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Per os infectivity of white spot 
syndrome virus (WSSV) in white‑legged shrimp 
(Litopenaeus vannamei) and role of peritrophic 
membrane
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Abstract 

As earlier observations on peroral infectivity of WSSV in white-legged shrimp are conflicting, here, a standardized 
peroral intubation technique was used to examine (i) the role of the physical composition of the viral inoculum and 
(ii) the barrier function of the PM. In a first experiment, the infectivity of a WSSV stock was compared by determin-
ing the SID50 by intramuscular injection, peroral inoculation or via feeding. The following titers were obtained: 108.77 
SID50/g by intramuscular injection, 101.23 SID50/g by peroral inoculation and 100.73 SID50/g by feeding. These results 
demonstrated that 107.54–108.03 infectious virus is needed to infect shrimp by peroral inoculation and via feeding. 
Next, it was examined if damage of the PM may increase the susceptibility for WSSV by peroral route. The infectivity 
of a virus stock was tested upon peroral inoculation of shrimp with and without removal of the PM and compared 
with the infectivity upon intramuscular inoculation. The virus titers obtained upon intramuscular injection and peroral 
inoculation of shrimp with and without PM were 108.63, 101.13 and 101.53 SID50/mL, respectively. This experiment con-
firmed the need of 107.1–107.5 infectious virus to infect shrimp via peroral route and showed that the removal of the 
PM slightly but not significantly (p > 0.05) facilitated the infection of shrimp. This study indicated that WSSV contami-
nated feed is poorly infectious via peroral route, whereas it is highly infectious when injected into shrimp. The PM 
plays a minor role as internal barrier of shrimp against WSSV infection.

© 2016 Van Thuong et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Since its first description in 1992 [1], WSSV is responsi-
ble for a large number of failures of shrimp culture world-
wide [2]. WSSV is a rod-shaped, enveloped virus that 
infects a broad range of crustaceans [3, 4]; to date, more 
than 90 crustacean species have been found as hosts or 
carriers of WSSV [5]. WSSV may be transmitted via ver-
tical and horizontal routes [6–11]. Some environmental 
parameters such as temperature, salinity drop and pH 
are known as stressors influencing transmission and may 
influence the occurrence of WSSV outbreaks [12–16]. It 
is difficult to infect shrimp with WSSV via immersion 

or cohabitation with infected hosts [7, 8, 10, 17] and per 
os WSSV inoculation by intubation or via feed results 
in contradictory findings. Some researchers found it a 
powerful tool to induce WSSV infection in shrimp [16, 
18, 19] whereas others had difficulties to reproduce these 
results [17, 20–22]. Differences in virulence of the WSSV 
strain, virus dose, way of administration, and experimen-
tal conditions of the animals may be responsible for these 
controversial observations.

The peritrophic membrane (PM) is a non-cellular 
structure, composed of chitin fibrils and proteins, which 
are synthesized and secreted by epithelial midgut cells. It 
is lining the epithelial midgut and acts as a barrier pre-
venting animals from physical damages and pathogen 
invasion [23]. In insects, it is well known that the inhibi-
tion of PM formation may increase the susceptibility of 
the host to virus infection [24–28]. In order to establish 
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an infection in the digestive tract of the host, pathogens 
may use their own chitinase to facilitate the penetration 
of PM [29, 30]. In shrimp, it was already demonstrated 
that bacteria such as Vibrio parahaemolyticus may 
destroy the PM barrier to initiate colonization and rep-
lication in the midgut and invasion in the shrimp body 
[31, 32]. In addition, prior to molting, shrimp increase 
the expression of endogenous chitinases, which may help 
in the degradation process of the PM and facilitate the 
pathogen invasion [33–36]. At present, it is not clear if 
the PM forms a barrier to WSSV and if a removal of the 
PM may help WSSV to infect midgut epithelial cells and 
invade into the shrimp.

In the present study, it was examined if the physical 
composition of the viral inoculum and presence/absence 
of the PM changes the capacity of WSSV to infect its 
host.

Materials and methods
Experimental animals and growing conditions
The shrimp used in this study were Penaeus (Litope-
naeus) vannamei from Piti Syaqua Farm, Syaqua Siam 
Co. Ltd., Thailand. The batch of 10  000 PL8-12 was cer-
tified to be specific pathogen free (SPF) for the viruses 
WSSV, TSV, YHV and IHHNV by PCR and histopathol-
ogy. The PL were transported to the Laboratory of Aqua-
culture and Artemia Reference Center (ARC), Ghent 
University, Belgium. At the ARC, shrimp were grown in 
a bio-filter recirculation system, fed with pelleted feed 
at a rate of 5% of mean body weight per day. Tempera-
ture was maintained at 27 ± 1 °C, salinity at 35 ± 1 g/L. 
Total ammonia and nitrite were controlled to be lower 
than 0.5 and 0.15 mg/L, respectively. For the inoculation 
experiments, shrimp were transported to the Labora-
tory of Virology, Faculty of Veterinary Medicine, Ghent 
University.

Determination of molt stage
Based on the descriptions of Robertson et al. [37], Chan 
et al. [38] and Corteel et al. [39], the molt cycle of shrimp 
was determined and the shrimp were separated into 5 
major stages. Briefly, shrimp were restrained and their 
exopodites of uropods were examined and analyzed on 
the appearance of setae, epidermis and cuticle under an 
inverted microscope at a magnification of 100×. In the 
early post-molt stage (A), the epidermis is present in the 
setae and retracts in later post-molt (B). In the inter-molt 
stage (C), the epidermis retracts under the setae and 
forms a straight line at the bottom of setae. In the early 
pre-molt (D1), the epidermis retracts from the old cuti-
cle and starts forming a new cuticle. In the final stage, 
(before-molt, D2) new setae are formed under the old 
cuticle.

WSSV preparation
Preparation of WSSV stock
A WSSV Thai-1 used in this study was collected from 
infected P. monodon in Thailand in 1996 and amplified 
in crayfish Pacifastacus leniusculus [40]. A homogen-
ate of WSSV infected crayfish gills, kindly donated by P. 
Jiravanichpaisal and K. Soderhall (Uppsala University, 
Sweden), was inoculated in SPF P. vannamei juveniles to 
produce a starting WSSV stock. The median infectious 
titer of the stock was 106.6 SID50/mL as determined by 
in vivo intramuscular titration [41].

Preparation of WSSV stocks (WSSV stock 1a and 1b and WSSV 
stock 2)
From the starting WSSV stock, a dilution of 10−2 was 
made in phosphate-buffered saline (PBS, pH 7.4) and 
injected intramuscularly into SPF P. vannamei juveniles 
to amplify the virus. Moribund shrimp were collected 
and confirmed to be WSSV positive by indirect immuno-
flourescence (IIF). Three inoculation stocks were prepared.

A.	Stocks 1a and 1b: One hundred grams of moribund 
WSSV-infected shrimp were weighed and thawed. 
The shell, hepatopancreas and gut were removed and 
the remaining body was longitudinally cut into two 
parts. The first part was homogenized at 5000  rpm 
for 5  min using an IKA T 25 digital ultra-turrax. 
Then, the homogenate was further minced by serial 
syringe needles (1.2, 0.9 and 0.55 × 20 mm). Briefly, 
the homogenate was sucked up and blown out several 
times through the needle of 1.2 ×  20  mm attached 
to a 20 mL syringe; this was repeated with needles of 
0.9 × 20 mm and 0.55 × 20 mm, aliquoted and stored 
at −70  °C for intramuscular injection and peroral 
inoculation experiments (stock 1a). The second part 
of WSSV infected tissue was cut into small pieces of 
0.5-1  mm2 and stored at −70  °C for feeding (stock 
1b).

B.	 Stock 2: For the preparation of WSSV stock 2, 50  g 
of thawed shrimp without shell, hepatopancreas and 
gut were chopped, suspended in PBS at a ratio of 1:3, 
homogenized at 5000  rpm for 1–1.5  min using IKA 
T 25 digital ultra-turrax and centrifuged at 3500 rpm 
for 10 min (4 °C). Then, supernatant was collected and 
stored at −70 °C (WSSV stock 2).

Experimental design
Effect of physical composition of the viral inoculum on the 
oral infectivity of WSSV
The aim of this experiment was to compare the infectiv-
ity of a WSSV stock by determining the SID50 by intra-
muscular and peroral inoculation of a viral suspension 
and via feeding of infected tissue from the same shrimp. 
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In the experiment, early pre-molt (D1) P. vannamei juve-
niles (MBW = 4.86 ± 0.37 g, n = 210) were collected and 
acclimated individually for 24  h in 10-liter tanks. Then, 
one group of twenty shrimp was injected with 50 mg of 
a 10-fold serial dilution (10−6, 10−7, 10−8, 10−9, five ani-
mals per dilution) of WSSV stock 1a. Another group of 
twenty shrimp was inoculated perorally with 50  mg of 
a 10-fold serial dilution (100, 10−1, 10−2, 10−3, five ani-
mals per dilution) of the same WSSV stock 1 a using a 
0.74 × 19 mm—24G Surflo-W catheter (a 10-fold serial 
dilution was prepared by mixing 1 portion of WSSV stock 
with 9 portions of pathogen-free shrimp minced tissue). 
Thirty shrimp of the third group were naturally fed per 
os with 0.5, 5, 50, 100, 250 and 500 mg of WSSV chopped 
tissue, with 5 shrimp per dose. Shrimp were fed one meal 
for the dose of 0.5, 5, 50 and 100 mg, 3 and 5 meals for 
the feeding of 250 and 500 mg of WSSV chopped tissue, 
respectively. The time interval between the two meals 
was 1 h. After inoculation, shrimp were housed individu-
ally and kept for 5 days. Cephalothoraxes and midguts of 
dead and moribund shrimp were collected every 12 h and 
terminated at 120  hpi. Samples of cephalothoraxes and 
midguts of dead, moribund and euthanized shrimp at 120 
hpi were processed for detection of WSSV infection by 
IIF. The experiment was performed three times.

Role of PM as intestinal barrier
Removal of the PM  In this experiment, it was aimed to 
remove the PM by a peroral flushing of the midgut. A total 
of 24 P. vannamei juveniles (MBW = 4.62 ± 0.68 g) were 
screened for their molt stages (B, C, D1, D2). Six shrimp 
were selected in each of the four major molt stages and 
divided into two groups. Shrimp of both groups were fed 
with pathogen-free shrimp chopped tissue. The animals 
were starved then for 4 h. Shrimp in the first group were 
given a peroral flush using 1 mL of PBS. This was done 
with a 1 mL syringe attached to a 24G Surflo-W catheter. 
The catheter was gently inserted inside the shrimp mouth 
chamber. By a gentle press on the plunger of the syringe, 
the PBS was forced through the shrimp digestive tract. 
Shrimp in the second group were not flushed.

Cryosection and staining of peritrophic membrane  After 
flushing, the fecal material that was expelled out of the 
anus was collected, fixed in 4% paraformaldehyde and 
incubated with 25 µg/mL fluorescein-linked succinylated 
WGA (wheat germ agglutinin lectin from Triticum vul-
garus; Vector FL 1021S) for PM analysis. After flushing, 
shrimp of both groups were euthanized on ice and dis-
sected (5 mm in length) at 3 sites (S2, S4, S6, see Figure 1). 
Dissected tissues were fixed in 4% paraformaldehyde at 
room temperature (22  °C) for 15 min, washed with PBS 
for 15 min, embedded in 2% methylcellulose and frozen 

in liquid nitrogen liquid for 8 min. Cryosections (5 µm) 
were made and mounted on slides, washed with PBS for 
5  min, incubated with fluorescein-linked succinylated 
WGA (25 µg/mL) for 30 min and Hoechst (10 µg/mL) for 
15 min. Then, the slides were washed twice with PBS and 
once in deionised water (3 min each), dried and mounted 
with glycerin DABCO. The slides were analyzed by fluo-
rescence microscopy (Leica DM RBE) and microphoto-
graphs were made at 100× magnification.

Effect of  PM removal on  WSSV infection upon  peroral 
inoculation with WSSV  The aim of this experiment was 
to evaluate the barrier function of PM to WSSV infection 
via oral route. In this experiment, early pre-molt (D1) P. 
vannamei juveniles (MBW = 4.55 ± 1 g, n = 110) were 
screened, housed individually in 10 liter-aquaria and 
acclimated for 24  h. Prior to inoculation, shrimp were 
fed before a starvation period of 4 h. Then, fifteen shrimp 
were injected intramuscularly with 50 μL of a 10-fold 
serial dilution (10−6–10−8, five animals per dilution) of 
WSSV stock 2. In twenty shrimp, the PM was removed 
by a peroral flush as described in sub-section “Removal of 
the PM” and twenty shrimp were kept intact. Afterwards, 
the animals were inoculated perorally with 50 μL of a 
10-fold serial dilution (100, 10−1, 10−2, 10−3, five animals 
per dilution) of the same WSSV stock 2. After inoculation, 
shrimp were housed individually and fed with commercial 
shrimp diet at a rate of 5% of mean body weight per day. 
Moribund and dead shrimp were recorded and removed 
from the aquaria every 12 h until the end of the experi-
ment at 120 hpi. Cephalothoraxes and midguts of dead, 
moribund and surviving shrimp were processed for detec-
tion of WSSV infection by IIF. The whole experiment was 
repeated twice. Five shrimp were used per dilution in the 
first repeat. In the second repeat, fifteen shrimp were used 
per dilution.

Detection of WSSV infection by indirect 
immunofluorescence (IIF)
WSSV infected shrimp were evaluated by indirect 
immunofluorescence (IIF) based on the description of 
Escobedo-Bonilla et  al. [41]. Briefly, cephalothoraxes of 
dead, moribund and euthanized shrimp were collected, 

Figure 1  Three sampling sites for analysis of the peritrophic 
membrane. Segment S2 and S4 contain midgut, segment S6 contains 
hindgut.
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embedded in 2% methylcellulose and frozen at −20  °C. 
Cryosections (6 µm) were made and fixed for 10 min in 
100% methanol at −20  °C. The sections were washed 
three times in PBS (5 min each) and were incubated with 
2  µg/mL of monoclonal antibody 8B7 (Diagxotics Inc.
USA) directed against viral protein VP28 for 1 h at 37 °C. 
Then, samples were washed three times in PBS (5  min 
each), incubated with fluorescein isothiocyanate (FITC)-
labelled goat anti-mouse IgG (F-2761, Molecular Probes, 
The Netherlands) for 1  h at 37  °C. The cell nuclei were 
stained by Hoechst for 15 min. Finally, the samples were 
washed twice with PBS, rinsed once in deionised water, 
dried and mounted with a solution of glycerine and 
1,4-diaza-bicyclo-octane (DABCO) (ACROS organics, 
USA). Sections were analyzed by fluorescence micros-
copy (Leica DM RBE).

Statistical analysis
Virus infection titers (SID50) (Sub-sections “Effect of 
physical composition of the viral inoculum on the oral 
infectivity of WSSV” and “Effect of PM removal on 
WSSV infection upon peroral inoculation with WSSV”) 
were calculated based on the method of Reed and 
Muench [42]. Briefly, the numbers of infected and unin-
fected shrimp in each dilution were recorded. Accumu-
lated values for the total number of animals that were 
infected or uninfected were obtained by adding values in 
the direction of the lowest to the highest values. The ratio 
and percentage of accumulated infected animals on the 
sum of the accumulated infected and uninfected animals 
were calculated for each dilution.

Two adjacent values, with one above (a) and one below 
(b) 50% were selected to calculate the proportional dis-
tance to the 50% endpoint by the following formula: 
(a-50%)/(a–b). The proportional distance was added to 
the log10 of the dilution, that contained the percent-
age above 50% (a). The value of shrimp infectious dose 
50% endpoint (SID50) per mL was calculated taking into 
account to volume of the inoculum.

Shrimp of 3 replicates (Sub-section “Effect of PM 
removal on WSSV infection upon peroral inoculation 
with WSSV”) were pooled into 2 groups (100 shrimp 
with and 100 shrimp without removal of the peritrophic 
membrane). The difference in infection rates between 2 
groups was tested by Pearson’s Chi square test. All calcu-
lations were performed using R version 3.1.2.

Results
Effect of physical composition of the viral inoculum on the 
oral infectivity of WSSV
Shrimp inoculated intramuscularly with WSSV concen-
trations 10−6–10−8 of stock 1a (WSSV suspension finely 
minced with needles) had a mortality of 5 out of 5, 4 

out of 5 and 1 out of 5, respectively. All shrimp inocu-
lated with dilution 10−9 survived until 120 hpi. The same 
results were obtained in the second experiment. In the 
third repeat, 5 out of 5 shrimp in the dilution 10−6 and 
4 in the dilution 10−7 died. Other shrimp survived until 
the end of the experiment. Upon oral inoculation with 
the dilutions 100, 10−1, 10−2 and 10−3 of the same WSSV 
stock 1a, only 2, 3, and 2 out of 5 shrimp inoculated with 
the dilution 100 died in the three different repeats. When 
peroral feeding was performed with 0.5, 5, 50, 100, 250 
and 500 mg of WSSV chopped tissue 1b, 0, 1, 0, 1, 2 and 
3 animals out of 5 shrimp died, respectively, in the first 
experiment, 0, 0, 1, 2, 3 and 4 in the second experiment 
and 0, 0, 1, 2, 2 and 4 in the third repeat. IIF analysis of 
cephalothorax of dead, moribund and surviving shrimp 
revealed that all dead and moribund animals were WSSV 
positive, while all surviving shrimp were WSSV negative. 
Analysis of midgut of dead and moribund shrimp showed 
that connected tissue (CT) of the midgut of dead and 
moribund shrimp were WSSV positive, whereas epithe-
lial cells (EC) were WSSV negative (Figure 2). The mean 
virus titers determined upon intramuscular injection, 
peroral inoculation and by feeding WSSV infected tis-
sue were 108.76 ± 0.06, 101.23 ± 0.23 and 100.73 ± 0.12 SID50 g−1, 
respectively (Table  1). Compared with the intramuscu-
lar route, 107.53 times more virus was needed to infect a 
shrimp via oral inoculation, while 108.03 times more virus 
was necessary to infect a shrimp via peroral feeding.

Role of PM as intestinal barrier
Removal of PM by a peroral flush
Microscopical observation of cryosections showed that 
three structures were stained with fluorescein-linked suc-
cinylated WGA: the PM, the basement membrane (BM) 
and the cuticle that lined hindgut lumen (CLH, only in 
the hindgut). The PM was absent in the midgut (sections 
S2 and S4) and hindgut (section S6) in the shrimp that 
were flushed perorally, while the PM was clearly visible in 
the control samples at the 3 sampled segments (Figure 3; 
Additional file 1; Table 2). The PM in the midgut of intact 
control shrimp stained with FITC-WGA consisted of 
multiple layers (Figure 3; Additional file 1). The intensity 
of the FITC-WGA staining of the fecal material collected 
after flushing increased from the anterior to posterior 
position (Figure 4).

Effect of PM removal on WSSV infection upon peroral 
inoculation with WSSV
In the first experiment, among the groups of shrimp 
injected with dilutions 10−6, 10−7 and 10−8 of WSSV 
stock 2, all shrimp in dilution 10−6 and 3 out of 5 shrimp 
in dilution 10−7 died between 36 and 60  hpi. All other 
animals survived until the end of the experiment. When 
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Figure 2  Representavive photomicrographs of viral antigen positive cells (green) in different tissues of moribund and dead shrimp. 
WSSV was detected by IIF using a VP28-specific mouse monoclonal antibody and an FITC-conjugated goat-anti mouse IgG. The cells of connective 
tissue (CT) of the midgut were WSSV positive, while the epithelial cells (EP) were WSSV negative.
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a peroral inoculation was performed in PM-intact shrimp 
with dilutions 100, 10−1, 10−2 and 10−3 of the same WSSV 
stock, only 2 out of 5 shrimp of dilution 100 died. In PM-
negative shrimp, mortality was observed in 2 shrimp of 

dilution 100 and 1 shrimp of dilution of 10−1. All other 
shrimp survived until the end of the experiment.

In the second experiment, among the groups of shrimp 
injected with 10−6, 10−7 and 10−8 of WSSV stock 2, all 

Table 1  Determination of virus titers of a WSSV stock in P. vannamei by different inoculations.

Experiment Inoculation route Dilution on  
homogenate 
of tissue

No. of shrimp Mortality at different time points (hpi) Infection 
by IIF

Virus 
titer 

24 36  48  60  72  84  96  120  Total

1 Intramuscular 10−7 5 1 1 1 1 4/5 4/5 108.8SID50/g

10−8 5 1 1/5 1/5

10−9 5 0/5 0/5

Peroral 100 5 1 1 2/5 2/5 101.1SID50/g

10−1 5 0/5 0/5

10−2 5 0/5 0/5

10−3 5 0/5 0/5

Feed 0.5 5 0/5 0/5 100.6SID50/g

5 5 1 1/5 1/5

50 5 0/5 0/5

100 5 1 1/5 1/5

250 5 1 1 2/5 2/5

500 5 3 3/5 3/5

2 Intramuscular 10−6 5 1 3 1 5/5 5/5 108.8SID50/g

10−7 5 1 2 1 4/5 4/5

10−8 5 1 1/5 1/5

10−9 5 0/5 0/5

Peroral 100 5 2 1 3/5 3/5 101.5SID50/g

10−1 5 0/5 0/5

10−2 5 0/5 0/5

10−3 5 0/5 0/5

Feed 0.5 5 0/5 0/5 100.8SID50/g

5 5 0/5 0/5

50 5 1 1/5 1/5

100 5 2 2/5 2/5

250 5 2 1 3/5 3/5

500 5 1 2 1 4/5 4/5

3 Intramuscular 10−6 5 2 3 5/5 5/5 108.7SID50/g

10−7 5 2 2 4/5 4/5

10−8 5 0/5 0/5

10−9 5 0/5 0/5

Peroral 100 5 1 1 2/5 2/5 101.1SID50/g

10−1 5 0/5 0/5

10−2 5 0/5 0/5

10−3 5 0/5 0/5

Feed 0.5 5 0/5 0/5 100.8SID50/g

5 5 0/5 0/5

50 5 1 1/5 1/5

100 5 2 2/5 2/5

250 5 1 1 2/5 2/5

500 5 2 1 1 4/5 4/5

Intramuscular injection, peroral inoculation and feeding (feed).



Page 7 of 12Van Thuong et al. Vet Res  (2016) 47:39 

Figure 3  Presence/absence of peritrophic membrane in the gut of shrimp without and with a peroral flush. Peritrophic membrane (PM) 
was stained with FITC-linked succinylated (WGA) wheat germ agglutinin and analyzed by fluorescence microscopy. Bar = 100 µm. The cell nuclei 
were stained by Hoechst. Photomicrographs 1–3 show the presence of PM in the midgut (segment S2 and S4) and hindgut lumen (segment S6) of 
control samples (without a peroral flush). Photomicrographs 4–6 show the absence of PM in the midgut and hindgut lumen of perorally flushed 
shrimp. FITC-linked succinylated WGA also labeled the basement membrane (BM) of the midgut (photomicrographs 1, 2, 4 and 5) and the cuticle 
that lined the hindgut lumen (CLH, photomicrographs 3 and 6).

Table 2  The presence of peritrophic membrane in P. vannamei shrimp without and with a peroral flush.

Midgut sample sites (S2, S4), hindgut sample site (S6).

Peroral flush Molt stage No. of shrimp PM confirmed by FITC- WGA No. of shrimp with  
the presence of PM

S2 S4 S6

No (Control) B 3 +++ +++ +++ 3/3

C 3 +++ +++ +++ 3/3

D1 3 +++ +++ +++ 3/3

D2 3 +++ +++ +++ 3/3

Yes B 3 −−− −−− −−− 0/3

C 3 −−− −−− −−− 0/3

D1 3 −−− −−− −−− 0/3

D2 3 −−− −−− −−− 0/3

Figure 4  FITC-WGA labeled peritrophic membrane enclosing a feed bolus, collected upon peroral flushing. A Anterior region. B Middle 
region. C Posterior region. Bar = 100 µm.
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shrimp in dilution 10−6 and 4 out of 5 shrimp in dilution 
10−7 died between 36 and 60 hpi. All other shrimp sur-
vived until the end of the experiment. When a peroral 
inoculation was performed in PM-intact shrimp with 100, 
10−1, 10−2 and 10−3 of WSSV stock 2, 1 out of 5 shrimp 
in dilution 100, 1 in dilution 10−1, 1 in dilution 10−2 died 
between 36 and 60 hpi. Peroral inoculation of PM-nega-
tive shrimp induced mortality in 3 shrimp with dilution 
100 and 1 in dilution 10−1 between 48 and 60 hpi. Other 
shrimp survived until the end of the experiment.

In the third experiment, in the groups of shrimp 
injected with WSSV inoculum diluted 10−6–10−8, all 
shrimp in the dilution 10−6 and 12 out of 15 shrimp in the 
dilution 10−7 died between 36 and 84 hpi. Other shrimp 
survived until the end of the experiment. When shrimp 
were inoculated perorally with 100, 10−1, 10−2 and 10−3 
of WSSV stock 2, 5 deaths out of 15 PM-intact shrimp 
in dilution 100 and 1 in dilution 10−1 were recorded 
between 36 and 60 hpi. Peroral inoculation in PM-nega-
tive shrimp caused mortality in 11 shrimp in dilution 100 
and 2 shrimp in dilution 10−1. All other shrimp survived 
until the end of the experiment at 120 hpi.

IIF analysis of cephalothorax of dead, moribund and 
surviving shrimp revealed that all dead and moribund 
animals were WSSV positive, while all surviving shrimp 
were WSSV negative. Analysis of midgut of dead and 
moribund shrimp showed that CT of the midgut of dead 
and moribund shrimp were WSSV positive, whereas 
the EC of the midgut were WSSV negative (Figure  2). 
The mean virus titers that were determined in the three 
experiments upon intramuscular injection and pero-
ral inoculation of shrimp with and without PM were 
108.6 ± 0.12, 101.13 ± 0.06 and 101.53 ± 0.21 SID50/mL, respec-
tively (Table 3). Compared with the intramuscular route, 
107.5 times more virus was needed to infect a PM-intact 
shrimp, while 107.1 times more virus was necessary to 
infect a PM-negative shrimp via oral inoculation. The 
Chi square test on infection rates of shrimp showed that 
there was not a significant effect of removal of PM on the 
susceptibility of shrimp to WSSV infection (p > 0.05).

Discussion
In vivo titration is generally used to define the infectiv-
ity of a WSSV stock [7, 18, 41]. In the present study, the 
infectivity of WSSV was first determined in P. vannamei 
by intramuscular injection and peroral inoculation. The 
results indicated that a homogenate of WSSV infected 
shrimp is highly infectious when directly injected into 
shrimp. In contrast, there are strong restrictions on the 
infection of shrimp via the digestive system even when 
the PM is removed. These findings were in conflict with 
earlier results from our group published by Escobedo-
bonilla et al. [18]. In that paper, it was shown that shrimp 

could be easily infected upon peroral inoculation using a 
rigid plastic pipette tip (no. 790  004 Biozym). However, 
by using dye, we could demonstrate that the fluid was 
crossing the gastrointestinal tract and was entering the 
hemocoel. Therefore, we have changed the inoculation 
device. In the present study, we have used a softer and 
flexible 24G Surflo-W catheter. By the use of dye, it was 
demonstrated that peroral inoculation of shrimp with 
this 24G Surflo-W catheter is not damaging the gastro-
intestinal tract. The findings in the present study were 
also in contrast with other researchers who detected 
a 100% mortality by feeding infected shrimp [19, 43]. 
Different explanations can be forwarded. In the latter 
studies, animals were pooled in the same tank, fed with 
WSSV infected tissue shrimp for several days and termi-
nated often after more than 5 days. It is very well possi-
ble that a larger amount of virus has been given with the 
feed and that cannibalism occurred when a few primarily 
infected shrimp became infected and died, resulting in 
large amounts of virus becoming homogeneously distrib-
uted in the water of the tanks. This may have triggered 
infection via waterborne route. However, our results 
are in agreement with the findings of others. Laramore 
reported that individual peroral feeding of P. vannamei 
with WSSV infected tissue at 10% of their body weight 
did not result in a 100% mortality [20]. Another study on 
peroral infection of P. vannamei with 200 µL of a WSSV 
inoculum, containing 107 WSSV genome  copies/mL, 
conducted by Gitterle et al. [17] also showed that cumu-
lative mortality of shrimp was less than 100%.

In order to understand the factors determining virus 
infectivity via oral route, it is very important to have a 
good knowledge on the anatomy of the host digestive 
system. In decapod crustaceans, the digestive system is 
divided into three major regions: foregut, midgut, and 
hindgut. The foregut is composed of the mouth, esopha-
gus, cardiac and pyloric stomach chambers, which are 
covered with a cuticle layer. The food ingested via the 
mouth moves through the esophagus and ends into the 
cardiac stomach chamber. Through the process of cut-
ting, crushing, mixing by the lateral teeth systems and 
filtering by a cardiac setal screen in the cardiac chamber, 
the processed food is drained into the pyloric chamber. 
In the pyloric region, the processed material is further 
sorted by the ampullary setal screen of gland filters into 
a liquid form for further digestion in the hepatopancreas 
and particles for subsequent transport into the midgut 
region [44–46]. The midgut region secretes the peri-
trophic membrane which wraps the material coming from 
the pyloric chamber [47, 48]. The hindgut is a simple cuti-
cle lined tube, that functions in expelling the peritrophic 
membrane, containing the feces [49, 50]. In several spe-
cies of crustaceans, the mesh size of the ampullary setal 
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screen is estimated to be smaller than 100  nm [51, 52]. 
The pore size of midgut peritrophic membrane can be 
as small as 20  nm [47]. From these data and the size of 
WSSV of 70–380 nm [53], it is likely that if the internal 
barriers of cuticle and peritrophic membrane are not rup-
tured, WSSV can not reach the epithelial cells. That is 
why, in the present study, it was examined if removal of 
the PM could facilitate the infection of the underlying epi-
thelial cells. In the present study, N-acetyl-D-glucosamine 
of the PM was stained with FITC-WGA and staining of 
cryosections of midgut and feces revealed that the PM of 
P. vannamei is multilayered, which is similar to what has 
been described in penaeid shrimp by Wang et al. [48] and 

Martin et al. [47]. The authors described that P. vannamei 
possesses a type I of PM, that is continuously formed 
on the surface of epithelial midgut cells and consists of 
three stages: PM in stage 1 and 2 is closely attached to 
the microvilli of epithelial midgut cells, and PM in stage 
3 is detached. After the removal of the PM by a peroral 
flush and directly thereafter the peroral inoculation of 
WSSV suspension, it was observed that the inoculum 
was filling the complete gastrointestinal tract (Additional 
file  2). Therefore, the virus had direct access to the epi-
thelial cells. Within this short time frame, the epithelial 
cells were not able to produce a new PM. However, this 
PM removal did not facilitate WSSV infection of the 

Table 3  Infection titers of a WSSV stock in P. vannamei without and with removal of the peritrophic membrane.

Experiment Inoculation 
route

Removal 
of PM

Dilution tissue 
homogenate

No. 
of shrimp 

Mortality at different time points (hpi) Infection 
by IIF

Virus titer

24 36 48 60 72 84 96 120 Total

1 Intramuscular No 10−6 5 2 2 1 5/5 5/5 108.5 SID50/mL

No 10−7 5 1 2 3/5 3/5

No 10−8 5 0/5 0/5

Peroral No 100 5 2 2/5 2/5 101.1 SID50/mL

No 10−1 5 0/5 0/5

No 10−2 5 0/5 0/5

No 10−3 5 0/5 0/5

Yes 100 5 1 1 2/5 2/5 101.3 SID50/mL

Yes 10−1 5 1 1/5 1/5

Yes 10−2 5 0/5 0/5

Yes 10−3 5 0/5 0/5

2 Intramuscular No 10−6 5 2 1 2 5/5 5/5 108.7 SID50/mL

No 10−7 5 2 2 4/5 4/5

No 10−8 5 0/5 0/5

Peroral No 100 5 1 1/5 1/5 101.2 SID50/mL

No 10−1 5 1 1/5 1/5

No 10−2 5 1 1/5 1/5

No 10−3 5 0/5 0/5

Yes 100 5 1 2 3/5 3/5 101.6 SID50/mL

Yes 10−1 5 1 1/5 1/5

Yes 10−2 5 0/5 0/5

Yes 10−3 5 0/5 0/5

3 Intramuscular No 10−6 15 2 4 4 4 1 15/15 15/15 108.7 SID50/mL

No 10−7 15 1 2 4 4 1 12/15 12/15

No 10−8 15 0/15 1/15

Peroral No 100 15 1 1 3 5/15 5/15 101.1 SID50/mL

No 10−1 15 1 1/15 1/15

No 10−2 15 0/15 0/15

No 10−3 15 0/15 0/15

Yes 100 15 2 3 2 3 1 11/15 11/15 101.7 SID50/mL

Yes 10−1 15 2 2/15 2/15

Yes 10−2 15 0/15 0/15

Yes 10−3 15 0/15 0/15
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underlying epithelial cells. This observation was in agree-
ment with that found by Arts [54]. The author reported 
that nuclei of epithelial midgut cells of WSSV-infected P. 
monodom were negative with WSSV by VP28-immunore-
active and electron microscopy study. This is indicative for 
a state of resistance of epithelial cells to infection and the 
absence of receptors on the luminal surface of these cells. 
In addition, the infectivity of WSSV in shrimp via peroral 
infection may be largely decreased by digestive enzymes. 
This impact could be similar to the one described for 
insects [55]. Another factor that may limit the penetration 
of WSSV through shrimp midgut is the basement mem-
brane, a firm layer of connective tissue underneath the 
epithelial cells. In insects, the basement membrane is well 
known to prevent virus entry into the hemocoel [31, 56, 
57]. In the present study, the basement membrane could 
be visualized by FITC-WGA which is in agreement with 
the finding of Martin et al. [47]. When one considers all 
barriers and viral unfriendly environmental factors that 
WSSV encounters in the digestive system of shrimp, it 
is easy to understand why WSSV is poorly infectious for 
shrimp via peroral route.

In conclusion, the present study revealed that a 
homogenate of WSSV infected shrimp is highly infec-
tious when injected into shrimp, whereas it is poorly 
infectious via oral route. Removal of the PM slightly but 
not significantly facilitated the infection of shrimp. From 
these findings, it is highly questioned if per os uptake of 
WSSV is the major route of spread for the virus. More 
work needs to be done on finding more important portals 
of entry for WSSV in shrimp which will finally lead to the 
development of more effective WSSV control measures.
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