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Hypertension-induced renal injury is characterized by structural kidney alterations

and function deterioration. Therapeutics for kidney protection are limited, thus novel

renoprotectives in hypertension are being continuously sought out. Ivabradine, an

inhibitor of the If current in the sinoatrial node reducing heart rate (HR), was shown

to be of benefit in various cardiovascular pathologies. Yet, data regarding potential

renoprotection by ivabradine in hypertension are sparse. Thirty-six adult male Wistar

rats were divided into non-diseased controls and rats with NG-nitro-L-arginine methyl

ester (L-NAME)-induced hypertension to assess ivabradine’s site-specific effect on

kidney fibrosis. After 4 weeks of treatment, L-NAME increased the average systolic

blood pressure (SBP) (by 27%), decreased glomerular density (by 28%) and increased

glomerular tuft area (by 44%). Moreover, L-NAME induced glomerular, tubulointerstitial,

and vascular/perivascular fibrosis by enhancing type I collagen volume (16-, 19- and

25-fold, respectively). L-NAME also increased the glomerular type IV collagen volume

and the tubular injury score (3- and 8-fold, respectively). Ivabradine decreased average

SBP and HR (by 8 and 12%, respectively), increased glomerular density (by 57%)

and reduced glomerular tuft area (by 30%). Importantly, ivabradine decreased type I

collagen volume at all three of the investigated sites (by 33, 38, and 72%, respectively)

and enhanced vascular/perivascular type III collagen volume (by 67%). Furthermore,

ivabradine decreased the glomerular type IV collagen volume and the tubular injury score

(by 63 and 34%, respectively). We conclude that ivabradine attenuated the alterations

of glomerular density and tuft area and modified renal fibrosis in a site-specific manner

in L-NAME-hypertension. It is suggested that ivabradine may be renoprotective in

hypertensive kidney disease.
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INTRODUCTION

Chronic kidney disease (CKD), determined by a decline of total
glomerular filtration rate and albuminuria persisting>3 months,
is a severe health and social problem. CKD afflicts almost 15% of
the global population and significantly worsens life expectancy
(1). Although a considerable number of etiologic factors may
come into force, diabetes mellitus, and arterial hypertension
clearly dominate (2). CKD in hypertension is characterized
by a persistent systemic blood pressure overload gradually
exceeding auto-regulatory mechanisms for maintaining adequate
glomerular filtration pressure. Glomerular hypertension and
hyperfiltration are associated with compensatory glomerular
hypertrophy, albuminuria, and persistent inflammation (3).
Progressive necrotic or apoptotic cell death is followed
by glomerulosclerosis, tubular atrophy, and tubulointerstitial
fibrosis representing the principle pathologic components and
therapeutic targets of CKD (4).

Ivabradine, the heart rate (HR)-reducing selective inhibitor
of the sinoatrial If current, was proved to attenuate morbidity
in heart failure (5). The HR-reducing effect of ivabradine was
declared the principle mechanism of its therapeutic benefit.
However, several of ivabradine’s pleiotropic effects have recently
emerged, which suggests the possibility of using ivabradine in
yet off-label indications such as endothelial dysfunction (6),
hypertensive heart disease (7), and hypertension with elevated or
non-dipping HR (8, 9).

This study aimed to show whether ivabradine is able to
modify kidney alterations in NG-nitro-L-arginine methyl
ester (L-NAME)-induced hypertension. We investigated
ivabradine’s potential antifibrotic effect in a site-specific manner
as glomerulosclerosis (glomerular fibrosis), tubulointerstitial
fibrosis, and arteriosclerosis (vascular fibrosis) with
perivascular fibrosis.

MATERIALS AND METHODS

Thirty-six 3-month-old male Wistar rats (Department of
Toxicology and Laboratory Animals Breeding, Slovak Academy
of Sciences, Dobra Voda, Slovakia) were divided into 4
groups (n = 9 animals per group) and treated for 4
weeks as follows: control (C; untreated), ivabradine (Iva;
10 mg/kg/day; Servier, Suresnes, France), L-NAME (LN; 40
mg/kg/day; Sigma-Aldrich Chemie, Munich, Germany) and
L-NAME plus ivabradine in corresponding doses (LN+Iva).
Both L-NAME and ivabradine were dissolved in drinking
water and their concentrations were adjusted to daily water
consumption to ensure the correct dosage. The rats were
individually housed and maintained under standard laboratory
conditions (12:12-h light-dark cycle at 22 ± 2◦C temperature
and 55 ± 10% humidity) with free access to food and water.
The study was conducted in accordance with the Guide for
the Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication No. 85-
23, revised 1996). The protocol was approved by the ethical
committee of the Institute of Pathophysiology, Faculty of

Medicine, Comenius University, Bratislava, Slovakia (approval
number: 1306/14-221).

Systolic blood pressure (SBP) and heart rate (HR) were
measured once a week in each animal by non-invasive
tail-cuff plethysmography (Hugo-Sachs Elektronic, Freiburg,
Germany). After 4 weeks of treatment, the rats were euthanized
by isoflurane inhalation and left kidneys were used for
subsequent histopathological analysis. The kidney samples were
fixed in 4% formaldehyde for 24 h, embedded in paraffin
and cut in 5µm sections. Three sets of deparaffinized
and rehydrated sections were stained with: (i) hematoxylin-
eosin (H-E) for glomerular morphometry and tubular injury
scoring; (ii) picrosirius red (PSR; 0.1% sirius red F3BA in
a saturated water solution of picric acid for 90min and
washed in 0.01N HCl for 2min) for a quantitative analysis
of kidney fibrosis; and (iii) type IV collagen immunostaining
(anti-collagen IV antibody; ab6586; Abcam, Cambridge, UK
was used for immunostaining conforming the manufacturer’s
protocol: a heat-mediated antigen retrieval was followed by
overnight incubation with primary anti-collagen IV antibody at
4◦C; a horseradish peroxidase-conjugated secondary anti-rabbit
IgG antibody with a 3,3′-diaminobenzidine chromogen and
hematoxylin counterstain was used for visualization; ab205718;
Abcam, Cambridge, UK) to determine type IV collagen volume
in glomeruli. Histopathological observations were performed
using transmitted or polarized light microscopy on a NIKON
Eclipse Ti C2+ microscope (NIKON, Tokyo, Japan). The
rendered images were analyzed by NIKON NIS-Elements
Analysis software (NIKON, Tokyo, Japan) and ImageJ version
1.52p for Windows (National Institutes of Health, Bethesda,
MD, USA). All histopathological analyses were performed by an
experienced examiner blinded to the group identity.

For glomerular morphometry, H-E-stained sections were
analyzed at 10xmagnification using transmitted light microscopy
and NIKON NIS-Elements Analysis software as follows: (i) to
assess glomerular numerical density per area, well-preserved
glomeruli were counted in a digital frame of 1 mm2 placed over
the kidney cortex in 10 microscopic fields per animal (i.e., 90 per
group; n = 9 animals per group); (ii) to assess glomerular tuft
area, perpendicular maximum and minimum diameters (dmax

and dmin, respectively) of 10 random glomerular tufts per animal
(i.e., 90 per group; n = 9 animals per group) were measured
to subsequently calculate tuft ellipse areas by using the formula:
glomerular tuft area= π(dmax/2)(dmin/2) (10, 11).

In order to obtain a quantitative analysis of kidney fibrosis,
PSR-stained sections were analyzed at 100x magnification using
polarized light microscopy and ImageJ software as follows: PSR
increases birefringence of collagen fibers type-dependently, thus
visualizing thick type I collagen (Col-I, 1.6-2.4µm in diameter)
in red-orange shades and thin type III collagen (Col-III,<0.8µm
in diameter) in green-yellow shades; by setting the appropriate
“hue” thresholds of the color spectrum, the red-orange and
green-yellow shaded areas were expressed as the percentage
of the total area of interest (AOI) by ImageJ processing. To
particularly detail kidney fibrosis, three AOIs were determined
by employing a method described previously (12): (i) to assess
glomerular fibrosis, 50 AOIs per animal (i.e., 450 per group; n= 9
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animals per group) of 50× 50µmeach, placed at intraglomerular
space were examined (Figure 2A1); (ii) to assess tubulointerstitial
fibrosis, 50 AOIs per animal (i.e., 450 per group; n = 9 animals
per group) of 72× 192µmeach, placed at interstitial cortex space
including no glomeruli or vessels were examined (Figure 2B1);
(iii) to assess vascular/perivascular fibrosis, 5 AOIs per animal
(i.e., 45 per group; n= 9 animals per group) were selected by the
tight-cropping of an artery between 50 and 100µm in diameter
(corresponding to interlobar, arcuate, and interlobular arteries)
in each; only cross-sectionally captured arteries were considered
(Figure 2C1).

In order to determine type IV collagen (Col-IV) volume in
glomeruli, anti-Col-IV-immunostained sections were analyzed
at 200x magnification using transmitted light microscopy and
ImageJ software as follows (13): the anti-Col-IV-immunostain
visualizes Col-IV in brown shades (Figure 3A); by setting
the appropriate “hue” threshold of the color spectrum, the
brown shaded area was expressed as the percentage of the
total glomerular AOI by ImageJ processing. Ten glomerular
AOIs per animal (i.e., 90 per group; n = 9 animals per
group) of 50 × 50µm each, placed at intraglomerular space
were examined.

Tubular injury was determined as tubular injury score by
employing a method described previously (14). Briefly, 20
cortical fields per animal (i.e., 180 per group; n = 9 animals
per group) in H-E-stained sections were analyzed at 100x
magnification using transmitted lightmicroscopy. Tubular injury
was defined as tubular dilatation, atrophy, cast formation,
sloughing of tubular epithelial cells, or thickening of the tubular
basement membrane (Figure 4A). The tubular injury was semi-
quantitatively scored using the following scoring system: Score
0, no tubular injury; Score 1, <10% of tubules injured; Score
2, 10–25% of tubules injured; Score 3, 26–50% of tubules
injured; Score 4, 51–75% of tubules injured; Score 5, >75% of
tubules injured.

The results are presented as the mean ± SEM. A
Shapiro-Wilk normality test was used to determine data
distribution. The one-way two-tailed analysis of variance
(ANOVA) followed by a Holm-Sidak post-hoc test was used
for statistical analysis. A Spearman correlation was used to
analyze the relationship between glomerular tuft area and
glomerular Col-IV volume, and tubular injury score and
tubulointerstitial fibrosis. Statistical significance was defined
as P < 0.05. The statistical analysis was conducted using
GraphPad Prism 8 for Windows (GraphPad Software, La Jolla,
CA, USA).

RESULTS

The SBP and HR averaged over the 4-week-course of treatment
were 122.6 ± 1.05 mmHg and 356.0 ± 2.75 bpm in controls; L-
NAME increased (P < 0.01) average SBP by 27% and decreased
(P < 0.01) average HR by 8%. In the L-NAME group, ivabradine
decreased both average SBP and HR by 8% (P < 0.05) and 12%
(P < 0.01), respectively; in controls, ivabradine decreased (P <

0.01) average HR by 16% and had no effect on average SBP
(Figures 1A,B).

The glomerular numerical density per area was 5.43 ± 0.1
per mm2 in controls and L-NAME decreased (P < 0.01) it by
28%. In the L-NAME group, ivabradine increased (P < 0.01) the
glomerular numerical density per area by 57% (Figure 1C). The
glomerular tuft area was 5,383 ± 256 µm2 in controls and L-
NAME increased (P < 0.01) it by 44%. In the L-NAME group,
ivabradine decreased (P < 0.01) the glomerular tuft area by 30%
(Figure 1D).

Quantitative analysis of glomerular fibrosis: in controls, the
volume of Col-I and Col-III in intraglomerular AOI were 0.68
± 0.11 and 2.71 ± 0.38%, respectively; L-NAME increased (P
< 0.0001) the proportion of Col-I by 1,584%. In the L-NAME
group, ivabradine decreased (P < 0.05) the proportion of Col-I
by 33%. The Col-I:Col-III ratio was 0.29 ± 0.06 in controls and
L-NAME increased (P < 0.05) it by 3,880%; ivabradine had no
effect on the ratio (Figure 2A).

Quantitative analysis of tubulointerstitial fibrosis: in controls,
the volume of Col-I and Col-III in tubulointerstitial AOI were
0.49 ± 0.11 and 2.01 ± 0.25%, respectively; L-NAME increased
(P < 0.0001) the proportion of Col-I by 1,894%. In the L-NAME
group, ivabradine decreased (P < 0.01) the proportion of Col-I
by 38%. The Col-I:Col-III ratio was 0.22 ± 0.04 in controls and
L-NAME increased (P < 0.01) it by 3,734%; ivabradine had no
effect on the ratio (Figure 2B).

Quantitative analysis of vascular/perivascular fibrosis: in
controls, the volume of Col-I and Col-III in vascular/perivascular
AOI were 0.21 ± 0.06 and 3.11 ± 0.18%, respectively; L-NAME
increased (P< 0.001) the proportion of Col-I by 2,487%. In the L-
NAME group, ivabradine decreased (P < 0.01) the proportion of
Col-I by 72% and increased (P < 0.001) the proportion of Col-III
by 67%. The Col-I:Col-III ratio was 0.07± 0.02 in controls and L-
NAME increased (P < 0.0001) it by 2,796%; ivabradine decreased
(P < 0.0001) the ratio by 85% (Figure 2C).

The volume of Col-IV in glomerular AOI was 2.80 ± 0.90%
in controls and L-NAME increased (P < 0.01) it by 245%. In
the L-NAME group, ivabradine decreased (P < 0.01) glomerular
Col-IV volume by 63% (Figures 3A,B). The glomerular Col-IV
volume significantly (P < 0.001) correlated with glomerular tuft
area (Spearman r = 0.51) (Figure 3C).

The tubular injury score was 0.45 ± 0.02 in controls and
L-NAME increased (P < 0.001) it by 754%. In the L-NAME
group, ivabradine decreased (P < 0.01) the tubular injury score
by 34% (Figures 4A,B). The tubular injury score significantly (P
< 0.001) correlated with the sum of Col-I and Col-III volume in
tubulointerstitial AOI (Spearman r = 0.81) (Figure 4C).

DISCUSSION

The increased SBP, induced by a 4-week L-NAME
administration, was associated with decreased glomerular
density, increased glomerular tuft area, tubular injury, and
profound renal fibrosis. Besides reducing the average HR and
SBP, ivabradine increased glomerular density and reduced
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FIGURE 1 | Effect of ivabradine on average systolic blood pressure (SBP) (A), average heart rate (HR) (B), glomerular numerical density per area (C), and glomerular

tuft area (D) in L-NAME-induced hypertension after 4 weeks of treatment. C, controls; Iva, ivabradine; LN, L-NAME; n = 9 animals per group. One-way two-tailed

ANOVA followed by Holm–Sidak post-hoc test; **P < 0.01 vs. C; #P < 0.05 vs. LN; ##P < 0.01 vs. LN.

glomerular tuft area. Furthermore, ivabradine ameliorated
the L-NAME-induced kidney fibrosis site-dependently:
it decreased Col-I volume in glomerular, interstitial, and
vascular/perivascular fibrosis and increased Col-III volume
in vascular/perivascular fibrosis. Ivabradine also mitigated
the increase of both the glomerular Col-IV volume and the
tubular injury score in L-NAME-hypertension. To the best
of our knowledge, this is the first study analysing L-NAME-
induced kidney fibrosis and renoprotection by ivabradine in a
site-specific manner.

L-NAME inhibits nitric oxide (NO) synthase activity
and decreases cyclic guanosine monophosphate (cGMP)
concentration shown in various tissues including heart,
aorta, brain, and kidney, thus resulting in NO-deficient
hypertension (15–19). NO’s waning vasodilative and
antiproliferative effects associated with concomitant
neurohumoral activation (20) were shown to result in
target organ damage (7, 18, 19). In kidneys, L-NAME-
hypertension induces glomerulosclerosis, tubulointerstitial
fibrosis, and tubular atrophy associated with a deteriorated

glomerular filtration rate and increased urinary protein excretion
(21–23); these alterations are administered by a cluster of
pro-inflammatory and pro-proliferative hormones, cytokines
and growth factors (24).

The renal antifibrotic effect of ivabradine observed in
this study was similar to previous findings within the heart:
ivabradine reduced cardiac collagen and improved left
ventricular function in post-myocardial infarction (MI) rats (25)
and cholesterol-fed rabbits (26). Antiremodeling by ivabradine
may be associated with some of its pleiotropic effects. Indeed,
ivabradine improved endothelial function in ApoE knockout
mice by reducing vascular oxidative stress and preventing
endothelial NO synthase uncoupling (27, 28) and in patients
with coronary artery disease after complete revascularisation
(6). Increased NO-availability by various interventions was
previously shown to reduce the L-NAME’s proliferative effect
not only in the heart and aorta, but also in the brain and kidneys
(17, 18, 28). Besides improving NO-availability, ivabradine was
shown to reduce serum angiotensin II in both post-MI rats
(25) and hypercholesterolemic rabbits (26), and to decrease
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FIGURE 2 | Effect of ivabradine on kidney fibrosis detailed as glomerular (A), tubulointerstitial (B), and vascular/perivascular fibrosis (C) in L-NAME-induced

hypertension after 4 weeks of treatment. PSR-stained sections at 100x magnification using polarized light microscopy. AOI, area of interest depicted as shaded

rectangle; C, controls; Col-I, type I collagen; Col-III, type III collagen; Iva, ivabradine; LN, L-NAME; n = 9 animals per group. One-way two-tailed ANOVA followed by

Holm–Sidak post-hoc test; *P < 0.05 vs. C; **P < 0.01 vs. C; ***P < 0.001 vs. C; ****P < 0.0001 vs. C; #P < 0.05 vs. LN; ##P < 0.01 vs. LN; ###P < 0.001 vs.

LN; ####P < 0.0001 vs. LN; ns, non-significant.

serum aldosterone in L-NAME-induced hypertension (7).
The potential inhibition of the renin-angiotensin-aldosterone
system might contribute to the antiremodeling effect of
ivabradine. Indeed, previous data in L-NAME-hypertension
indicated an angiotensin converting enzyme inhibitor to
mitigate remodeling of the heart, aorta (19, 20, 29–31) and
kidneys (21). Furthermore, one of the principle factors of
CKD management is the reduction of hemodynamic overload.
The recommended target SBP values in hypertensive patients
with CKD are below 130 vs. 140 mmHg in hypertensive
patients without kidney disease (32). Presumably, HR-reduction
by ivabradine may be renoprotective via diminishing the
hemodynamic burden by both the rate-pressure working
product decline and vascular shear stress modulation (33). Here,
in line with our previous experiments (7, 8, 34), ivabradine
reduced both the average SBP and HR, which indeed might
have contributed to the renoprotection. The HR reduction
by L-NAME found in this study is consistent with previous
results in L-NAME-hypertension by our laboratory (7, 8, 15)

and others (35, 36). Several plausible mechanisms of heart rate
reduction in L-NAME-hypertension were suggested, including
the baroreceptor-mediated modulation of the autonomic
nervous system (37, 38) and the direct effect of NO-deficiency on
cardiac function (39, 40). Yet, ivabradine is an open-channel If-
blocker, i.e., the ivabradine molecule is able to access its binding
site in the f-channel only when the channel is open. This can
underlie ivabradine’s use-dependence, i.e., a blocking action that
is more pronounced the more frequently the f-channel is open,
implying that the higher the HR the larger the HR-reducing
effect of ivabradine (41, 42). This might explain our finding that
ivabradine reduced HR in controls by 16%, but only 12% in
L-NAME-hypertension, since the HR in L-NAME-hypertension
was already decreased by L-NAME below the values seen
in controls.

Col-I and Col-III are the most abundant collagen types
in the extracellular matrix (43, 44). In kidneys, they were
found co-expressed at all three of the investigated sites, i.e.,
glomeruli, tubulointerstitium and vasculature (45), and gradually
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FIGURE 3 | Effect of ivabradine on type IV collagen volume in glomeruli (A,B) and the relationship between glomerular tuft area and glomerular type IV collagen

volume (C) in L-NAME-induced hypertension after 4 weeks of treatment. For (A): anti-collagen IV-immunostained sections at 200x magnification using transmitted

light microscopy. For (B): C, controls; Iva, ivabradine; LN, L-NAME; n = 9 animals per group. One-way two-tailed ANOVA followed by Holm–Sidak post-hoc test; **P

< 0.01 vs. C; ##P < 0.01 vs. LN. For (C): AOI, area of interest; Col-IV, type IV collagen. Spearman correlation; n = 9 animals per group.

FIGURE 4 | Effect of ivabradine on tubular injury (A,B) and the relationship between tubular injury score and tubulointerstitial fibrosis (C) in L-NAME-induced

hypertension after 4 weeks of treatment. For (A): H-E-stained sections at 100x magnification using transmitted light microscopy; a, tubular cast; b, tubular atrophy

and interstitial thickening; c, interstitial cellular infiltration; d, tubular basal membrane thickening; e, tubular dilatation; f, tubular cell sloughing. For (B): C, controls; Iva,

ivabradine; LN, L-NAME; n = 9 animals per group. One-way two-tailed ANOVA followed by Holm–Sidak post-hoc test; ***P < 0.001 vs. C; ##P < 0.01 vs. LN. For

(C): AOI, area of interest; Col-I, type I collagen; Col-III, type III collagen. Spearman correlation; n = 9 animals per group.
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deposited from the early stages of kidney fibrosis (45, 46).
Col-I and Col-III co-expression is considered to provide a
tissue with high tensile strength, but also contribute to its
extensile properties (44, 46). Indeed, Col-I exerts high tensile
strength and its expression is associated with tissue stiffness,
whilst Col-III is more distensible and its expression refers
to tissue elasticity, distensibility, and softness (43, 44). Thus,
a high Col-I:Col-III ratio was found in tissues with high
mechanical stiffness and low elasticity such as bones, and low
Col-I:Col-III ratio was found in tissues with high elasticity,
distensibility, or softness such as lung, bladder, and blood vessels
(44). In cardiovascular remodeling, the Col-I:Col-III ratio is
considered a marker of tissue stiffness determining mechanical
properties and was shown to be associated with adverse outcomes
(47). Indeed, an elevated Col-I:Col-III ratio was associated
with increased myocardial stiffness and electrical instability
of the myocardium (48), and increased stiffness of vessels
including the aorta and arteries (49, 50). Increased stiffness
of the remodeled vasculature was shown to be prognostically
unfavorable in hypertension (51). We previously found an up-
ward shift of the Col-I:Col-III ratio in a remodeled heart
(52) and aorta (49) in a model of continuous light-induced
hypertension. Reducing the Col-I:Col-III ratio in vessels was
associated with improved hemodynamics in continuous light-
induced hypertension (49) and pulmonary arterial hypertension
(53). In this study, we dosed L-NAME for only 4 weeks (reaching
a moderate increase in 4-week average systolic blood pressure)
to assess early hypertensive kidney damage and its potential
reversibility with ivabradine. Although Col-I and Col-III are
deposited from early stages of kidney fibrosis (45, 46), NO
deficiency in L-NAME-hypertension was found to specifically
up-regulate collagen I expression in kidneys at an early stage
even preceding the increase in blood pressure (54). This might
explain the increased Col-I expression (early activation) and
unchanged Col-III expression (activation lagging) observed in
early hypertensive kidney damage in this study. Furthermore,
in L-NAME-treated rats, ivabradine increased Col-III volume
solely in the vascular/perivascular fibrosis while a profound drop
in Col-I volume prevailed at all three of the investigated sites.
Previously, ivabradine was shown to increase aortic compliance
in apolipoprotein E-deficient mice (55), improve carotid pulsatile
arterial hemodynamics in spontaneously hypertensive rats
(56), restore acetylcholine-induced maximal dilatation of renal
and cerebral arteries in dyslipidaemic mice (57), and most
importantly, improve myocardial perfusion in post-MI rats by
ameliorating perivascular fibrosis in small resistant coronary
arteries (25). Therefore, by virtue of Col-III’s elastic properties,
the vascular/perivascular Col-III enhancement associated with
the reduction of the Col-I:Col-III ratio by ivabradine observed
in our study implies improved arterial compliance and pulsatile
hemodynamics (49).

Col-IV, a main component of the glomerular basement
membrane, is considered to play a critical role in glomerular
pathology (58). Indeed, capillary expansion and mesangial
cell stretching by increased intraglomerular pressure, often
seen in hypertension, were found to provoke increased

mesangial extracellular matrix (including Col-IV) production
and deposition (59). Therefore, increased Col-IV protein
expression was found in kidneys in various animal models
of hypertension such as spontaneously hypertensive rats
(60), angiotensin II-induced hypertension (61) or 2 kidneys,
1 clip model of hypertension (62), and also in patients
with preeclampsia or other hypertensive syndromes in
pregnancy (63). In L-NAME-hypertension, in particular, an
exaggerated Col-IV gene and protein expression within the
renal vasculature associated with glomerulosclerosis was found
(64). Nonetheless, to the best of our knowledge, this is the
first study determining Col-IV volume specifically in glomeruli
in L-NAME-hypertension, where ivabradine mitigated the
L-NAME-induced increase of glomerular Col-IV volume, thus
supporting ivabradine’s beneficial effect on glomerulosclerosis
in L-NAME-hypertension.

Furthermore, in this study, L-NAME-hypertension induced
tubular injury that correlated with tubulointerstitial fibrosis.
This is in line with findings from other animal models
of hypertension such as spontaneously hypertensive rats
(65), angiotensin II-induced hypertension (66), and the
Dahl salt-sensitive rat model of hypertension (67). Yet,
mechanisms underlying tubular injury in hypertension are
puzzling. Indeed, there were suggested (i) hemodynamics-
dependent mechanisms, including tubular atrophy following
glomerulotubular disconnection associated with glomerular
injury (68), and (ii) hemodynamics-independent mechanisms,
including renal oxidative stress and inflammation (69). In
this study, ivabradine mitigated tubular injury and decreased
tubulointerstitial fibrosis in L-NAME-hypertension, which
were presumably associated with ivabradine’s effects on both
hemodynamics-dependent and independent mechanisms of
tubular injury.

Recently, the plasma and urinary markers of Col-III (70), Col-
IV and Col-VI (43) turnover have been shown to be a proxy for
kidney fibrosis correlating with kidney function deterioration,
and severity and the prognosis of CKD, thus holding promise
as a novel, non-invasive diagnostic and prognostic tool to
monitor kidney fibrosis in CKD (70, 71). This histopathological
study was designed to directly and site-specifically determine
collagen volumes in L-NAME-induced kidney fibrosis. It may
be of interest to correlate histopathology and plasma or urinary
markers of kidney fibrosis and function. Yet, this was beyond the
scope and possibilities of the present histopathological study.

We conclude that ivabradine mitigated alterations to
glomerular density and tuft area and site-specifically modified
renal fibrosis in L-NAME-hypertension. These results suggest
that ivabradine may be renoprotective in hypertensive
kidney disease.
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