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Introduction: Serum protein electrophoresis (SPEP) is commonly used to detect monoclonal paraproteins to meet
laboratory diagnostic criteria for plasma cell neoplasms. We propose an automated screening method for paraprotein
detection that uses minimal computational resources for training and deployment.
Methods: A model screening for paraproteins based on the presence of high-frequency components in the spatial fre-
quency spectrum of the SPEP densitometry curve was calibrated on a set of 330 samples, and evaluated on represen-
tative (n=110) and external (n=1,321) test sets. Themodel takes as input a patient’s serum densitometry curve and a
standardized control curve and outputs a prediction of whether a paraprotein is present. We built an interactive web
application allowing users to easily perform paraprotein screening given inputs for densitometry curves, as well as a
macro-enabled spreadsheet for easy automated screening.
Results:When tuned to maximize likelihood ratio with minimum sensitivity 0.90, the model achieved AUC 0.90, sen-
sitivity 0.90, positive-predictive value 0.64, specificity 0.55, and accuracy 0.72 in the representative test set. In the ex-
ternal test set, the model achieved AUC 0.90, sensitivity 0.97, positive-predictive value 0.42, specificity 0.29, and
accuracy 0.52. A subset analysis showed sensitivities of 0.90, 0.96, and 1.0 in detecting low (0.1–0.5 g/dL), medium
(0.5–3.0 g/dL), and high paraprotein levels (≥3.0 g/dL), respectively. We have released a web service allowing
users to score their own SPEP data, and also released the algorithm and application programming interface in an
open-source package allowing users to customize the model to their needs.
Conclusions:We developed a proof of concept for an automated method for paraprotein screening using only the char-
acteristics of the SPEP curve. Future work should focus on testing the method with other laboratory data including
immunofixation gels, as well as incorporation of outside data sources including clinical data.
Introduction

The diagnostic criteria for plasma cell neoplasms such as multiple mye-
loma includes the presence of a paraprotein which may be identified by
serum protein electrophoresis (SPEP).1,2 Paraprotein screening from SPEP
samples often involves the identification of a peak in the gamma region
of the sample’s densitometry curve. Furthermore, even with the rise of
newer methods of paraprotein screening such as mass spectrometry and
serum free light chain assay (sFLC), SPEP remains the most widely used
and available screening test in medical laboratories; as of 2021 the College
of American Pathologists (CAP) Guidelines continue to strongly recom-
mend the use of SPEP in initial screening steps for paraproteins.3 While
SPEP interpretation has traditionally been performedmanually, the process
lends itself to automation due to structural commonalities in SPEP signals
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across different samples. Thus, an automated paraprotein detectionmethod
has the potential to streamline clinical workflows in the clinical laboratory.

Studies in the past have proposed computational methods to detect
paraproteins from SPEP signals. Neural network models have been previ-
ously proposed for identifying paraproteins from raw SPEP patterns4–7;
however, there are limited implementations of such methods that allow
for users to easily score SPEP curves with minimal resources. Chabrun
et al7 developed an online web-based application that uses a neural net-
work model to predict the existence of a paraprotein; however, the tool re-
quires uploading SPEP signals in the form of database objects generated by
Microsoft Database, requires a large training set of over 162 000 samples
and requires additional post-processing of data generated by the electro-
phoresis machinery, all of which prohibit ease of use. Furthermore, a draw-
back of neural network methods compared to simpler methods is that they
halogram; LIS, laboratory information system; EHC, Emory Healthcare.
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Fig. 1.A 15-lane SPEP gel from our clinical immunology laboratory. The anode is at
the top and the cathode is at the bottom. We always run a normal serum control in
lane 1 of every gel. Several patients have paraproteins in the gamma region on this
gel, most prominently in lanes 8, 3, and 15 (asterisks).
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require extensive training, often requiring significant data, time, and com-
putational resources including graphical processing units (GPUs), making
it difficult to perform both training and inference in resource-poor settings.
Previously, an add-on feature called Neurosoft was integrated into
implementations of Sebia Phoresis software.8,9 While useful, Neurosoft is
not implemented by default in Sebia systems, making it difficult to adopt
widely.

Frequency domain analysis generally refers to the decomposition of a
signal (e.g., time series, image) into the frequency spectrum, which is sub-
sequently filtered, typically for purposes of removing noise from data.10

While relatively lacking in the specific use case of paraprotein detection
from SPEPs, usage of the frequency domain has been widely performed
for the interpretation of continuous temporal longitudinal signals, includ-
ing electrocardiograms (ECGs)11 and electroencephalograms (EEGs).12

For electrocardiograms, applications include the measurement of charac-
teristics of ventricular conduction such as QRS complex duration.13 The
Fourier transform has been used for facilitating extraction of morphological
features in the frequency domain which have been used to aid identifica-
tion of abnormal patterns such as cardiac arrhythmias.14 In EEG analysis,
features can be extracted from the frequency domain and correlated with
epileptiform events.15 As SPEP signals embody similarities to ECG and
EEG signals with respect to the continuous signal structure, we posit that
using frequency domain analysis may be appropriate for the stratification
of SPEP signals, with the main difference being that SPEP signals are cap-
tured in a spatial domain (along an axis ranging from a positive anode to
negative cathode) rather than a time domain.

We propose a method based on spatial frequency domain analysis as an
alternative to neural network-based models that typically require intensive
computational resources and large amounts of training data and time to
train. Our method is designed to achieve high likelihood ratio and sensitiv-
ity for paraprotein screening purposes, and lightweight enough to train on a
basic computing setup without extensive GPU resources, while only requir-
ing about 330 samples to calibrate the model parameters. Further, the sim-
plicity of our model allows for ease of adoption across a wide variety of
laboratory settings. Additionally, we have publicly released a web service
and Excel spreadsheet allowing for ease of access to our methodology.

Materials and methods

In the SPEP gel analysis workflow,we run patients’ samples on the same
gel as control samples (samples negative for paraproteins), which serve as a
background signal. We focus the problem to the gamma region of the sam-
ple’s densitometry curve, where paraprotein peaks commonly occur. Most
acquisition devices (e.g., Sebia HYDRASYS 2 SCAN) compute region delim-
iters automatically, allowing for us to isolate the region of interest easily.
The only remaining computational task is to screen for the paraprotein
via spatial frequency domain analysis.

In our method, we first isolate the gamma region of the sample densi-
tometry curve, and then subtract the background signal from the control
densitometry curve. Next, we compute the spatial frequency spectrum
using a Fourier transform, and then apply a numerical screening threshold
for high frequency components, whereby the presence of high frequency
components stratifies samples as likely to have a paraprotein.We calibrated
the thresholding parameters of themodel on a calibration set and evaluated
the method on 2 separate test sets.

In our laboratory, samples are processed on a 15-lane SPEP gel. Fig. 1
depicts an example of 1 gel in which some lanes contain paraproteins in
the gamma region of the gel. A data acquisition device scans the gel and
converts each lane into a continuous signal. We employ the Sebia
HYDRASYS 2 SCAN (Sebia SA, Lisses, Ile-de-France) device which gener-
ates a 300-point signal curve in a standard hexadecimal format for subse-
quent manual interpretation.23

We conducted our analysis on a cohort of laboratory samples from pa-
tients who underwent bone marrow biopsy and SPEP analysis as part of
an evaluation formultiplemyeloma at EmoryHealthcare. In the study, sam-
ples were selected and labeled manually for paraprotein status.
2

Subsequently, a spatial frequency analysis model was calibrated on a vali-
dation set, evaluated on a representative test set of samples undergoing
evaluation for multiple myeloma, and also evaluated on a separate, gener-
alized external test set of samples that included all samples run through
our laboratory in 1 month (Fig. 2).

Data

We curated primary data from a cohort (“Cohort 1”) of 3 relational da-
tabases associated with laboratory information systems (LIS) at Emory
Healthcare (EHC): EHC Immunology Specialty LIS (Sebia Phoresis -
PostgreSQL), EHC Clinical Pathology LIS (Cerner Millennium PathNet - Or-
acle RDBMS), EHC anatomic pathology LIS (Cerner CoPathPlus - Microsoft
SQL Server). We extracted 7721 samples from a registry of patients known
to have a plasma cell neoplasm and were undergoing bone marrow aspira-
tion and hematological testing including serum protein electrophoresis.
Among these, we included 6144 samples with an accession date between
January 1, 2014 and August 20, 2019, all of which utilized the same labo-
ratory platform for serum protein electrophoresis analysis. Additionally, we
extracted a separate cohort (“Cohort 2”) of 1321 samples from the Emory
Healthcare Immunology Specialty LIS representing all the cases run in
February 2020. This cohort included patients with and without a known
plasma cell neoplasm.

Determination of data labels
Among Cohort 1, we separated the samples into those with quantifiable

paraprotein status (e.g., greater than 0 g/L) and those without quantifiable
paraprotein status (e.g., 0 g/L, or undetectable). We randomly shuffled all
cases in each group, and subsequently manually confirmed paraprotein sta-
tus for 501 samples across both groups (243 samples with positive
paraprotein status, and 258 samples with negative paraprotein status).
Baseline characteristics of the patients from which samples were derived
are included in Table 1.

Each samplewas labeled based onmanual analysis of the pathologist in-
terpretation, which is recorded as free text in the laboratory information
system. Samples with an accession date earlier than January 1, 2014
were filtered out, as our clinical laboratory changed laboratory information
system providers at this time. Furthermore, samples with missing data for
the densitometry curves were filtered out. After these filtering steps, the
final Cohort 1 set included 440 samples (215 positive, 225 negative),
which were randomly shuffled into a validation set (n = 330, 75% of Co-
hort 1 set) and a representative test set (n = 110, 25% of Cohort 1 set).
For a separate supplemental analysis, we created a version of the validation
set that did not include samples with paraproteins found outside of the



Fig. 2. (A) Framework for data processing, paraprotein screeningmodel calibration, and evaluation. (B) Data sources and allocation of calibration and test sets. Calibration set
samples were filtered out if they were collected before Jan 1, 2014, or had missing numerical data for the densitometry curve. External test set samples with missing data for
quantifiable paraprotein concentration were filtered out.
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gamma region (e.g., beta) to calibrate the model and assess the robustness
compared to situations where paraproteins could only be in the gamma
region (Supplemental Data, Table 1).

The samples from Cohort 2 were labeled according to quantified
paraprotein status, where samples with quantified paraprotein concentra-
tions less than 0.1 g/dLwere considered to have negative paraprotein status
while samples with quantified paraprotein concentrations of at least
0.1 g/dL were considered to have positive paraprotein status. The external
test set was designed for the purpose of creating a large set of samples to test
the model en masse. We used a 0.1 g/dL threshold for creating the external
test set because we did not review the narrative interpretations for these
samples and were unable to discern the paraprotein status as would have
Table 1
Baseline characteristics of the samples across the 2 paraprotein statuses (pa
mean (standard deviation or percentage of population).

Cohort 1 - validation set and rep

n = 501

Age 63.2 (9.7)
Race, White [n (%)] 255 (57.2%)
Race, Black [n (%)] 160 (35.9%)
Gender, Male [(n (%)] 230 (51.6%)
Mean paraprotein concentration (g/L) 0.70 (1.39)

Cohort 2 - external test set

n = 1321

Mean paraprotein concentration (g/L) 0.34 (0.82)

3

been finalized by a pathologist. Since our methodology only considers the
gamma region, it would be rare for any sample with a concentration
below 0.1 g/dL to be an actual paraprotein. The entire set of samples
from Cohort 2 was used as an external test set (Fig. 2B). Note that the exter-
nal test set is considered a general set of samples whose purpose is to eval-
uate the portability of the algorithm to a disparate population from which
the original model was trained.

Model

The model is a high-pass filter consisting of 2 successive steps. First, the
spatial frequency spectrum of the raw SPEP curve is computed. Next,
raprotein positive and paraprotein negative). All values are reported as

resentative test set Paraprotein positive Paraprotein negative

n = 243 n = 258

62.8 (9.9) 63.5 (9.5)
116 (53.0%) 139 (61.2%)
84 (38.4%) 76 (33.5%)
116 (53.0%) 114 (50.2%)
1.42 (1.70) 0.0 (0.0)

Paraprotein positive Paraprotein negative

n = 458 n = 863

0.97 (1.16) 0.0 (0.0)



Fig. 3.Model characteristics. (A) The full curve with control curve subtracted (Equation 1). (B) The gamma region is extracted from the full curve (Equation 1, isolated to
location of the gel where x is between xgamma,low and xgamma,high). (C) The spatial frequency spectrum is computed (Equation 2). (D) Thresholds for spatial frequency and
magnitude of the corresponding high frequency component is learned in the model calibration process (Equation 3, Equation 4). The learned model is subsequently
scored on the representative and external test sets.
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thresholds for a high-frequency cutoff and magnitude cutoff from the fre-
quency spectrum are calibrated. We describe 2 models. The baseline
“Serum Curve” model uses the raw SPEP curve as input (Equation 1a).
The “Serum - Control” model uses the difference between the SPEP curve
and the associated control curve as input (Equation 1). All steps afterward
are the same for either model after the input is defined. For brevity, we de-
scribe the steps below using the “Serum–Control” model.

Problem formulation
For a particular sample, the gamma region for the SPEP densitometry

curve was extracted (Fig. 3A: sample curve with control subtracted, gener-
ated by Equation 1; Fig. 3B: isolating the result of Equation 1 to just the
gamma region where ∈[xgamma,low,xgamma,high]) as follows:

Let x∈ [1,xmax] be the gel position of an SPEP curve. Let SPEPz(x) be the
value of the patient SPEP curve for a particular sample z. Let CONTROLz(x)
be the value of the control curve for that sample. In our samples, xmax =
300.

Let the input to the baseline “Serum Curve” model be

f z xð Þ ¼ SPEPz xð Þ: (1a)

Let the input to the “Serum–Control” model be

f z xð Þ ¼ SPEPz xð Þ � CONTROLz xð Þ: (1)

Let x ∈ [xgamma,low,xgamma,high] be the gel positions corresponding to the
gamma fraction for the control sample associated with a specific sample.
Note that the specific gamma region boundaries xgamma,low and xgamma,high

are different for each sample and are computationally derived by the data
acquisition platform (Sebia HYDRASYS 2 SCAN). Please note that every pa-
tient sample is run alongside a control, and every control sample contains a
gamma fraction (i.e., it is not absent due to patient-specific characteristics
like immunosuppression). While there may be variability across laborato-
ries, in our laboratory we run 14 patient samples on a gel, all of which
use the same control (i.e., lane 1 is a control and lanes 2–15 are patient sam-
ples and each sample is paired with the control on its gel; Fig. 1). Each dif-
ferent gel has a different control.
4

The fast Fourier transform24–26 for fz(x) (derived from Equation (1)) is
derived with input fz(x), x ∈ [xgamma,low,xgamma,high] (Fig. 3C):

yz k½ � ¼
XN¼xgamma;high

x¼xgamma;low

exp −2πj kx
N

� �
f z x½ �; ð2Þ

Next, the magnitude of the real portion of the spatial frequency spec-
trum, yR = |y|, is isolated (Fig. 3D), which has one value corresponding
to each k = 1/x,x ∈ [xgamma,low,xgamma,high]. If the gel position x is in units
of meters (m), then the spatial frequency position k is in units of 1/m.

A high frequency component of yz,R=|yz| is considered a component in
the spatial frequency spectrum with cutoff frequency of qhigh with a magni-
tude of at least mhigh, or

yz,R k½ � where k≥qhigh and yz,R k½ �≥mhigh (3)

Let the individual score of a sample be Sz, defined as

sz ¼
∑
kmax

k¼qhigh
1 if yz k½ �

�� �� > mhigh, 0 otherwise

∑
kmax

k¼qhigh
1

, (4)

which corresponds to the proportion of elements in the high-frequency
region of the frequency spectrum (spatial frequency above s) that have a
magnitude above mhigh (Fig. 3D).

Model training
All model parameter tuning is performed on the validation set using 10-

fold cross validation described as follows. Samples are randomly evenly
split into 10 subsets, and across 10 folds, the model is trained on 9 subsets
and evaluated on the last subset. The final model is dictated by the param-
eters for the model corresponding to the fold with the highest area under
the receiver operating curve (AUC).

The parameters for themodel, qhigh andmhigh are tuned as follows, based
on cutoffs that yield the highest area under the receiver operating curve
(AUC) for classification of the sample. For given values of qhigh and mhigh,
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the AUC score is computed with values of Sz∈{1,.. nc} for all nc samples in the
validation set. Values of qhigh ranging from [1/xmax, 0.5] and mhigh ranging
from (0, mmax] are used in the process, equally spaced across 1000 values
within the ranges, where 1/xmax represents minimum possible spatial fre-
quency corresponding to maximum gel position xmax and mmax represents
the highest magnitude across all spatial frequency spectrums computed
from all samples in the validation set. All combinations of qhigh and mhigh

are assessed.
With the chosen qhigh andmhigh, amodel threshold T for the scores is cho-

sen to achieve amaximum likelihood ratio given aminimum sensitivity tar-
get, as computed among the validation data. To choose the threshold T,we
construct a precision-recall curve using the scores Szfor all patient samples
as predicted values and the ground-truth labels for paraprotein status as the
true values.We pick the threshold that allows formaximum likelihood ratio
given aminimum sensitivity target (e.g., givenminimum sensitivity of 0.9).
A sample z is classified as paraprotein positive if its score is greater or equal
to the threshold, i.e., Sz ≥ T and is classified as paraprotein negative other-
wise. Note that an alternate, separate threshold was computed in order to
achieve a minimum sensitivity target, and is reported in (Supplemental
Data, “Calibration of model to sensitivity”).

Performance evaluation
Evaluation of the model was performed on both test sets as follows. Per-

formancemetricswere computed after calibrating themodel to amaximum
positive likelihood ratio (please note all subsequentmentions of “likelihood
ratio” in the text refer to the positive likelihood ratio) given aminimum sen-
sitivity of 0.90. If a model could not be chosen that has a viable operating
point and still meets the criteria, the sensitivity cutoff was lowered until a
model with a viable operating point could be obtained. That particular op-
erating point served as the chosen model. We report an alternative evalua-
tion calibrating the model to high sensitivity alone, in the Supplemental
Data. While calibrating to high sensitivity is the primary objective for the
goal of paraprotein screening, calibrating to the positive likelihood ratio al-
lows for an optimal balance betweenmaximizing detection andminimizing
false positives. We believe that a minimum sensitivity of 0.90 is tolerable
given that any samples determined to be negative by the model would go
directly to the attending pathologist for interpretation while any samples
determined to be positive would be pre-interpreted first before being read
by a pathologist.

To determine the parameters of the model, qhigh and mhigh, we used 10-
fold cross validation on the validation set and selected the values of qhigh
and mhigh corresponding to the fold with the highest AUC value. Perfor-
mance metrics were assessed on the representative test set and external
test set using the selected model parameters. Metrics included area under
the receiver operating curve (AUC), sensitivity, positive predictive value,
specificity, F1-score and accuracy. For each test set, the AUCwas computed
using the range of thresholds t ∈ [0,1] applied to the model scored on the
respective test set; sensitivity, positive predictive value, specificity, F1-
score and accuracy were computed based on the threshold T that was cali-
brated on the validation set.

Separately, we conducted an analysis inwhichwemanually inspected all
densitometry curves for the positive paraprotein samples in the validation
set, removed samples from the validation set if the paraprotein identified
was outside of the gamma region, and assessed performance metrics with
the subset of samples (reported in Supplemental Data, Table 1, Figs. 1, 2).

Web service

We developed a web service that allows for any client to input a raw
serum densitometry curve and associated control densitometry curve in
hexadecimal format and retrieve a prediction for whether the sample con-
tains a paraprotein. The web service also provides an integer array repre-
sentation of the sample curve and its associated control curve that can be
used to plot the curves (Screenshot, Fig. 4).

A production version of our web service is provided at https://trddx.
emory.edu/spep/. The code for the application programming interface
5

(API) is provided in the open source code repository (Supplemental Data,
“Source code and usage guidance for model”). The web service is intended
to be invoked by a computer program, such as our example Excel spread-
sheet macro, but there is a test page that allows a user to interactively
copy and paste data for control and sample curves in hexadecimal format
and see the paraprotein prediction (1 = paraprotein detected, 0 =
paraprotein not detected).

Excel spreadsheet for automated scoring

We developed a spreadsheet macro that invokes the web service,
allowing a non-technical user to easily obtain a prediction for whether a
sample contains a paraprotein, scored on our trained model. We provide
an implementation in Microsoft Office Excel 365.

To leverage our tool, the user provides input in the form of raw sample
and control gel densitometry curves, which can be queried from the
PostgreSQL database used by the Sebia instrument (Fig. 5). The user may
then score all samples and view the model prediction results directly in
the spreadsheet (Fig. 6).

Technical implementation

All data processingwas performedwith core Python functions aswell as
the Pandas library.27 For the model, the frequency spectrum F(x) of the
gamma region was computed using a Fourier transform from the scipy.fft
Python library26 and the validation and performance evaluation were per-
formed using the scikit-learn Python library.28 All steps of the process
were performed on a 2017 MacBook Pro laptop computer with 2.3 GHz
Dual-core Intel Core i5 processor, and integrated Graphics card (Intel Iris
Plus Graphics 640, 1536 MB). The code for the model and web service,
along with sample data, is provided publicly at https://github.com/
rchen25/spep-paraprotein-frequency-screen.

Results

Final model parameters

We describe the results of the parameter tuning process, conducted via
10-fold cross validation. For the baseline “Serum Curve” model, the mean
AUC across all folds of cross-validation was 0.915 (25th percentile: 0.912,
75th percentile: 0.919). ThemaximumAUCwas 0.926. Thefinal model pa-
rameter qhigh corresponding to the maximumAUCwas 0.030 (mean: 0.020,
25th percentile: 0.015, 75th percentile: 0.023), and the final model param-
eter mhigh was 5.01E-4 (mean: 5.01E-4, 25th percentile: 5.01E-4, 75th per-
centile: 5.01E-4).

For the “Serum - Control”model, themean AUC across all folds of cross-
validation was 0.896 (25th percentile: 0.891, 75th percentile: 0.897). The
maximum AUC was 0.912. The final model parameter qhigh corresponding
to maximum AUC was 0.010 (mean: 0.010, 25th percentile: 0.010, 75th
percentile: 0.010), and the final model parameter mhigh was 9.82E-4
(mean: 9.82E-4, 25th percentile: 9.82E-4, 75th percentile: 9.82E-4).

Performance evaluation on test sets

The baseline “Serum Curve”model achieved AUC of 0.93 on the repre-
sentative test set and AUC of 0.88 on the external test set (Fig. 7). The
“Serum–Control” model achieved AUC of 0.90 on the representative test
set and AUC of 0.90 on the external test set (Fig. 7). While there is a drop
in AUC between the representative test set and external test set in the base-
line “Serum Curve”model, it is important to note that there is a lower pro-
portion of samples with a paraprotein in the external test set. There is not a
similar drop in AUC between representative test set and external test set in
the “Serum–Control” model, which may indicate more robustness of this
version of the model when using it in a test set from a population different
than the one it was calibrated on.

https://trddx.emory.edu/spep/
https://trddx.emory.edu/spep/
https://github.com/rchen25/spep-paraprotein-frequency-screen
https://github.com/rchen25/spep-paraprotein-frequency-screen


Fig. 4. Visualization of the web service test page that allows the user to input densitometry curves in hexadecimal format from the Sebia HYDRASYS device (A) and then see the paraprotein status prediction as well as integer array
forms of the curves (B). The test page also plots the densitometry curves using the Google Charts API (C).
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Fig. 5. Screen shot showing the retrieval of densitometric curve data for 1 full day’s
worth of samples run on Sebia HYDRASYS instruments in our clinical immunology
laboratory. The samples are ordered by their position on the gels. Every gel consists
of 15 lanes and we always run a normal serum control (CTLNORMAL) in the first
lane. These data are retrieved from the PostgreSQL database associated with our
Sebia Phoresis imaging system using standard query tools that Sebia provides
with the system. Protected health information (patient names, “nominativo”
column) are removed from the screenshot.
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On the representative test set, the baseline “Serum Curve” model per-
formed with sensitivity 0.90, positive-predictive value 0.70, specificity
0.66, F1 score 0.79, and accuracy 0.77. On the external test set, the baseline
“Serum Curve”model performed with sensitivity 0.92, positive predictive-
value 0.54, specificity 0.58, F1 score 0.68, and accuracy 0.70 (Table 2). On
the representative test set, the “Serum–Control”model performedwith sen-
sitivity 0.90, positive-predictive value 0.64, specificity 0.55, F1 score 0.75,
and accuracy 0.72. On the external test set, the “Serum–Control”model per-
formed with sensitivity 0.97, positive-predictive value 0.42, specificity
0.29, F1 score 0.59, and accuracy 0.52 (Table 2).

In a separate analysis we have detailed the performance after manual
removal of samples with a paraprotein outside of the gamma region (see
Supplemental Data, Table 1, Figs. 1, 2).
Performance across strata of paraprotein concentrations

When calibrated to likelihood ratio, the external test set, the baseline
“Serum Curve” model achieved sensitivity of 0.86 (n = 216) in the detec-
tion of low quantified paraprotein status (0.1–0.5 g/dL), 0.96 (n = 209)
in the detection of medium paraprotein status (0.5–3.0 g/dL) and 1.00
(n= 33) in the detection of high paraprotein status (≥3.0 g/dL). In the ex-
ternal test set, the “Serum–Control” model achieved sensitivities of 0.90,
0.96, and 1.00 in samples with low, medium, and high quantified
paraprotein status, respectively (Table 3).
7

Web service

We tested the web service by manually uploading 14 samples (2 with
positive paraprotein status, 12 negative) from a randomly selected gel
using HTTP POST request and retrieved the results. All 14 samples were
scored the same by the web service as with the model as implemented in
Python on a local machine.

Excel spreadsheet for automated paraprotein scoring

We tested the Excel spreadsheet by manually uploading 14 samples
(2 with positive paraprotein status, 12 negative) from a randomly selected
gel into the spreadsheet and calculating the results. All 14 sampleswere scored
the same as with the model as implemented in Python on a local machine.

Discussion

Applicability to clinical pathology workflows

In our clinical laboratory, medical technologists first pre-interpret SPEP
curves and subsequently send them to a pathologist for finalization. Our au-
tomated screeningmethod tuned for high sensitivity aims to streamline this
process. In this scenario, our novel method could apply a negative (no
paraprotein) pre-interpretation to cases it determined did not have a
paraprotein and send the case directly to a pathologist for finalization,
allowing the medical technologist to focus their pre-interpretation efforts
on the minority of cases that are likely to have a paraprotein (Table 4).
Based on a 0.97 sensitivity in the external test set, this process would ensure
identification of at least 97% of samples with a paraprotein, in order to fa-
cilitate appropriate downstream diagnosis and management.

In balance with the goal of catching positive cases with a screening
method, is the goal of time savings associated with avoiding pre-
interpretation for cases unlikely to be positive. Based on our external test
set, which is sampled from a clinical laboratory at a major tertiary care cen-
ter in which many samples are run for patients in post-treatment surveil-
lance, about 65% of our SPEPs are negative, the model has a specificity of
0.29 and positive-predictive value of 0.42, representing a 20.0% time sav-
ings (Supplemental Data, Table 2). However, in a testing environment ser-
vicing the representative overall population, a majority of paraproteins
identified would represent monoclonal gammopathy of unknown signifi-
cance, which has a prevalence of 3.2%.29 In a hypothetical scenario involv-
ing a paraprotein prevalence of 3.2%, our model would result in a 28.2%
time savings (Supplemental Data, Table 3). Please note that the time
saved depends on the prevalence of positive cases, and in the general
community, there would be a fewer percentage of samples that have a
paraprotein compared to our data. Furthermore, we defined time savings
in regards to percentage of cases that could be screened out, and we do
not quantify time savings in regards to real-world activities in the labora-
tory, which may include transmission of data from Sebia machinery to
middleware or laboratory information systems. Furthermore, we do not
consider time needed to build, maintain, or test algorithms. Additionally,
we do not consider further classification of samples without a paraprotein
in the model (e.g., the model may not detect a paraprotein in the sample,
but the sample may have hypogammaglobulinemia and thus not be consid-
ered a normal sample); implementation and validation of such analysis
remain as future work. Additionally, we believe that in clinical practice,
leveraging our model in conjunction with human intervention would lead
to the best outcomes in terms of identifying samples with paraproteins.
For example, this may be necessary in cases where there is a paraprotein
outside of the gamma region (e.g., beta region) because our method specif-
ically only analyzes the gamma region for a paraprotein. In such cases, the
model would be adopted into the pathologist’s workflow and the model
would likely identify the sample as negative for paraprotein. However,
the sample would eventually be sent to a pathologist who would analyze
the entire SPEP curve and can thus identify the paraprotein outside of the
gamma region.



Fig. 6. Screenshot of the Excel spreadsheet macro. The user provides input in the form of tabular data (columns B–F in spreadsheet) copied from the database on the Sebia
HYDRASYS system (A). The user then can call the macro functions by pressing the green buttons (B) for “Make Predictions” (sends GET request to web service for each row
which returns a score (1 = paraprotein detected, 0 = paraprotein not detected), which is populated in column G (C), “Clear Predictions” (clears the cells for predictions in
column G before the user replaces the copied data from Sebia HYDRASYS system), or “Switch Chart to Selected View” (changes the plot (D) to the sample and control curves
associated with the row that the cursor is currently hovered over). The macro assumes that the normal serum control is in the first gel lane.
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We reported strong performance of themodel in both the representative
test set as well as the external test set. The final “Serum–Control” model
attained AUC scores of 0.90 in both the representative and external test
sets, indicating that the model is robust enough to maintain the ability to
separate positive and negative samples in a population of samples that dif-
fers from that on which the model was calibrated. Meanwhile the sensitiv-
ity of the model was higher in the external test set (0.97 vs 0.90 in the
representative test set), while positive-predictive value was lower (0.42 vs
0.64 in the representative test set). Note that the representative test set
and the external test set have different proportions of paraprotein-positive
and paraprotein-negative samples. The representative test set consists of
50% positive samples (55/110) and the external test set consists of 35%
positive samples (458/1321). We believe the higher sensitivity and lower
specificity in the external test set are due to the operating point chosen to
maximize likelihood ratio and can be changed in situations where a higher
specificitymay be desired.We believe the lower prevalence of positive sam-
ples in the external test set correlates with the lower positive-predictive
value. We created such an external test set in order to rapidly test a large
8

number of samples en masse, as opposed to the representative test set
whose purpose was to test the model on a set of samples that are represen-
tative of the samples that were used to calibrate the model.

Performance across different paraprotein levels is important to under-
stand as laboratories may consider implementation of automated methods
in practice in diagnostic workflows. When stratified across low, medium,
or high paraprotein concentrations, strong performance persists across all
strata when the model is scored on the external test set. The model cali-
brated to maximize likelihood ratio given a minimum sensitivity of 0.90,
attained sensitivities of 0.90, 0.96, and 1.0 in samples with low, medium,
and high quantified paraprotein concentrations, respectively when scored
on the external test set. The relatively lower sensitivity in samples with
low paraprotein levels is likely due to the fact that samples with low
paraprotein levels often do not exhibit obvious spikes with high spatial fre-
quency in the gamma region.

There are other previously proposed strategies for paraprotein detec-
tion in the literature, most of which are based on neural networks. We
have included in the Supplemental Data a comparison of performance



Fig. 7. Receiver operating characteristic curve for model scored on representative and external test sets.
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metrics as reported by each of these methods (Supplemental Data,
Table 4). Our method is the only one based on spatial frequency analysis,
and the only one that has been implemented and is accessible entirely
through open source tools. The only other published method with acces-
sible code online7 requires data to be provided in the proprietary
Microsoft Database format (.MDB), rather than in numerical array for-
mat (e.g., in the form of CSV files) in order to score samples. On the
other hand, all other reported past works used approaches based on neu-
ral networks. Our method reported sensitivity of 0.97 in the external test
set, which lies within 1% of other reported methods, although our
method can be tuned to higher or lower sensitivity based on other de-
sired goals such as specificity or time savings. Our method achieves
AUC of 0.90 in the external test set; the only other methodology
reporting AUC had an AUC of 0.99, although their methodology required
training a large neural network on a large dataset of over 162 000 sam-
ples, requiring extensive computing resources (4 Tesla V100 GPUs).7

Other methods report specificity between 0.79 and 0.99, while our
method achieves specificities of 0.55 in the representative test set and
9

0.29 in the external test set. Despite the trade-off in AUC or specificity,
we maintain the stance that our method provides strong AUC perfor-
mance while meeting sensitivity requirements of 0.90, without extensive
computing resources for model training, and can be built and accessed
publicly, completely with open source tools.

It is important to note that our method provides a lightweight implemen-
tation for paraprotein screening which can be utilized in resource-poor set-
tings. Our implementation can be performed on a laptop computer and
does not require expensive computing resources such as graphical processing
units (we performed all of our model building and evaluation on a laptop
computerwith integrated graphics, andwe did not require separate graphical
processing units). Furthermore, our implementation is done with standard
Python libraries and does not require extensive setup and configuration of
deep learning libraries (e.g., TensorFlow, PyTorch), which can be considered
a bottleneck to performing an automated screening process. Furthermore, our
model is intended to be used for both calibration (learning the model param-
eters on the user’s particular cohort, which varies between lab settings) as
well as scoring (applying a trained model to one’s own data). When using a



Table 2
Performance of model using the patient serum densitometry curve and the differ-
ence between the patient serum and control densitometry curves as input.

Model with maximum likelihood
ratio and minimum sensitivity 90%

Representative test
set

External test
set

“Serum Curve” model
AUC 0.93 0.88
Sensitivity 0.90 0.92
Positive-predictive value 0.70 0.54
Specificity 0.66 0.58
F1 score 0.79 0.68
Accuracy 0.77 0.70

“Serum–Control” model
AUC 0.90 0.90
Sensitivity 0.90 0.97
Positive-predictive value 0.64 0.42
Specificity 0.55 0.29
F1 score 0.75 0.59
Accuracy 0.72 0.52

Table 3
Sensitivity of the model calibrated to likelihood ratio (model with highest likeli-
hood ratio while maintaining a minimum of 90% sensitivity) across quantified
paraprotein status, evaluated in the external test set.

Sensitivity (correct / n)

Quantified paraprotein
status

n Baseline “serum curve”
model

“Serum–Control”
model

Low: 0.1–0.5 g/dL 216 0.86 (185/216) 0.90 (194/216)
Medium: 0.5–3.0 g/dL 209 0.96 (200/209) 0.96 (200/209)
High: ≥3.0 g/dL 33 1.00 (33/33) 1.00 (33/33)
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computational method for paraprotein screening such as ours, we believe
there should be a strong preference for using a model that was calibrated
on data representative of samples that are to be scored. Thus, optimally a lab-
oratory should be able to reliably calibrate and score models. However, it is
also possible for a laboratory to use a model that is hosted remotely (and
trained on data from another laboratory) to score their own samples. None-
theless, in contrast with other methods requiring extensive resources for
training, our model is lightweight enough to allow for both to be performed
by a laboratory (rather than only using the model for scoring).

Taken together, our method can be particularly impactful in the initial
screening process for paraproteins, which is often a tediousmanual process.
Speeding up the initial screening could in turn free up resources for more
technically complex tasks in the clinical laboratory.

Limitations

Model calibration considerations of the current model result in perfor-
mance trade-offs that should be considered individually within a
laboratory’s testing context. Generally, as calibration is shifted towards a
preference for higher sensitivity, a lower specificity results. The “Serum–
Control” model, which was calibrated to maximize likelihood ratio while
meeting a minimum sensitivity of 0.90, had an operating point with a
Table 4
A representation of potential time savings under various hypothetical scenarios in which
computational model used. When using the model and when the model detects a sample
terpretation, and pre-interpretation would not be completed by the technologist.

Technologist pre-interpretat

Status quo (no computational model) ✔

Using our model: If sample is not likely negative ✔

Using our model: If sample likely negative [skip - time savings]
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sensitivity of 0.90 and specificity 0.55 in the representative test set. Had
the model been calibrated to a minimum 0.95 sensitivity, the operating
point would have had a sensitivity of 0.96 and specificity of 0.28 on the rep-
resentative test set (Supplemental Data, “Calibration of model to sensitiv-
ity”). Outside of our baseline “Serum Curve” model, we do not believe
that there is an appropriate baseline comparator for our model in terms of
methodology or computing infrastructure because: (1) the goal of our
study was to develop a signal processing based method that can be easily
calibrated without extensive computational resources; (2) previous models
proposed for paraprotein identification are complex models based on neu-
ral networks, which are a different domain of methodology and typically
perform optimally when trained with large datasets, thus requiring more
time or extensive computational resources such as graphical processing
units.

Calibration may need to be done separately in situations with distinct
testing populations, clinical settings, or data acquisition systems. For this
analysis, all data sources acquired SPEP data using phoresis devices and
software from Sebia. Further testing of the method using data sources
from other acquisition devices (e.g., Helena Laboratories (Beaumont, TX,
USA)) may aid efforts in generalizing the method to the broader range of
clinical pathology and laboratory medicine environments.

Additionally, our model validation set included samples that were pos-
itive for paraproteins, but the paraproteins were located outside of the iso-
lated gamma region. When removing such samples from the validation set,
performance of the model exhibited an AUC improvement from 0.90 to
0.92 in the representative test set, 0.90 to 0.91 in the external test set (Sup-
plemental Data, Table 1, Figs. 1, 2). Note that we were unable to program-
matically isolate samples where paraproteins were strictly inside the
gamma region, since this information is not readily available in structured
data fields in the LIS database and thus not able to be queried. Thus, the en-
tire validation and test sets included these samples. However, since the set
of samples to be included in the study were chosen at random, they are rep-
resentative of the overall population of samples in our LIS.

Our method is meant to be based on the electropherogram alone, and
thus by design we did not include other features of the patient (e.g., demo-
graphics, other diagnoses) as input data to the method. Furthermore, sam-
ples may have abnormalities outside of paraprotein spikes, such as the
presence of hypogammaglobulinemia. Some samples may actually have a
monoclonal antibody, or a free light chain which would typically be de-
tectedwith immunofixation. Such abnormalities are not meant to be specif-
ically detected by our model.

Error analysis on samples in the representative and external test sets
missed by the model indicate that samples with either dull paraprotein
peaks or paraprotein peaks outside of the gamma region can be missed
(Supplemental Data, Figs. 3–6). When the model was tuned to sensitivity,
the “Serum–Control” model missed 1 positive paraprotein case out of 52
total positive cases in the representative test set, representing 1.9% of
total positive cases missed (Supplemental Data, Table 3). In the external
test set, the “Serum–Control”modelmissed 5 out of 458 positive cases, rep-
resenting 1.1% of total positive cases missed (Supplemental Data, Fig. 4).
When the model was tuned to likelihood ratio, the “Serum–Control”
model missed 4 positive paraprotein cases out of 52 total positive cases in
the representative test set, representing 7.7% of total positive cases missed
(Supplemental Data, Fig. 5). In the external test set, the “Serum–Control”
modelmissed 44 out of 458 positive cases, representing 9.6%of total positive
cases missed (Supplemental Data, Fig. 6). Paraprotein peaks that are located
the model could be used in clinical workflow, compared to a status quo without any
is likely to be negative, the sample would be sent directly to the pathologist for in-

ion Pathologist interpretation Final result to be reported

✔ ✔

✔ ✔

✔ ✔
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in the mid-gamma region or cathodal gamma regions are more likely to be
picked up by the model, given that they exhibit enough spatial frequency.
This performance is more due to the design of the model, which specifically
isolates the gamma region before computing the spatial frequency spectrum.
Also, the model was not intended to analyze the beta fraction. Any sample
with a paraprotein in the beta fraction but not the gamma fraction, would
have been predicted to be “negative” by the model due to the fact that the
model only looks at the gamma fraction. Hypothetically, if these samples
were to be scored by the model and the paraprotein was outside of the
gamma region, the existence of a paraprotein would still need to be detected
by the pathologistmanually. In a real-life workflow, assuming the pathologist
identifies paraproteins outside of the gamma region perfectly, these would
eventually be interpreted as positive for a paraprotein using the combination
of the computationalmodel andmanual curation.While we did notmanually
review samples for hypergammaglobulinemia, which typically exhibit dull
peaks, our laboratory does use a hypergammaglobulinemia control in each
gel we run. When testing the model with the web service on all samples
on a randomly chosen gel, the model correctly classified the hyper-
gammaglobulinemia control as negative for a paraprotein peak.

Future work

There are several opportunities for future work. First, the technique can
be applied to immunofixation gels, where there are separate lanes for IgG,
IgA, and IgM heavy chains as well as kappa and lambda light chains. Second,
while spatial frequency analysis is an appropriate method for SPEP signals,
additional signal processing techniques may be explored. For example, tech-
niques such aswavelet analysis30 and peak detectionmethods31,32 can poten-
tially be leveraged. Furthermore, statistical characteristics of the signal, such
as shape factor, kurtosis, and skewness, as well impulsive metrics such as
peak value, impulse factor, and crest factor, can potentially yield insight in
the context of screening for paraproteins.33,34 Third, although more cumber-
some, methods that incorporate machine learning models including usage of
other data domains like clinical lab values can be considered, with the caveat
that feasibility depends on the laboratory having reliable access to these extra
data domains. For example, this may involve a tiered method that first uses a
spatial frequency-based screen for paraproteins, and then applies a machine
learning model using clinical lab values to any sample that is predicted to
be negative by the spatial frequencymodel. Such an approachmay ultimately
improve sensitivity. Additionally, natural language processing-based
methodsmay be used to extract features from free-form text in clinician inter-
pretation notes, which can potentially be useful for extraction of properties
such as hypogammaglobulinemia. Future work may also consider extensions
of the model to improve sensitivity in samples where the paraprotein is out-
side of the gamma region, or where the paraprotein is dull rather than
sharp in appearance. Furthermore, extensions can be made to the model or
the application programming interface (API) to warn users about potential
variations of sampleswithout paraproteins thatmay still warrant further eval-
uation (e.g., samples with hypogammaglobulinemia). Finally, additional ave-
nues of future work may include the development of web applications or
mobile applications to aid in dissemination and adoption of the method.
For example, users may elect to clone the web service and host it on their
own servers, or modify the application programming interface (API) for the
web service to train their own model.

Conclusion

We have developed a paraprotein screening method using analysis of
the spatial frequency domain of the serum protein electrophoresis curve,
which achieved AUC of 0.90, positive-predictive value 0.64, specificity
0.55, F1-score 0.75, and accuracy of 0.72 while maintaining sensitivity of
0.90 (representative test set). Future work should focus on applying the
technique to immunofixation gels, incorporating other data domains such
as clinical laboratory values, and exploring lightweight machine learning-
11
based strategies that do not require extensive computational resources
(e.g., GPUs) for model training (e.g., linear regression, logistic regression).
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