated processes in the tpcn2−/−

mutants included ECM binding (GO: 0050840; e.g., lgals2b),
actin filament severing (GO: 0051014; e.g., gsnb), cellular compo-
nent morphogenesis (GO:0032989; e.g., notch1a, prdm14, and
stmn4), organelle assembly (GO: 0070925; e.g., pacsin2,
tspan4a, and dynlt5), Ca2+ binding (GO:0005509; e.g., actn2b,
myl7, and syt11a), and structural constituent of cytoskeleton
(GO:0005200; e.g., tuba2, tubb2, and viml). Thus, our transcrip-
tomic profiling data indicate that the tpcn2−/− mutants have sig-
nificantly attenuated gene expression patterns and disparate
biological processes compared to the wild-type controls.

Discussion
Our tpcn2 knockdown or knockout data revealed a distinct
notochord phenotype. The gross morphology of embryos in
which tpcn2 was knocked down was normal except that
body axis straightening was attenuated when compared
with the controls (Figure 1). In addition, knockdown or
knockout of tpcn2 produced notochords with increased
numbers of smaller, more spherical vacuoles when compared
with the controls (Figures 2 and 3).

The spherical notochord vacuoles observed in the tpcn2
mutants resemble the phenotype of other zebrafish mutants
such as snow white and mind bomb (Stemple et al., 1996).
Notably, the zebrafish snow white mutant has been proposed
as a model for Hermansky-Pudlak Syndrome (HPS) Type 5,
which is a genetic disease characterized by oculocutaneous
hypopigmentation and bleeding diathesis (Daly et al.,
2013). The snow white locus encodes HPS gene products
belonging to subunits of the biogenesis of lysosome-related
organelle complexes (Bloc) and the adaptor protein 3
complex (AP3) (Daly et al., 2013). These complexes are
known to function in the trafficking of enzymes and precur-
sor molecules to the melanosome (Huizing et al., 2008).
Furthermore, the snow white mutant, which is deficient in
Hps5, displays melanosome defects and hypopigmentation.
Interestingly, the latter phenotype was also reported in

tpcn2 mutant zebrafish (Kelu et al., 2017), and pigmentation
defects have also been reported in Xenopus oocytes with
aberrant TPC2 expression (Lin-Moshier et al., 2014).

Our RNA-seq analysis identified bloc1s3 as one of the top
50 most significantly downregulated genes in the tpcn2
mutants (Figure 5D). This suggests that in these mutants,
the biogenesis of lysosome-related organelles, which
include notochord vacuoles, are affected (Setty et al.,
2007). Unpublished work in Dr. Kathyrn Ellis’ PhD thesis
shows that slc38a8bmorphants also have small and spherical
notochord vacuoles (Ellis, 2014). Slc38a8b belongs to a
family of Na+ -dependent neutral amino acid transporters
and at least one member of the SLC38 family has been
shown to play a role in maintaining osmolyte balance and
regulating the cell volume (Franchi-Gazzola et al., 2006).
Thus, the small spherical notochord vacuole phenotype
observed in the slc38a8b morphants was proposed to be a
result of defects in amino acid transport into the vacuole,
which would (under normal conditions), act to attract water
into the vacuole lumen and result in osmotic-driven inflation
(Ellis, 2014). Our RNA-seq data support these observations
as among the DEGs in the tpcn2−/− embryos, there were
37 members of the SLC family, with the expression of
slc7a2 being most significantly affected. Although
slc38a8b was not identified among the DEGs, slc38a11
and slc38a2 were upregulated and downregulated, respect-
ively in the mutants. It has previously shown that in MCF7
human breast cancer cells, SLC38A2 is localized to
endosome-like vesicles and that knockdown of SLC38A2
results in an inhibition of cell growth (Morotti et al., 2021).
tpcn2 mRNA is known to be expressed in MCF7 cells as
well as various other tumorigenic and non-tumorigenic
breast cell lines (Jahidin et al., 2016). Thus, our new data
support the existing evidence for protein interactions
between TPC2 and SLC family members (Krogsaeter et al.,
2019). Therefore, we suggest that slc7a2, slc38a11, and
slc38a2 are candidates for further investigation into the pos-
sible roles of TPCs in amino acid transport and notochord
vacuole inflation.

The evidence suggests that small, rounded notochord
vacuoles are a hallmark of defects in lysosome-related organ-
elle biogenesis and amino acid (and other solute) transport.
However, while this might explain why the notochord
vacuoles of tpcn2 mutants do not appear to be fully inflated
(given their small size relative to wild-type notochord
vacuoles), it does not explain why the vacuoles are spherical
in shape. The morphology of cells, as well as the shape and
position of their intracellular organelles, is highly dependent
on the arrangement and function of their cytoskeletal proteins
(Brandizzi and Wasteneys, 2013), and the volume restriction
imposed by the notochord sheath (Wopat et al., 2018). Actin
filaments, intermediate filaments, and microtubules all func-
tion as scaffolds to transport and/or anchor organelles to their
intracellular location (Pollard and Cooper, 2009; Stephens,
2012). For example, it has been shown that keratin (an
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intermediate filament protein) is enriched in the vacuolated
notochord cells of the teleost, Perca flavenscens (Schmitz,
1998). Using electron microscopy, Nixon et al. (2007) also
identified keratin filaments associated with notochord caveo-
lae in zebrafish embryos. These cell surface pits are espe-
cially densely packed in the central septa of the notochord,
and they are suggested to buffer tension due to the mechan-
ical stress exerted on these cells (Lim et al., 2017). While we
did not investigate the localization of keratin in the notochord
following tpcn2 knockout, our RNA-seq data indicate that
the keratin genes krtt1c19e and krt95 were both significantly

downregulated in these mutants, which might contribute to
the phenotypic abnormalities observed.

It has been previously reported that keratin assembly
relies on intact actin filaments and microtubules (Wöll
et al., 2005; Kölsch et al., 2009). In this respect, our
RNA-seq data show that gsnb is in the top 10 of the most sig-
nificantly downregulated genes in the tpcn2 mutants com-
pared to the wild-type controls (Figure 5C and D). gsnb
encodes a Ca2+-sensitive actin-depolymerizing factor, gelso-
lin, which plays an important role in modulating actin organ-
ization by severing and capping polymerizing actin filaments

Figure 6. Top 20 gene ontology (GO) analysis terms that were enriched among the up- and downregulated genes in the tpcn2−/− mutants

compared to the wild-type controls. Horizontal bar graphs showing the (A) upregulated and (B) downregulated GO terms in the tpcn2
homozygotes. The bar length represents the –log10 p value; the GO term ID is shown on the graph; and the full GO term is listed on the left.
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(Sun et al., 1999). Likewise, our imaging data of ∼24 hpf
zebrafish embryos showed prominent F-actin labeling in
the vacuolated notochord cells (Figure 4). This abundance
of F-actin is in line with what has been reported previously
in the zebrafish notochord (Daggett et al., 2007).

Given the Ca2+-sensitivity of gelsolin (Gremm and Wegner,
2000), a role for TPC2-mediated Ca2+ signaling in shaping
local or global Ca2+ transients required for cytoskeletal organ-
ization is a possibility. Our GO enrichment analysis of the
tpcn2mutants supports this hypothesis, whereby “actin filament
severing” (GO:0051014), “Ca2+ binding” (GO:0005509),
“organelle assembly” (GO:0070925), and “structural constitu-
ent of cytoskeleton” (GO:0005200) were among the top 20
downregulated GO terms (Figure 6).

Our images of embryos that were immunolabeled with the
anti-TPC2 antibody lend further support to an emerging role
for TPC2 in the developing notochord. Our data suggest that
TPC2 is expressed in the notochord sheath and inner vacu-
olar cells, where it adopts a punctate appearance throughout
the notochord (Figure 4). This is consistent with the expected
pattern of a dynamic, lysosome-associated protein, rather
than one that decorates the membrane of the notochord
vacuole itself, such as Rab32a, which has been shown to
label the vacuolar membrane (Ellis et al., 2013a). The
pattern of TPC2-labeling displayed, closely resembles the
punctate pattern of Lamp1 and Lamp2 in zebrafish noto-
chords described previously (Ellis et al., 2013a). Our immu-
nolabeling data also indicated distinct localization patterns of
TPC2 in the nuclei of the notochord cells (Figure 4A). The
nuclear localization of TPC2 has previously been described
in differentiating slow muscle cells of zebrafish embryos
(see Figure 5A and B in Kelu et al., 2015).

It has been suggested that there might be a possible evo-
lutionary conservation of vacuolated cell biogenesis
between animals and plants. The earliest studies that charac-
terized TPCs were performed in Arabidopsis thaliana, which
encodes one TPC isoform (AtTPC1) that is localized to the
vacuolar membrane (i.e., the tonoplast). AtTPC1 was
shown to generate slow vacuolar Ca2+ fluxes, which are
involved in germination and stomatal opening (Furuichi
et al., 2001; Peiter et al., 2005). Plant cell vacuoles are also
known to play the equivalent of the lytic role of the lyso-
somes found in animal cells, and they are essential organelles
for structural support, growth, protein storage, and response
to the environment (Zhang et al., 2014). Like notochord
vacuoles, the central vacuole in plant cells can occupy a sig-
nificant volume of the cell (up to ∼90%), and like lysosomes,
the Ca2+ concentration inside plant vacuoles is significantly
higher (i.e., up to ∼1,000-fold) than the surrounding
cytosol (Bush, 1993). While the protein machinery involved
in vacuole fusion in plants is still under investigation, many
components of this pathway, including the Rab-family
GTPases, vacuolar SNAREs, and homotypic fusion and
vacuole protein sorting complex proteins, as well as a
requirement for localized Ca2+ transients in vacuole fusion

have been studied extensively in yeast (Burgoyne and
Clague, 2003; Wickner, 2010; Parkinson et al., 2014).
Several of these proteins, including Rab32a, Vps11, and
Vps18, have also been implicated in zebrafish notochord
vacuole biogenesis (Ellis et al., 2013a). Currently, knowl-
edge on Ca2+ handling by notochord vacuolar cells in verte-
brates is limited, although it has been suggested that Ca2+

channels such as members of the transient receptor potential
(TRP) family of ion channels (e.g., TRPV4), might partici-
pate in osmoregulation and notochord vacuole volume
(Ellis et al., 2013b).

Although we have not yet directly visualized Ca2+ signal-
ing events during zebrafish vacuole biogenesis, we present
indirect evidence that TPCs might be regulating a variety
of required membrane contact events via the release of Ca2
+, as they have been reported to do in various other
systems and cell types (Kinnear et al., 2004; Kilpatrick
et al., 2017; Davis et al., 2020; Rice et al., 2022). Our data
include treatment with the NAADP antagonist
trans-Ned-19 (Figure 3), which was shown to have a signifi-
cant effect on vacuole formation when compared with the
DMSO solvent control, supporting the suggestion that
TPC2 function was pharmacologically impaired. It was
noted, however, that DMSO alone (at the concentration
used) also had an effect on vacuole size compared to the
untreated controls. This is perhaps not surprising as the
effects of DMSO on the permeability of membranes are
well recorded (Gironi et al., 2020).

The appearance of the notochord in trans-Ned-19 treated
embryos (Figure 3) might be explained if the activity of
TPC2 was regulated by the second messenger NAADP
(Galione et al., 2022) during notochord biogenesis. This sup-
ports our suggestion that TPC2 might be mediating its effect
partly via NAADP-triggered Ca2+ release during the devel-
opment of the notochord vacuolated cells and associated
sheath cells. With regards to the latter, Ca2+ signaling has
also been reported to play a role in regulating the formation
of the periderm, the embryonic sheath-like epithelium in gas-
trula stage zebrafish embryos (Zhang et al., 2011). We
suggest that attenuation of TPC2-mediated Ca2+ release
might contribute to the abnormalities in notochord formation
observed and might underlie the attenuation in tail straighten-
ing. Furthermore, the fact that attenuated tpcn2 expression
also contributes to abnormal slow skeletal muscle pheno-
types in zebrafish (Kelu et al., 2015, 2017) suggests that
this might also contribute to the defects in trunk formation
observed.

Vacuole biogenesis initially involves the formation of
small pre-vacuoles followed by fusion events that eventually
result in the formation of the larger main vacuole, with the
entire process lasting ∼4 h (Bagwell et al., 2020).
Furthermore, if vacuole biogenesis is disrupted then this
results in a deformed notochord containing many small
vacuoles (Ellis, 2014). We propose that TPC2-mediated sig-
naling might play a part in regulating the membrane contact

Rice et al. 11



events involved in the formation and fusion of pre-vacuoles,
and thus help regulate their fusion to the main cell vacuole.
Such a role in vesicle fusion is consistent with what has
been reported in other systems (Grimm et al., 2017). The
smaller size of the notochord vacuoles in TPC2 morphants
and mutants compared to the controls (Figure 3) suggests
that pre-vacuole fusion to form the main vacuole is disrupted
resulting in this notochord phenotype. A somewhat similar
effect was observed when zebrafish embryos were treated
with bafilomycin A1 to deplete the lysosomal acidic Ca2+

stores (Ellis, 2014).
In conclusion, we suggest that TPC2-mediated signaling

might play a key role in regulating vesicle trafficking and
fusion resulting from membrane contact events during noto-
chord biogenesis in zebrafish embryos. Our new data support
the proposition that vacuole inflation in the inner notochord
cells provides a hydrostatic skeleton required for trunk
straightening prior to bone osteogenesis.

Experimental Procedures

Zebrafish Husbandry
Wild-type AB and ABTU zebrafish were obtained from the
Zebrafish International Resource Center (University of
Oregon, Eugene, OR, USA), and Prof. Han Wang (Soochow
University, Suzhou, China), respectively. Adult fish were main-
tained in Aquatic Habitat (AHAB) systems (Aquatic
Eco-systems, Inc., Apopka, FL, USA) at ∼28 °C on a 14-h
light/10-h dark cycle. Their fertilized eggs were obtained
using well-established protocols (Westerfield, 2000), and then
maintained in Danieau’s solution (17.4 mM NaCl, 0.21 mM
KCl, 0.12 mM MgSO4·7H20, 0.18 mM Ca(NO3)2·4H20 and
1.5 mM HEPES; pH 7.2) until they reached ∼17 hpf or ∼24
hpf. All the procedures used in this study with zebrafish were
conducted in accordance with the guidelines and regulations
outlined by the Animal Ethics Committee of HKUST, and the
Department of Health, Hong Kong.

MOs±mRNA Rescue, and Mutant Lines
All the MOs (Gene Tools LLC, Philomath, OS, USA) were
prepared at a stock concentration of 1 mM in Milli-Q water
and stored at room temperature. The expression of TPC2
was attenuated using a translation blocking tpcn2-MO
(tpcn2-T-MO; described by Kelu et al., 2015). p53-MO
(injected alone) and an SC-MO were also used as specificity
controls (Kelu et al., 2015). The MOs were prepared and
injected into AB wild-type embryos using methods described
previously (Webb and Miller, 2013; Kelu et al., 2015).

The amounts of MOs injected are as follows:

∼5 ng p53-MO or SC-MO (controls)
∼2.5 ng tpcn2-T-MO+∼3.75 ng p53-MO (1:1.5 ratio)

In addition to using an MO to knock down tpcn2 expression,
we also used the tpcn2−/− mutant line, which was generated
as described previously (Kelu et al., 2017).

To visualize the effect of genetic knockdown or knockout
of TPC2 on notochord vacuole inflation, bright-field images
were acquired of wild-type AB embryos that had been
injected with the MOs described above, and both wild-type
(ABTU) and tpcn2−/− mutant embryos, at ∼24 hpf. To quan-
tify the shape of the notochord vacuoles, the perimeter of
each vacuole was traced, and a “circularity” value was
obtained using the “Analyze >Measure” function in ImageJ
(National Institutes of Health, Bethesda, MD, USA; https://
imagej.nih.gov/ij/). Ten vacuoles per embryo were measured.
A circularity value of 1 signifies a perfect circle, whereas a
value closer to 0 indicates an elongated polygon. In addition,
the number of vacuoles was quantified within an ROI of
80 µm×250 µm. This is approximately equivalent to the
width of 3 somites in wild-type/control embryos at ∼24 hpf.

In some experiments, morphant and mutant embryos at
∼75% epiboly (∼8 hpf) were incubated overnight in
Danieau’s containing 25 µM BODIPY® FL C5-ceramide
(ThermoFisher Scientific, Inc., MA, USA). They were
then washed with Danieau’s solution and anaesthetized
in Danieau’s solution containing 0.02% MS-222
(Sigma-Aldrich Corp., Merck Group, MI, USA) prior to
imaging via confocal microscopy at ∼24 hpf. The inner
notochord cell area was quantified with the “Analyze >
Measure” function in ImageJ. Again, ten vacuoles per
embryo were measured.

Pharmacological Treatment of Embryos
A stock solution of 50 mM trans-Ned-19 (Enzo Life
Sciences, NY, USA) was prepared in DMSO and stored at
−20 °C. Just prior to use, stock trans-Ned-19 was diluted
in Danieau’s solution to 100 µM and heated to 65 °C for
5 min to prevent precipitation. It was then cooled to ∼28 °
C before incubating with embryos. To visualize the effect
of trans-Ned-19 on notochord vacuole inflation, embryos
were first bathed in Danieau’s containing 25 µM
BODIPY® FL C5-ceramide from ∼75% epiboly (∼8 hpf)
until the 15-somite stage (∼17 hpf) to label the notochord
cell membranes. The embryos were then bathed in
Danieau’s solution containing 100 µM trans-Ned-19 (in a
final DMSO concentration of ∼0.2%) or 0.25% DMSO
alone (control) at ∼28 °C for 7 h, after which they were
washed twice with Danieau’s solution and anaesthetized
with 0.02% MS-222 prior to imaging at ∼24 hpf.

Whole-Mount Immunohistochemistry to Visualize
TPC2
Embryos at ∼24 hpf were dechorionated and fixed with
phosphate-buffered saline (PBS; 137 mM NaCl, 2.68 mM
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KCl, 16 mM Na2HPO4, 4 mM NaH2PO4·2H2O, pH7.3) con-
taining 4% paraformaldehyde overnight at 4 °C. After fix-
ation, excess paraformaldehyde was removed and the
embryos were washed first with PBS and then with PBS con-
taining 0.2% Triton X-100 (PBST), after which they were
permeabilized with PBST containing 1% DMSO (PBSTD)
for 1 h. Permeabilized embryos were then incubated with
blocking buffer (PBST containing 10% goat serum and 1%
bovine serum albumin; Sigma-Aldrich Corp.) for 2 h, after
which they were incubated with blocking buffer containing
the anti-TPCN2 (code # A17271, ABclonal Science Inc.,
MA, USA ) primary antibody (used at 1:25 dilution) at
∼4 °C for 2 days. After the primary antibody incubation
step, embryos were then washed extensively before being incu-
bated with an Alexa Fluor 488 F(ab’)2 goat anti-rabbit IgG (H+
L) antibody (used at 1:200; code # A11070; ThermoFisher
Scientific, Inc.) at ∼4 °C overnight in the dark. The embryos
were then incubated with Alexa Fluor 568-phalloidin (used at
1:50; code # A12380, ThermoFisher Scientific, Inc.) and 1 µg/
mL Hoechst 33258 (Code # H-21491, ThermoFisher
Scientific, Inc.) at room temperature for 1 h in the dark to
label F-actin and the nuclei, respectively. The embryos were
washed extensively with wash buffer (i.e., blocking buffer at
1:10 dilution) between each incubation step. At the end of the
final wash steps, the labeled embryos were washed with PBST
and then with PBS. To improve the incubation and washing effi-
ciencies, gentle shaking was applied throughout using a mini
gyro-rocker (Techne SSM3, Cole-Parmer, Stone, UK).
Working dilutions of the antibodies and phalloidin were pre-
pared in blocking buffer followed by centrifugation at
16,873×g for 5 min to pellet any unwanted debris. Although
no specificity control was run by labeling morphants or
mutants with the anti-TPCN2 antibody, the antibody was previ-
ously used to immunolabel the neuromasts and olfactory organs
of zebrafish larvae (Choi et al., 2022).

Bright-Field and Confocal Imaging
Fixed and live embryos were imaged using a Leica TCS SP8
laser scanning confocal microscope (Leica Microsystems
GmbH, Wetzlar, Germany) with HC PL APO 40x/1.30 and
HC PL APO 60x/1.40 oil objective lenses. Live embryos
were anaesthetized for ∼5 min before the start of imaging
by immersion in Danieau’s solution containing ∼0.02%
MS-222. For all embryos, the notochord located in the anter-
ior region of the trunk adjacent to somites 7–11 (unless other-
wise stated), was imaged from a lateral view, anterior to the
left. The respective wavelengths (excitation/detection) of the
various fluorophores used, are as follows: Alexa Fluor 488
and BODIPY FL C5 ceramide (488 nm/519 nm); Alexa
Fluor 568 (568 nm/600 nm); and Hoechst 33258 (350 nm/
461 nm). The temperature was maintained at ∼28 °C for all
live imaging experiments using a heated imaging chamber
(TOKAI HIT Stage Top Incubator®, Shizuoka-ken, Japan).

Preparation of Samples for RNA-Sequencing
(RNA-seq)
Embryos were collected from wild-type (ABTU) and tpcn2−/
− mutants (Kelu et al., 2017), and maintained in Danieau’s
solution at ∼28 °C. At ∼17 hpf, the embryos were dechorio-
nated via incubation in Danieau’s solution containing 2 mg/
mL pronase (Sigma-Aldrich Corp.) and gentle pipetting
using a fire-polished Pasteur pipette. The dechorionated
embryos were then transferred into fresh Danieau’s solution.
A pool of 80 ABTU or 80 tpcn2−/− embryos (with five bio-
logical replicates for each group) were then transferred into a
1.5 mL centrifuge tube containing 500 µL RNAzol®
(Molecular Research Center, Inc., OH, USA) and immediately
homogenized by trituration through a P200 pipette tip. The
homogenate was then vigorously vortexed for 1 min to ensure
complete cell lysis. Subsequently, RNA extraction was per-
formed using RNAzol® according to the manufacturer’s
instructions. The extracted RNA was then resuspended in
30 µl RNase-free water and kept at −80 °C. The concentration
and quality of RNA were evaluated with a NanoDrop 2000
spectrophotometer (ThermoFisher Scientific, Inc.), and the
integrity of the RNA was verified using an HS RNA kit
(Agilent Technologies, CA, USA) and a 5200 Fragment
Analyzer system (Agilent Technologies). RNA samples with
purity (260/280 ratio) > 1.8 and RNA quality number (RQN)
>8.0 were submitted to the Biosciences Central Research
Facility (BioCRF, HKUST) for RNA-sequencing (RNA-seq)
with a BGI DNBSEQ-G400 sequencer (Beijing Genomics
Institute, SC, China).

Bioinformatic Analysis of RNA-seq
The HKUST BioCRF processed the RNA-seq data as follows:
adapter trimming, RSeQC analysis; read alignment to the
GRCz11.94 (danRer11) zebrafish reference genome using
STAR; and differential gene expression analysis using DESeq2.
Pairwise comparisons were performed using the DESeq2
package (Love et al., 2014). A list of DEGs was obtained using
cut-off values of Benjamini-Hochberg adjusted p< .05 and |Fold
change|>1.5. The data were then imported into R Studio
(Version 2021.09.1+372; https://www.rstudio.com/; Boston,
MA, USA), and the normalized counts of these genes were
used to plot heatmaps with hierarchical clustering, via the pheat-
map package. Gene ontology (GO)-term enrichment analysis
was performed with Metascape (https://metascape.org/gp/index.
html#/main/step1; Zhou et al., 2019).

Statistical Analysis and Figure Preparation
All image measurements were conducted with ImageJ.
Numerical data were exported to Microsoft Office
Professional Plus Excel 2013 (Microsoft Corp., WA, USA)
for basic descriptive statistics and to GraphPad Prism
(GraphPad Software, San Diego, CA, USA) for graph
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plotting. Data were imported into Minitab 17.3.1 to conduct
one-way ANOVA followed by Fisher’s least significant dif-
ference or Tukey’s test. Figures were prepared using
CorelDRAW version 24 (Corel Corp., Ottawa, ON, Canada).
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