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ABSTRACT

Macroautophagy is an evolutionarily conserved intra-
cellular degradation system used by life ranging from
yeasts to mammals. The core autophagic machinery is
composed of ATG (autophagy-related) protein con-
stituents. One particular member of the ATG protein
family, Atg7, has been the focus of recent research. Atg7
acts as an E1-like activating enzyme facilitating both
microtubule-associated protein light chain 3 (LC3)-
phosphatidylethanolamine and ATG12 conjugation.
Thus, Atg7 stands at the hub of these two ubiquitin-like
systems involving LC3 and Atg12 in autophagic vesicle
expansion. In this review, | focus on the pleiotropic
function of Atg7 in development, maintenance of health,
and alternations of such control in disease.
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INTRODUCTION

As a cellular scavenger, autophagy is a fundamental catabolic
process consisting of three primary classes of autophagy:
macroautophagy (the most prevalent form of autophagy and
hereafter referred to as autophagy), microautophagy, and
chaperone-mediated autophagy (Feng et al., 2015). Central to
the sequential events of autophagy is de novo formation of cup-
shaped isolation membranes (also known as phagophores) to
sequester cytoplasmic components, expansion of this mem-
brane to create a seal for a double membrane-bound vesicles
called an autophagosome, and fusion of the autophagosome
with a lysosome membrane to generate an autolysosome
allowing degradation and recycling of the cargoes (Nakatogawa

et al., 2009). Eukaryotic cells have evolved a well-organized
autophagic machinery to adapt to and survive adverse
microenvironmental conditions, including dwindling nutrient
supplies (Galluzzi et al., 2014). Genetic screening of autop-
hagy-deficient mutants in yeast provides us with almost 40 ATG
(autophagy-related) genes, among which approximately 18
genes possess orthologues in higher eukaryotes. These ATG-
encoded products act as the core autophagy machinery and
contribute to the sequential steps of autophagosome formation
including (l) induction of autophagosome formation by Atg1
complex, (Il) phagophore expansion by Atg9-related cycling
system, (lll) vesicle nucleation by the phosphatidylinositol 3-ki-
nase complex, and (IV) vesicle expansion by two ubiquitin-like
conjugation systems. One such protein is Atg7, which is
uniquely shared by, and plays crucial roles in, the two ubiquitin-
like conjugation systems of microtubule-associated protein light
chain 3 (LC3, a mammalian homologue of Atg8) and Atg12
respectively (Feng et al., 2015).

The ubiquitin-like conjugation system of LC3 involves Atg3,
Atg4, Atg7, and LC3 for LC3-phosphatidylethanolamine pro-
duction, while the ubiquitin-like conjugation system of Atg12
involves the Atg5, Atg7, Atg10, Atg12, and Atg16 for Atg12-
Atg5-Atg16 production. The common ubiquitin E1-like acti-
vating enzyme, Atg7, is essential for the assembly and
function of these two conjugates in the expansion of
autophagosomal membranes (Nakatogawa et al., 2009; Feng
et al., 2015). Substantial progress has been made during the
past decade revealing the pivotal roles of Atg7 in autophagy-
related cell homeostasis. Recent studies have unveiled the
diverse and complex autophagy-dependent function of the
evolutionarily conserved Atg7 in varying species, especially
plants and animals. This review focuses on how this dynamic
function is achieved and discusses the implications of altered
Atg7-mediated autophagic activities in molecular, cellular, and
organismal levels.
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FUNCTION OF ATG7 IN PLANTS

Phenotypic analyses of Atg7 mutants indicates that Atg7
disruption renders Arabidopsis (Arabidopsis thaliana) cells
hypersensitive to a shortage of nutrients with features of
premature leaf senescence, though the mutant is otherwise
normal (Doelling et al., 2002). Increased expression of multi-
ple LC3 isoforms are observed in Atg7 mutants due to
impaired control of the two ubiquitin-like conjugation systems
of LC3 and Atg12 (Thompson et al., 2005). Deletion of Atg7 in
Nicotiana benthamiana and Arabidopsis leads to unrestricted
hypersensitive responses during plant innate immunity (Liu
et al., 2005; Hofius et al., 2009). Arabidopsis Atg7 mutant is
also more susceptible to fungal infection (Lenz et al., 2011).
Minina and colleagues showed that the autotroph Arabidopsis
can benefit from caloric restriction-induced lifespan extension
via Atg7-regulated autophagy (Minina et al., 2013).

FUNCTION OF ATG7 IN INVERTEBRATES
Nematode

A similar role of Atg7-regulated autophagy in dietary
restriction-induced lifespan extension exists in Caenorhab-
ditis elegans (C. elegans) (Jia and Levine, 2007). In addition,
genetic inactivation of C. elegans Atg7 exacerbates accu-
mulation of toxic polyglutamine expansion protein aggre-
gates and accelerates progress of neurodegenerative
disorders (Jia et al., 2007).

Fruit fly

Steroid- and radiation-triggered programmed cell death
accompanies increased Atg7 transcripts in Drosophila cells
(Lee et al., 2003). Normal levels of Atg7-modulated autop-
hagy, albeit dispensable for metamorphosis, seem to be
critical for preventing neurodegeneration, resisting stresses,
and promoting longevity in Drosophila (Juhasz et al., 2007;
Juhasz and Neufeld, 2008). Using the Drosophila eye as a
model system, Chen et al. described Atg7 as a downstream
effector of heat shock protein 27, and as a participant in the
regulation of normal eye development, neuronal homeosta-
sis, and lifespan (Chen et al., 2012). Such critical roles of
fruit fly Atg7 has been reported not only in development but
also in infection. Mycobacterium marinum infection is suffi-
cient to counteract the effectiveness of antimycobacterial
treatment, and thereby drastically affects the survival rate in
Atg7 mutant Drosophila (Kim et al., 2012). In addition, a
recent study reveals a novel example of Atg7-independent
autophagy during the developmental shortening of Droso-
phila intestine (Chang et al., 2013).

FUNCTION OF ATG7 IN ZEBRAFISH AND RATS

In zebrafish, approximately one third of Atg7-knockdown
morphants had ectopic expression of essential transcription

factors and severe developmental defects in cardiac mor-
phology encompassing heart looping, pericardial edema,
and malformation of chamber and valve (Lee et al., 2014).
Gain- and loss-of-function of Atg7 studies in the aB-crystallin
R120G mutation (CryABR'2°€) model of rat desmin-related
cardiomyopathy reveal the significant ability of ATG7 in
reversing autophagic deficiency and maintaining physiolog-
ical levels of basal autophagy (Pattison et al., 2011). As a
consequence of Cathepsin B treatment, stimulated ATG7-
mediated autophagy aggravates lipotoxicity via induction of
nod-like receptor 3 proinflammatory response in rat insuli-
noma cells (Li et al., 2013).

FUNCTION OF ATG7 IN MICE

To investigate the in vivo function of ATG7 in mammals,
Komatsu et al. generated Atg7-deficient mice (Atg7 7). As
anticipated, Atg7_’" mice exhibit impaired constitutive and
starvation-induced autophagy; however, they die soon after
birth (Komatsu et al., 2005). Therefore, Ubc-CreERT2 mice
were crossed with Atg7-floxed (Atg7™"™"X) mice for the
generation of tamoxifen-inducible whole body Atg7 knockout
mice. Karsli-Uzunbas et al. further reported that acute sys-
temic deletion of Atg7 in adult mice leads to perturbed glu-
cose metabolism, but blocks the progression of non-small
cell lung cancer (NSCLC) in vivo (Karsli-Uzunbas et al.,
2014). Thus, cells from embryo/fetus of Atg7™~ mice and
certain cell/tissue-specific Atg7-knockout postnatal mice
were extensively employed in the quest for understanding
the mechanisms underlying the pleiotropic effects of ATG7 in
development, physiology, and pathology (Table 1).

Embryonic fibroblasts

Wild-type (WT) mouse embryonic fibroblasts (MEFs) were
used to recapitulate robust autophagy-mediated capability of
bacteria clearance, which is absent in Atg7~'~ MEFs (Sun
et al., 2008). Using WT and Atg7~’~ MEFs and small inter-
ference RNA (siRNA)-mediated silencing of Atg7 in BAX/
BAK-knockout MEFs, it has been demonstrated that Atg7-
regulated autophagy is dispensable for obatoclax-induced
toxicity (McCoy et al., 2010). Subsequently, Lee et al. found
a novel function of Atg7, independent of its E1-like enzymatic
activity. Briefly, ATG7 coordinates tumor suppressor p53-
mediated cell division cycle and cell apoptosis via physical
interaction with p53 under limited nutrients, providing an
explanation for the simultaneous or sequential metabolic
stress-induced events, including exit from cell cycle, induc-
tion of autophagy, and activation of cell death signaling. In
addition, the augmented genomic instability in Atg7™~ mice
may be a reason for its postnatal death (Lee et al., 2012). To
characterize the regulatory network of autophagy, quantita-
tive iTRAQ labeling coupled with on-line 2D LC/MS/MS
proteomics analysis was performed in WT and Atg7™~
MEFs. The result implied that basal and starvation-induced
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Table 1. Function of Atg7 revealed by genetic mouse models.

Atg7-knockout Tools Predominant phenotypes References
targets
Whole-body Zp3-Cre Postnatal lethality; impaired bacteria clearance, Komatsu et al., 2005; Sun et al., 2008;
unaffected obatoclax-induced toxicity, McCoy et al., 2010; Lee et al., 2012; Zhuo
augmented genomic instability, aberrant cell et al., 2013
apoptosis, and altered cell cycle, and
cytoskeletal protein filamentous actin network
in mouse embryonic fibroblasts
iUbc-Cre Perturbed glucose metabolism and inhibited Karsli-Uzunbas et al., 2014
progression of non-small cell lung cancer
Liver Mx1-Cre Hepatomegaly with malformations of organelles Komatsu et al., 2005; Matsumoto et al.,
and ubiquitin-positive protein aggregates 2008
Alb-Cre Oxidative stress with increased total protein Matsumoto et al., 2008; Singh et al., 2009a
mass; excessive storage of triglyceride in lipid
droplets during nutrient deprivation
GFAP-Cre Inhibited lipid release and fibrogenesis in Hernandez-Gea et al., 2012
hepatic stellate cells
Pancreas RIP-Cre Impaired glucose tolerance; degenerated islets; Ebato et al., 2008; Jung et al., 2008; Wu
decreased mitochondrial oxidation et al., 2009
consumption and increased compensatory
basal glycolytic rates and reactive oxygen
species levels
Skeletal muscle MCK-Cre Decreased mitochondrial oxidation Wau et al., 2009
consumption and increased compensatory
basal glycolytic rates and reactive oxygen
species levels
Endothelium VE-cadherin- Impaired von Willebrand factor (VWF) release; Torisu et al., 2013; Singh et al., 2015
Cre susceptibility to bleomycin-induced
pulmonary fibrosis
Vascular smooth SM22a-Cre Sarcoplasmic reticulum swelling and Michiels et al., 2015
muscle imbalanced Ca?* homeostasis
Adipose Fab4 (aP2)- Lean body mass and acquisition of brown Zhang et al., 2009a; Singh et al., 2009b
Cre adipose tissue features
Mammary gland WAP-Cre Impaired keratin 8 homeostasis; defective Kongara et al., 2010; Teplova et al., 2013
phagocytosis and enhanced inflammatory
responses
Neuron Nestin-Cre Neurodegenerative symptoms Komatsu et al., 2006a
Pcp2-Cre Axonal dystrophy Komatsu et al., 2007
POMC-Cre Elevated lipolysis; dysregulation of metabolic Kaushik et al., 2012; Coupe et al., 2012
modulation
CamKiII-Cre Neurodegenerative symptoms Inoue et al., 2012a; Nilsson et al., 2013
Cre- Aberrant inflammation responses; repressed Cheng et al., 2011; Motori et al., 2013
expressing retrograde degeneration of dopaminergic
viruses axons
VAChT-Cre No apparent phenotypes of amyotrophic lateral Tashiro et al., 2012
sclerosis
DAT-Cre Neurodegenerative symptoms; altered Inoue et al., 2012a; Hernandez et al., 2012
dopaminergic axonal profile and morphology
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Table 1 continued

Atg7-knockout
targets

Tools

Predominant phenotypes

References

Bone marrow/
Hematopoiesis

Intestine

Skin

Ella-Cre

Lck-Cre

Vav-iCre

Villi-Cre or
Villi-CreER

K14-Cre

Impaired mitochondrial clearance during
reticulocyte maturation

Aberrant production of IL-2 and IFN-y; impaired

stimulated proliferation, endoplasmic
reticulum homeostasis, and calcium
mobilization

Severe and fatal anemia and
myeloproliferation; impaired response to a-
herpesviruses infection and viral DNA
recognition; compromised macrophagic
differentiation induction and function
acquisition

Elevated inflammatory responses; promoting
tumorigenesis; impaired immune
homeostasis; damaged Paneth cells

Impaired removal of reactive oxidized

Zhang et al., 2009b

Hubbard et al., 2010; Jia et al., 2011

Mortensen et al., 2010, 2011; Rasmussen
et al., 2011; Jacquel et al., 2012

Cadwell et al., 2009; Fujishima et al., 2011;
Wittkopf et al., 2012; Inoue et al., 2012b;
Nishiumi et al., 2012; Adolph et al., 2013

Zhao et al., 2013; Rossiter et al., 2013

phospholipids and damaged protein
aggregates; dispensible for skin barrier

function
Kidney PEPCK-Cre

Vulnerable to cisplatin- and ischemia-

Jiang et al., 2012

reperfusion induced acute renal injury

autophagy depends on an intact cytoskeletal protein fila-
mentous actin network (Zhuo et al., 2013).

Liver cells

Mx1-Cre transgenic mice were crossed with Atg7-floxed
(Atg771o¥1o%) mice for the generation of hepatocyte-specific
polyinosinic acid-polycytidylic acid-inducible Atg7 knockout
(iMx1-Atg7 ") mice (Komatsu et al., 2005; Matsumoto et al.,
2008). iMx1-Atg7™"~ mice present hepatomegaly with mal-
formations of organelles and ubiquitin-positive protein
aggregates (Komatsu et al., 2005). Alb-Cre mice were
crossed with Atg71°1°% mice for the generation of hepato-
cyte-specific Atg7 knockout (Alb-Atg7 ") mice (Matsumoto
et al., 2008; Singh et al., 2009a). Comprehensive proteomics
analyses of iMx1-Atg7”~ and Alb-Atg7”~ mice and their
controls suggest that autophagy-deficient hepatic cells exert
oxidative stress with increased total protein mass, specifi-
cally glutathione S-transferase families, protein disulfide
isomerase, and glucose-regulated proteins (Matsumoto
et al., 2008). Alb-Atg7~"~ mice also showed higher triglyc-
eride storage in lipid droplets during nutrient deprivation than
controls, providing evidence that lipolysis and autophagy are
interrelated through macrolipophagy (Singh et al., 2009a).
GFAP (glial fibrillary acid protein)-Cre mice were crossed
with Atg719/1°X mice for the generation of hepatic stellate
cell-specific Atg7 knockout (GFAP-Atg7 ") mice. A surpris-
ing detrimental consequence of autophagy in deteriorating

hepatic fibrogenesis through release of lipids from activated
stellate cells, has been established in GFAP-Ath" mice
in vivo and the mouse immortalized stellate cell line JS1
in vitro (Hernandez-Gea et al., 2012).

Pancreatic f cells and skeletal muscle cells

RIP-Cre mice were crossed with Atg7™™°* mice for the

generation of pancreatic {3 cell-specific Atg7 knockout (B cell-
Atg?"’_) mice (Ebato et al., 2008; Jung et al., 2008; Wu et al.,
2009). These mice display impaired glucose tolerance and
degenerated islets accompanied by reduced 3 cell mass and
insulin secretion levels. A series of morphological malforma-
tions occur in Atg7 mutant B cells, including accumulation of
ubiquitinated inclusions, enlargement of mitochondria, and
distension of the endoplasmic reticulum (Ebato et al., 2008;
Jung et al., 2008). MCK-Cre mice were crossed with
Atg71o/1°X mice for the generation of skeletal muscle cell-
specific Atg7 knockout (SMC-Atg7 ) mice. Furthermore, Wu
et al. observed a decrease of mitochondrial oxidation con-
sumption and an increase of compensatory basal glycolytic
rates and reactive oxygen species levels in cells derived from
B cell-Atg7 ™~ and SMC-Atg7 "~ mice (Wu et al., 2009).

Endothelial cells and vascular smooth muscle cells

VE-cadherin-Cre transgenic mice were crossed with
Atg77o¥/iox mice for the generation of endothelial cell-specific
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Atg7 knockout (EC-Atg7 ") mice (Torisu et al., 2013; Singh
et al., 2015). Compared to WT littermate controls, EC-Atg7 ™/~
mice have impaired von Willebrand factor (VWF) release
elicited by epinephrine, implying a promising strategy for
transient prevention of thrombosis (Torisu et al., 2013).
Moreover, Atg7-null endothelial cells also confer suscepti-
bility to bleomycin-induced pulmonary fibrosis in vivo by
endothelial-to-mesenchymal transition (EndMT) (Singh et al.,
2015).

SM22a-Cre transgenic mice were crossed with Atg71/1ox
mice for the generation of vascular smooth muscle cell-
specific Atg7 knockout mice. Vascular smooth muscle cell-
specific Atg7 deletion leads to sarcoplasmic reticulum
swelling and imbalanced Ca®" homeostasis, resulting in
altered contractility (Michiels et al., 2015).

Fat cells and mammary gland cells

Fab4 (aP2)-Cre mice were crossed with Atg71/"* mice for the
generation of adipocyte-specific Atg7 knockout (FC-Atg7™"")
mice. Targeted deletion of Atg7 in adipose tissues leads to a lean
body mass with an elevated rate of 3-oxidation and a low rate of
lipolysis. The white adipose tissue in FC-Atg7"” mice acquired
more features of brown adipose tissue, and its mass diminished
(Zhangetal., 2009a; Singh et al., 2009b). Strikingly, disruption of
ATG7 confers sensitivity to insulin stimuli (Zhang et al., 2009a).
Additional evidence that ATG7 plays a vital role in adipogenesis
has been obtained in 3T3-L1 preadipocytes, wherein inhibition
of ATG7 hampered adipocyte differentiation and lipid accumu-
lation (Singh et al., 2009b).

WAP-Cre mice were crossed with Atg mice for the
generation of mammary gland cell-specific Atg7 knockout
(MGC-Atg7 ") mice (Kongara et al., 2010; Teplova et al.,
2013). Using MGC-Atg7”~ mice, Kongara et al. linked
ATG7-regulated autophagy to limiting ER and oxidative stress
and orchestrating keratin 8 homeostasis in mammary cells
(Kongara et al., 2010). Besides this phenotype, MGC-Atg7 ™/~
mice undergo defective phagocytosis, compromised dead cell
clearance, and enhanced inflammatory responses in mam-
mary involution, reminiscent of tumor-modulating niche and
ductal ectasia. Consistent with these observations, specific
knockdown of Atg7 in immortalized mouse mammary epithe-
lial cells strengthened the conclusion that ATG7 is needed for
effective dead cell engulfment (Teplova et al., 2013).

7f|0x/flox

Neurons

(I) Nestin-Cre transgenic mice were crossed with Atg771°f1ox
mice for the generation of neuron-specific Atg7 knockout
(nestin-Atg7~"") mice (Komatsu et al., 2006a). Consistent with
the findings from invertebrates (Jia et al., 2007; Juhasz et al.,
2007; Juhasz and Neufeld, 2008; Chen et al., 2012), nestin-
Atg7~"~ mice lacking autophagy in the central nervous system
displayed a broad range of neurodegenerative symptoms,
including accumulation of inclusion bodies in Atg7-deletion
neurons, loss of massive neurons in the cerebral and

cerebellar cortices, and defects of behavioral coordination
(Komatsu et al., 2006a). (ll) Pcp2-Cre transgenic mice were
crossed with Atg7"/"x mice for the generation of Purkinje
cell-specific Atg7 knockout mice. Similar to nestin-Atg7 "
mice, Purkinje cell-specific loss of Atg7 function impeded
autophagy-related membrane trafficking and turnover result-
ing in axonal dystrophy, a sign of axonopathy associated with
neurodegenerative disease (Komatsu et al., 2007). (Ill)
POMC (pro-opiomelanocortin)-Cre transgenic mice were
crossed with Atg7"/"° mice for the generation of POMC
neuron-specific Atg7 knockout (POMC-Atg7”") mice
(Kaushik et al., 2012; Coupe et al., 2012). In POMC-Atg7 ™"~
mice, Kaushik et al. drew a consistent conclusion by a pre-
vious study in AIb—Ath/‘ mice that autophagy negatively
regulates lipolysis (Singh et al., 2009a; Kaushik et al., 2012).
Moreover, direct genetic evidence was obtained that ATG7
participates in normal development and metabolic modulation
in POMC neurons, indicating potential roles of Atg7 deficiency
in the pathogenesis of obesity and aging-related metabolic
syndrome (Kaushik et al., 2012; Coupe et al., 2012). (IV)
CamKII-Cre transgenic mice were crossed with Atg771oox
mice for the generation of forebrain neuron-specific Atg7
knockout (CamKII-Atg7~'") mice. Remarkably, protective roles
of Atg7 in neurodegeneration of forebrain neurons have been
elucidated in CamKII-Atg?‘/‘ mice (Inoue et al., 2012a; Nils-
son et al., 2013). Atg7 ablation correlates with the progression
of age-dependent neurodegeneration via tau phosphorylation
pathway (Inoue et al., 2012a). By breeding CamKII-Atg7 ™~
mice with amyloid precursor protein transgenic mice, Nilsson
et al. found that autophagy deficiency led to reduced amyloid
beta (AB) secretion and concurrent accumulation of intracel-
lular AB peptide, indicative of Alzheimer’s disease (Nilsson
et al., 2013). (V) Atg7 knockout astrocytes failed to orches-
trate intricate mitochondria network for normal inflammation
responses (Motori et al., 2013). In addition, VAChT-Cre mice
were crossed with Atg7"/™"* mice for the generation of motor
neuron-specific Atg7 knockout (VAChT-Atg7 ") mice. Using
VAChT-Ath" mice, Tashiro et al. exclude the potential
involvement of autophagy in the pathogenesis of amyotrophic
lateral sclerosis (Tashiro et al., 2012). In contrast, ATG7-me-
diated autophagy as an upstream cell death driver controls
lysosomal dysfunction-induced cell apoptosis in mouse C17.2
neural stem cells (Walls et al., 2010).

Interestingly, seemingly opposing effects of ATG7 in
dopamine neurons have been delineated by different groups
(Cheng et al., 2011; Inoue et al., 2012a; Hernandez et al.,
2012). DAT-Cre mice were crossed with Atg7™"/ "X mice for
the generation of dopamine neuron (enriched in the sub-
stantia nigra pars compacta)-specific Atg7 knockout (DAT-
Atg7 ") mice (Inoue et al., 2012a; Hernandez et al., 2012).
Inoue et al. observed that DAT-Atg7 '~ exhibits an even more
severe phenotype of age-dependent neurodegeneration
than CamKII-Atg7 "~ mice (Inoue et al., 2012a). Conversely,
conditional deletion of Atg7 in substantia nigra dopaminergic
neurons of adult mice by intranigral injection of adeno-
associated virus-Cre achieves unexpected protection in
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retrograde degeneration of dopaminergic axons. Addition-
ally, this process is tightly controlled by Akt/Rheb/the kinase
mammalian target of rapamycin (mTOR) signaling pathways
(Cheng et al., 2011). Likewise, using DAT-Atg7 '~ mouse
model, Hernandez et al. revealed that mTOR inhibitor
rapamycin decreases evoked dopamine secretion and
decelerates recovery in Dopamine neurons, which is an
autophagy-dependent regulation of presynaptic neurotrans-
mission (Hernandez et al., 2012).

Hematopoietic cells

(I) Ella-Cre mice were bred with Atg7"®"°* mice, and the
progeny heterozygous Atg7*"~ mice were intercrossed for the
generation of E13.5 homozygous Atg7”~ mice. Then, trans-
plantation of E13.5 Atg7 ™~ fetal liver cells into H2K-GFP mice
was carried out to examine the hematopoietic lineages. A
novel finding was observed that Atg7-dependent and inde-
pendent mechanisms contribute to mitochondrial clearance
during reticulocyte maturation (Zhang et al., 2009b). (ll) Lck-
Cre mice were crossed with Atg71/™°* mice for the genera-
tion of T cell-specific Atg7 knockout (Lck-Atg7™") mice
(Hubbard et al., 2010; Jia et al., 2011). Based on analyses of
Lck-Atg7™" mice, it has been reported that that autophagy is
responsible for maintenance of normal production of IL-2 and
IFN-y, stimulated proliferation, endoplasmic reticulum home-
ostasis, and calcium mobilization, in T lymphocytes; never-
theless, T cells derived from Lck-Ath’" mice had no
detectable increased apoptosis (Hubbard et al., 2010; Jia
et al., 2011). The very slow activation-induced proliferation
makes it difficult to differentiate polarized Th1 cell populations.
To this end, Cre-ER mice were crossed with Atg71°/1°* mice
for the generation of tamoxifen-inducible Atg7 knockout (ER-
Atg7™") mice. Unsurprisingly, deletion of Atg7 in isolated T
cells from ER-Atg7 "~ mice resulted in decreased activation-
induced cytokine production (Hubbard et al., 2010). (lll) Vav-
iCre mice were crossed with Atg7">¢"°% mice for the genera-
tion of hematopoietic system-specific Atg7 knockout (Vav-
Atg7"") mice (Mortensen et al., 2010, 2011; Rasmussen
et al., 2011; Jacquel et al., 2012). Loss of Atg7-mediated
autophagy hampered mitochondria removal and erythroid
development, as well as proliferation and genomic integrity of
hematopoietic stem cells, giving rise to severe and fatal
anemia and myeloproliferation in Vav-Atg7 ™~ mice (Morten-
sen et al., 2010; 2011). In addition to these functions, bone
marrow-derived dendritic cells from Vav-Atg7 ™~ mice miti-
gated the response to a-herpesvirus infection and viral DNA
recognition due to reduction of ATG7-dependent IFN-B
expression (Rasmussen et al., 2011). Ex vivo assessment of
monocytes from Vav-Atg7 '~ mice indicates that macrophagic
differentiation induction and function acquisition could be
attributed to ATG7-mediated autophagy (Jacquel et al., 2012).

Intestinal cells

Villi-Cre (or Villi-CreER) transgenic mice were crossed with
Atg71o/1°X mice for the generation of intestinal epithelium-

specific (tamoxifen-inducible) Atg7 knockout (Villi-Atg7 ")
mice (Cadwell et al., 2009; Fujishima et al., 2011; Wittkopf
et al., 2012; Inoue et al., 2012b; Nishiumi et al., 2012; Adolph
et al., 2013). Like its orthologues Atg16L1 and Atg5, Atg7
aids in the normal morphology, and granule formation and
exocytosis of Paneth cells, as suggested by analyses of this
mouse model (Cadwell et al., 2009; Wittkopf et al., 2012).
Villi-Atg7~ mice displayed upregulated gene expression
associated with inflammation and, thereby, endotoxin or
Citrobacter rodentium-induced inflammatory responses via
NF-kB inactivation (Cadwell et al., 2009; Fujishima et al.,
2011; Inoue et al., 2012b). These observations are under-
scored by another seminal mouse genetic work showing that
Villi-Atg7 ™"~ mice synergistically with intestinal epithelium-
specific Xbp1-deficient mice recapitulates features of
Crohn’s disease, as a specific type of Paneth cell disease
(Adolph et al., 2013). Nonetheless, thus far, no overt evi-
dence has been obtained from Villi-Atg7~ mice that Atg7 is
implicated in the pathogenesis of intestinal tumors and
maintenance of gut immune homeostasis (Nishiumi et al.,
2012; Wittkopf et al., 2012).

Skin cells, kidney cells, and cardiomyocytes

K14-Cre mice were crossed with Atg7™/1°* mice for the
generation of epidermal keratinocyte-specific Atg7 knockout
mice (Zhao et al., 2013; Rossiter et al., 2013). Using this
mouse model, Zhao et al. highlighted the importance of
ATG7 for the removal of reactive oxidized phospholipids and
damaged protein aggregates in the epidermis exposed to
environmental insults (Zhao et al., 2013). However, ATG7-
mediated autophagy appears to be nonessential to execute
skin barrier function (Rossiter et al., 2013). ATG7 has also
been documented as a core regulator in caspase-8 inhibi-
tion-induced autophagic cell death in mouse L929 skin
fibroblast cells (Yu et al., 2004).

PEPCK-Cre mice were crossed with Atg mice for
the generation of kidney proximal tubular cell-specific Atg7
knockout (PEPCK-Atg7 ") mice. These autophagy-deficient
PEPCK-Ath’" mice are particularly vulnerable to cisplatin-
and ischemia-reperfusion induced acute renal injury, sug-
gesting potent renal protection by ATG7-mediated autop-
hagy (Jiang et al., 2012).

To test whether autophagy can ameliorate or restore
proteinopathy in CryABR'2°¢ cardiac model of cardiomy-
opathy, Bhuiyan et al. crossed ATG7-expressing mice and
CryABR'2°C mice to generate Atg7-crossed CryABR'29¢
mice. Indeed, the entire cohort of Atg7-crossed CryABR120¢
mice acquire relatively sustained autophagy, leading to
improved cardiac function (Bhuiyan et al., 2013).

7ﬂoxlf|ox

FUNCTION OF ATG7 IN HUMAN

Prompted by the clues from model organisms, the architec-
ture of the functional ATG7-mediated regulatory network has
been explored in the settings of human biology and disease,
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Figure 1. Schematic illustration of physiopathological roles of ATG7 in human.

such as cancer, infectious disease, and neurodegenerative
diseases (Fig. 1).

Cancer

As implied earlier, autophagy has been considered as both a
pro-survival pathway and type 2 cell death (Kroemer and
Levine, 2008). Two main hallmarks of cancer cells are
unrestricted proliferation and suppressed cell death (Hana-
han and Weinberg, 2011), raising the possibility of ATG7 as
both an oncogene and a tumor suppressor. On one hand,
ATG7 suppresses resistance of human breast cancer cells to
photodynamic therapy (Xue et al., 2010). It also facilitates

the anti-tumor actions of cytosolic FoxO1 and obatoclax in
human NSCLC cells (Zhao et al., 2010; McCoy et al., 2010),
compound 2-Methoxyestradiol in human osteosarcoma
(Yang et al., 2013), and tetrandrine in human hepatocellular
carcinoma (Gong et al.,, 2012). Moreover, the caspase-8
inhibition-initiated autophagic cell death program requires
ATG7 via activation of receptor-interacting protein/c-Jun
N-terminal kinase signaling in human U937 monocyte lym-
phoma cells (Yu et al., 2004). Additionally, two microRNAs,
miR-17 and miR-137, have been shown to target ATG7 for
acquisition of resistance to anticancer drugs and low-dose
ionizing radiation treatments in human glioma cells
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(Comincini et al., 2013; Zeng et al.,, 2015). On the other
hand, ATG7 can also serve as an oncogene. Heat shock
factor 1-controlled transcriptional expression of ATG7 is
inversely correlated with the chemotherapeutic prognosis of
breast cancer patients (Desai et al., 2013). Inhibition of
redundant Atg7-mediated lysosome-autophagy pathway
augments the anti-cancer effects of a proteasome inhibitor in
some human prostate cancer cells (Zhu et al., 2010), epi-
dermal growth factor receptor-tyrosine kinase inhibitors in
human lung cancer cells (Han et al., 2011), and cisplatin in
human esophageal squamous cell carcinoma cells (Zhu
et al.,, 2013). Through reciprocal mechanical interaction,
ATG?7, rather than ATG5 and Beclin-1, represses caspase-9-
mediated apoptosis in human colon and cervical cancer
cells. Caspase-9 promotes Atg7-mediated autophagy (Han
et al., 2014). Notably, ATG7 has a relatively higher expres-
sion in human THP1 acute monocytic leukemia cells than a
panel of human immune and epithelial cells (Rioux et al.,
2007). Importantly, two physical interactions between ATG7
and acetyltransferase p300 and between ATG7 and tran-
scription factor p53 have been depicted in human Hela
cervical and HCT116 colon cancer cells, respectively, in the
context of limited nutrient availability (Lee and Finkel, 2009;
Lee et al., 2012).

Infectious disease

Dual effects of ATG7-mediated autophagy intersection with
human immunodeficiency virus (HIV) biogenesis fuel the
viral yields as they do in human U937 monocytoid cells and
in primary human macrophages (Kyei et al., 2009). A battery
of morphological and biochemical assays have been con-
ducted showing that hepatitis C virus (HCV) causes an
unfolded protein response-dependent incomplete ATG7-
mediated autophagy during pathogenesis in human hep-
atoma cells (Sir et al., 2008). Also, it has been documented
that disruption of ATG7-mediated autophagy can evoke the
interferon signaling pathway resulting in apoptosis of HCV-
infected immortalized human hepatocytes (Shrivastava
et al., 2011), and dramatically enhanced infectivity of human
papillomavirus in primary human keratinocytes (Griffin et al.,
2013). Knockdown of Atg7 also interferes with the elimina-
tion of intracellular pathogen Mycobacterium tuberculosis by
human immunity-related GTPase family M protein in U937
cells (Singh et al., 2006). ATG7-mediated autophagy is also
involved in the constricting activity of HIV infection via
release of the HIV-1 transactivator Tat in human embryonic
kidney 293 cells and MAGIC5B cells (i.e., HeLa cells modi-
fied to express CD4 and CXCR4 together with B-galactosi-
dase under the control of the HIV LTR promoter) (Sagnier
et al., 2015). Silencing of ATG7 may delay the progression of
Chikungunya virus-induced caspase-dependent cell death in
human fibroblast cells and HelLa cells (Joubert et al., 2012),
and suppress the colony stimulating factor-1-induced

differentiation of human peripheral blood monocytes into
macrophages (Jacquel et al., 2012).

Neurodegenerative disease

It has been shown that downregulation of ATG7 can com-
pensate the loss of mitochondria in PTEN-induced kinase 1
(PINK1) deficient dopaminergic human neuroblastoma cells,
likely supporting the potential role of ATG7 in PINK1 muta-
tion-related familial Parkinson’s disease (Dagda et al., 2009).
By analyzing a large number of European Huntington dis-
ease patients, Metzger et al. found that the V471A poly-
morphism in ATG7 was significantly associated with the age
at onset. More specifically, the V471A polymorphism in
ATG7 correlates with an earlier disease onset of 4 years in a
mixed group of Huntington disease populations (Metzger
et al., 2010, 2013). In five patients with Parkinson’s disease,
four novel genetic variants including 11313449G>A,
11313811T>C, 11313913G>A, and 11314041G>A, were
identified on the ATG7 gene promoter, implying the altered
transcriptional activity of the ATG7 may be a risk factor
(Chen et al., 2013).

Miscellaneous

Together with FOXO3-ATG101 complex, coupling of acety-
lated FOXO1 with ATG7, upon stimulation with prosecretory
mitogen lacritin, can rescue the metabolic homeostasis in
human corneal epithelial cells (Wang et al., 2013). In a similar
manner, acetylated FOXO1 and ATG7 can preserve human
umbilical vein endothelial cells (HUVECS) viability under cir-
cumstances of oxidative stress (Han et al., 2012). ATG7 is
also essential for normal secretion of VWF in HUVECs (Torisu
et al., 2013), and EndMT in both HUVECs and human pul-
monary aortic endothelial cells (Singh et al., 2015).

CONCLUDING REMARKS

The word “autophagy”, literally auto-, meaning “self’, and
phagein, meaning “to eat”, in Greek, was originally coined by
Belgian cytologist Christian de Duve in 1963 (Klionsky,
2008). More than 50 years have passed since autophagy
was defined as a core mechanism underlying both elimina-
tion and recycling of intracellular materials in normal devel-
opment and diverse disease categories (Mizushima and
Komatsu, 2011; Choi et al., 2013; Murrow and Debnath,
2013). These include, but are not limited to, immunity (Virgin
and Levine, 2009), metabolism (Codogno and Meijer, 2010;
Rabinowitz and White, 2010), aging (Madeo et al., 2010),
and the cardiovascular (De Meyer et al., 2015; Nussenzweig
et al., 2015), and nervous system (Komatsu et al., 2006b).
Although still in the early stages, it appears to be almost
clear how core machinery plays in Atg7-dependent and
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Figure 2. Retrospective analyses of major events of Atg7 research in development and disease.

-independent autophagosome biogenesis (Nishida et al.,
2009; Lamb et al., 2013). No less important than this ATG7-
mediated autophagic assembly is the function and regulation
of Atg7 in natural and stressed pathophysiological condi-
tions. Thanks to the dedication and contribution of numerous
laboratories over the years, recent exciting findings on ATG7
have caused a paradigm shift in the field of ATG7-mediated
autophagic regulation. A brief historical overview of select
prior landmark investigations has been summarized in the
timeline of Fig. 2. Given that these studies reflect the nature
of ATG7’s intrinsic double-edged sword in development and
disease, it is likely that excessive or deficient Atg7-mediated
autophagy is harmful. Following advances in therapeutic
manipulation of autophagy (Kroemer, 2015), it will be
important to determine the specific and safe methods for
pharmacologic fine-tuning of ATG7 activity.

Another cardinal question concerns personal medicine for
accurate and rapid diagnosis of ATG7-related disease. The
complex role of ATG7 seems to be highly structured in a
spatiotemporal fashion rather than ad libitum (Behrends
et al., 2010). The diverse roles of Atg7 in different settings
summarized by this review may be attributed to selective
Atg7-mediated autophagy at distinct organelle, cell, tissue,
organ, and organism levels. An accurate understanding of
the specified and delicate roles of Atg7-autophagy requires
the in-depth knowledge of both the contextual extracellular
cues and the intracellular responses. Thus, it will be

interesting to search for the exact niches responsible for how
Atg7 activity is encoded. It is also plausible that certain
intricate forms of crosstalk interactions between Atg7-medi-
ated autophagy and other autophagy-dependent or -inde-
pendent pathways are responsible for shaping the versatile
functions of Atg7. Therefore, it might be essential to identify
and characterize the key coordinators of Atg7-mediated
autophagy and other regulatory networks. Despite these
challenges to be faced, academic and industry’s research
progress in Atg7 offers new avenues towards refined
autophagic mechanism and Atg7-based clinical treatment.
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